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Abstract. Fiducial-based registration is often utilized in image guided surgery 
because of its simplicity and speed. The assessment of target registration error 
when using this technique, however, is difficult. Although the distribution of 
the target registration error can be estimated given the fiducial configuration 
and an estimation of the fiducial localization error, the target registration error 
for a specific registration is uncorrelated with the fiducial registration error. 
Fiducial registration error is thus an unreliable predictor of the target 
registration error for a particular case. In this work, we present a new method to 
estimate the quality of a fiducial-based registration and show that our measure 
is correlated to the target registration error and that it can be used to reduce 
registration error caused by fiducial localization error. This has direct 
implication on the attainable accuracy of fiducial-based registration methods. 

Keywords: Image registration, registration circuits, rigid registration, fiducial 
registration, image guided surgery, registration error. 

1 Introduction 

Fiducial-based registration is an important technique in Image Guided Surgery (IGS). 
It is often utilized to align image information to the surgical space in an operating 
room. In this context, fiducial markers are attached to the patient and an image is 
acquired. The physical location of the fiducial markers in the operating room is 
obtained as well as the location of the markers in the image and the two point sets 
(fiducial configurations) are registered to each other. Error in identifying the correct 
location of the individual fiducials, called Fiducial Localization Error (FLE) [1] may 
occur which causes error in the registration between the image and surgical space. An 
analytical solution for the distribution of errors in fiducial registration has been 
proposed [1, 2, 3], but this solution does not permit the assessment of the target 
registration error in a particular case. Fiducial Registration Error (FRE) is often used 
as a surrogate for the Target Registration Error (TRE) that is the quantity of clinical 
interest [4]. Unfortunately, it has been shown [5] that TRE and FRE are uncorrelated. 
FRE is thus an unreliable predictor of registration accuracy. 

In this work, we propose a method to estimate the quality of a registration that 
correlates with TRE and therefore produces a value that correlates with the true 
registration accuracy at a target location. The next section describes our technique, 
which we call AQUIRC for Assessing Quality Using Image Registration Circuits. In 
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the results section, simulation results we have produced to demonstrate the correlation 
between our measure and TRE are presented and future work and applications are 
discussed. 

2 General Algorithm 

This algorithm was first proposed in [6] for global atlas selection and was utilized to 
estimate the quality of intensity-based rigid image registration in [7]. Briefly, 
AQUIRC builds on the idea of registration circuits which was proposed as a 
consistency measure by Woods et al. [8] and Holden et al. [9]. Here, a registration 
circuit involves three fiducial configurations A, B, and C and three transformations 
TAB, TBC, and TCA. The configurations' coordinates differ by the assumed localization 
error of the individual fiducials. As discussed by Fitzpatrick [10], using only one 

registration circuit can lead to an 
underestimation of registration 
error because the error made 
along one edge in the circuit may 
correct error introduced from a 
separate edge in the circuit.  

In this work, we expand upon 
the idea of a registration circuit to 
multiple circuits. We start with a 
set of fiducial configurations and 
compute pair-wise registrations 
between all elements in the set, 
creating a complete graph as 
shown in Figure 1. The complete 
graph of registrations is similar to 
what is done by Christensen [11]. 
In [11], however, the set consisted 
of medical images and the 

complete graph was used as an overall measure of quality for a registration algorithm, 
rather than as a method to determine the quality of individual registrations as we have 
done here. If our initial set contains N fiducial configurations (i.e., the same set of 
fiducial markers but with the position perturbed by the assumed fiducial localization 
error) the graph contains ൫Nଶ൯ edges. With each edge in this graph, we associate an 
initially unknown measure of registration quality called ε that we wish to solve for. There 
are ൫Nଷ൯ unique registration circuits that can be formed from a complete graph (we have 
used registration circuits of size 3; the circuit size can be increased to form more 
registration circuits but this was not explored here). 

Next, we define a measure of registration error that can be computed across a circuit. 
Here, to compute this error, we select a target point or set of points in A, say X. We then 
compute the transformed point(s) X′ as X′ ൌ  TABሺTBCሺTCAሺXሻሻሻ. We note the important 
fact that the order in which transformations are composed is critical and that this order 
differs from the originally proposed registration circuit in [8, 9]. The quality of  
 

Fig. 1. Example complete graph with one circuit shown
in red arrows 
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registrations across circuit A, B, C, is then defined as EC ൌ ,ሺXݕݐ݅ݎ݈ܽ݅݉݅ݏݏ݅݀  X′ሻ. The 
value, EC, is affected by the error of three registrations, i.e., the registration error between 
A and B, the registration error between B and C, and the registration error between C and 
A. With only one circuit the contribution of each component cannot be computed. It can, 
however, be estimated with more than one circuit. To achieve this we make the 
assumption that each registration affects the quality measure multiplicatively, i.e., εABC= 
εA*εB*εC or, log(εABC) = log(εA)+log(εB)+log(εC). An additive model may also be 
applicable but was not tested in this work. Computing this expression for all possible 
circuits and rearranging them in matrix form, we obtain 

ێێۏ
ێێێ
ۍێ 1 1 1 0 . . . 01 0 1 1 . . . 01 1 0 1 . . . 00 1 1 1 . . . ۑۑے                           .                      .                      .0

ۑۑۑ
ېۑ

ێێۏ
ێێێ
ۍێ log ሺεଵሻlog ሺεଶሻlog ሺεଷሻ...log ሺεቀNమቁሻۑۑے

ۑۑۑ
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ێێۏ
ێێێ
ۍێ log ሺEୡభሻlog ሺEୡమሻlog ሺEୡయሻ...log ሺEୡቀNయቁሻۑۑے

ۑۑۑ
ېۑ
                             ሺ1ሻ 

in which EC౟ is defined as the ݀݅ݕݐ݅ݎ݈ܽ݅݉݅ݏݏሺX, X′ሻ value around circuit i. This 

expression can be rewritten as Pന log ሺεҧሻ ൌ log ሺEഥୡሻ. As a result of the multiplicative 
assumption, log ሺεҧሻ can be solved for using a linear least squares solution logሺεതሻ ൌ ൫PനTPന൯ିଵPനTlog ሺEୡതതത ሻ                                        ሺ2ሻ  

and finally solving for ε ε ൌ  e୪୭୥ ሺகതሻ                                                            ሺ3ሻ  

We are currently working on a proof of conditions on the registration circuits for 
when Pന is full rank and therefore ൫PനTPന൯ is invertible. Experimentally Pന has been 

observed to be full rank when N ൒ 5. We define Pന to be all unique circuits in the 
graph of size 3.  

There are multiple ways to define the circuits that are utilized to create the ധܲ 
matrix. In this work, we utilize the set of unique circuits of size 3 in the graph. For 
example, for the three nodes A, B, and C in Figure 1, we consider only one circuit 
e.g., TAB(TBCሺTCAሻሻ.  

2.1 AQUIRC Applied to Fiducial-Based Registration 

For this work, we utilize the fiducial registration method that minimizes the FRE 
between two sets of points. This fiducial registration method is standard and uses 
singular-value decomposition as proposed by Arun et al [12]. We also define the 
function ݀݅ݕݐ݅ݎ݈ܽ݅݉݅ݏݏሺX, X′ሻ to be the TRE(X, X') where TRE(X, X') is defined as 
the Euclidean distance between X and X' because, as explained below, our set X  
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contains a single element. In this particular study, we define two spaces: the image 
space and the surgical space, to mimic the situation of a typical point-based 
registration problem where pre-operative images need to be registered to the patient in 
the operating room. We define X as the target point and we select that point in image 
space. As discussed below, we introduce a known transformation between image and 
surgical space that can be large and we perturb the position of the fiducials in image 
space.  

3 Experiments and Results 

To test our algorithm we repeat an experiment that was performed by Fitzpatrick 
which showed analytically and experimentally that FRE and TRE are uncorrelated 
[5]. Using the same experiment we show that our quality measure is correlated to the 
TRE. 

3.1 Experiments 

In Experiment 1 in [5], Fitzpatrick simulates an actual Deep Brain Stimulation case 
with 4 fiducials and a target location in the deep brain. The location of the four 
fiducials ݔଵ, ݔଶ, ݔଷ, and ݔସ as well as the target position ݔ௧ are: 

ଵݔ  ൌ  ൥197217115൩ , ଶݔ    ൌ  ൥109225121൩ , ଷݔ    ൌ  ൥ 83139127൩ , ସݔ    ൌ  ൥202132130൩ , ௧ݔ    ൌ  ൥14415557 ൩ 

 
Following the same simulation model as in [5], we first apply a rotation R and 
translation t to the location of the fiducials ݔଵ, ݔଶ, ݔଷ, and ݔସ as well as to the target 
position ݔ௧, which results in the corresponding positions ݕଵ, ݕଶ, ݕଷ, ݕସ, and ݕ௧ . We 
consider the fiducials ݔଵ, ݔଶ, ݔଷ, and ݔସ and ݔ௧ to be in the image space while the 
rotated and translated fiducials ݕଵ, ݕଶ, ݕଷ, ݕସ, and ݕ௧  are considered to be in the 
surgical space. Again, as in [5], we set the rotation R to be 10, 20, and -30 degrees 
about the x, y, and z axes and we set the translation t to be (7, -10, 100) mm (which 
was chosen as an arbitrary mis-registration in [5]). 

We then perturb the location of the fiducials in image space using a fiducial 
localization error drawn from a random distribution with zero mean and variance of 
FLE/3, where FLE is set to 1mm. This is done N-1 times to create a set of N-1 
perturbed fiducial configurations (as seen in the left of Figure 2). We then compute all 
pair-wise fiducial registrations between each of the N-1 fiducial configurations in the 
image space as well as between these and the unperturbed rotated fiducial 
configuration in the surgical space, creating the complete graph of registrations 
necessary to run our algorithm which we use to calculate the ε value for each of the 
registrations. There are three quantities of importance in this work: TRE, FRE, and ε. 
These three values are calculated for the registrations between the fiducial 
configurations in the image space and the fiducial configuration in the surgical space, 
which results in N-1 values for TRE, FRE, and ε (this is represented as the red links in 
Figure 2). FRE is defined as the root mean square distance between the fiducial points 
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in image space and the points transformed from image space to surgical space using 
the computed transformations. For each run, we thus produce N-1 FRE values. 
Similarly, TRE is defined as the Euclidean distance between the target position in 
surgical space and the position of the target transformed from image space to surgical 
space. We repeat this process in a Monte Carlo simulation; creating thousands of 
image space fiducial configurations with randomized FLEs. 

In the first experiment we utilize an N of size 30 over 1000 simulations. We 
calculate the correlation between the TRE values and ε values and the FRE and ε 
values. In the second experiment we test the effect N has on our results by varying the 
size of N from 5 to 25 using 5000 simulations for each value of N. Again, we 
calculate the correlation between TRE and the ε values for each value of N. Finally, in 
the third experiment, we test the ability of our algorithm to improve the TRE in a 
fiducial-based registration scenario. To do this we use an N of 30 over 1000 
simulations. For each simulation we consider the registration between the 29 image 
space fiducials and the surgical space fiducial and for all 29 registrations calculate the 
mean TRE, the min TRE, the max TRE, the TRE of the fiducial configuration that 
AQUIRC identifies as being of the highest quality, and the TRE of the fiducial 
configuration with the minimum FRE. 

 

 

Fig. 2. Diagram of the experiment methodology. The image space contains N-1 fiducial 
configurations that are created by adding FLE to the original fiducial locations. The surgical space 
contains the rotated and translated fiducials. Each set of fiducial configurations are registered to 
every other configuration, both in image space and in surgical space. The red links represent the 
registrations for which we calculate the TRE, FRE and ε values. 

3.2 Results 

The results of experiment 1 are shown in Figures 3. In the left of Figure 3 we show a 
scatter plot of the FRE and TRE values (the points in both scatter plots were reduced 
to a random sampling of 1000 data points for better visualization). As can be seen, we 
produce a correlation that is very similar to the one found in [5], with an r = -0.0012, 
which is not statistically significant (p = 0.8351). In the right of Figure 3 we show the 
correlation between our algorithm's ε value and TRE. In this case there is a 
statistically significant correlation of r = 0.6086 and a p < 0.001. The results of 
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experiment 2 are shown in Figure 4. By increasing the number of fiducial 
configurations that we utilize in the image space we can increase the correlation 
between TRE and ε, producing better estimations of the quality of error in fiducial 
registrations. The results of experiment 3 are shown in Figure 5; it shows the practical 
utility of our algorithm. If, for every simulation, we choose the configuration with the 
lowest ε value, the TRE is reduced by a statistically significant 0.1347 mm when 
compared to the mean TRE value and is reduced by a statistically significant 0.1367 
when compared to the TRE of the fiducial configuration with the minimum FRE. The 
figure also shows the mean and standard deviation of the TRE values when the 
configurations with the max and min TRE values are selected at every run.  

 
Fig. 3. Left: Scatter plot of the TRE and FRE values. Right: Scatter plot of the TRE and ε 
values. 

 

Fig. 4. Correlation between TRE and ε as a function of the number of fiducial configurations 
utilized in the surgical space. 
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Fig. 5. Bar graph of the mean value and standard deviation of the TRE value across 1000 
simulations. For each simulation we calculate the mean TRE of all 30 fiducial configurations, 
the min TRE of all 30 fiducial configurations, the max TRE of all 30 fiducial configurations, 
the TRE of the fiducial configuration that AQUIRC identifies as being of the highest quality, 
and TRE of the fiducial configuration with the minimum FRE. 

4 Discussions/Future Work 

In this work we have introduced a method that produces a measure of registration 
quality that is correlated to the target registration error. We are unaware of any other 
published work that describes a technique that is able to do so. We have shown that 
the number of fiducial configurations that are utilized in the complete graph of 
registrations affects the quality of our algorithm's estimation and the correlation 
between our measure and TRE increases as the number of configuration increases. 
Most importantly for practical applications, we also show that by choosing the 
configuration that our algorithm identifies as producing the best registration, we can 
reduce the average TRE.  

To use our algorithm in practice, all that is needed is to acquire the location of the 
fiducial markers in the image space as well as in surgical space. The location of the 
markers in image space can then be randomly perturbed by an FLE that is 
representative of the error that naturally occurs when attempting to identify the 
coordinates of the markers (alternatively, the position of the markers in surgical space 
could be perturbed). These sets of markers can then be registered together to form a 
complete graph of registrations and AQUIRC is applied. The ε value of the 
unperturbed configuration, i.e., the position of the fiducials selected by the end user, 
can then be compared to the distribution of ε values produced by our algorithm. If the 
unperturbed ε value is large compared to the perturbed ε values, the end user could be 
warned of a potential registration problem. 
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In the future, we will investigate various types of models that could better represent 
the combination of error that occurs when combining multiple transformations than 
the multiplicative model we have used in this work. We will also explore further the 
distribution of ε values and attempt to define statistical tests that would permit to 
quantify the quality of a particular registration.  

As discussed earlier, the order in which transformations are composed when 
computing the registration error across a circuit is important. In fact, if  X′ is 
computed as X ′ ൌ  TABሺTBCሺTCAሺXሻሻሻ, we have not observed a correlation between 
the TRE and ε values. The theoretical reasons for this observation have not yet been 
elucidated and are under investigation.  If successful, this algorithm would provide 
end users with quantitative measures of accuracy for a particular registration. This 
would represent a major advance in the field of fiducial-based registration. 
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