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Abstract. While Markov random fields are very popular segmentation
models in medical image processing, the associated maximum a posteriori
(MAP) estimation problem is usually solved using iterative methods that
are prone to local maxima. We show that a variant of the random walker
algorithm can be seen as a relaxation method for the MAP problem
under the Potts model. The key advantage of this technique is that it
boils down to a sparse linear system with a uniquely defined explicit
solution. Our experiments further demonstrate that the resulting MAP
approximation can be used to improve the classical mean-field algorithm
in terms of MAP estimation quality.

1 Introduction

Many image segmentation problems can be conveniently formulated using Mar-
kov random fields (MRF), however the associated task of computing the maxi-
mum a posteriori (MAP) segmentation is combinatorial NP-hard. Early MRF-
MAP tracking methods include the ICM algorithm [1] known to be fast but
highly prone to local maxima, and simulated annealing [2] which may be hope-
lessly slow in practice. Over the past two decades, several approaches have been
proposed to work around these limitations.

One such approach, which stems from classical optimization theory, is relax-
ation. The basic idea is to substitute the combinatorial optimization problem
with a continuous one which, in image segmentation context, involves extending
the MAP search to the space of probabilistic assignments from voxels to classes.
An approximation to the MAP is found by binarizing the optimal such assign-
ment. Relaxation for MRF-MAP has been implemented using convex program-
ing [3,4,5], which guarantees a unique solution but tends to be computationally
expensive as it relies on constrained optimization.

Meanwhile, message-passing algorithms have emerged from the machine learn-
ing community for inference on probabilistic graphical models [6]. In particu-
lar, the variational expectation-maximization (VEM) algorithm, also known as
mean-field algorithm, has long been used in brain imaging, though sometimes
through ad-hoc variants [7,8,9,10]. Other message-passing schemes used in com-
puter vision include belief propagation and tree-reweighted message-passing [11].
Message-passing can be viewed as a special kind of relaxation for MRF-MAP,
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which is rather fast as it does do not require handling explicit inequality con-
straints, but is initialization-dependent since the underlying objective function
is typically non-convex.

Another research trend has been to apply methods from deterministic graph
theory to image segmentation. Nowadays, graph cuts [12] are widely regarded as
the most robust methods for MRF-MAP [11]. In the binary segmentation case
where MRF-MAP amounts to a max-flow min-cut problem, they are guaranteed
to find the global maximum if unique. However, conventional graph cut meth-
ods such as the expansion and swap algorithms iterate over labels or pairs of
labels when more than two labels are involved, and thus become prone to local
convergence in addition to being slower.

A method that closely relates with graph cuts is the random walker (RW)
algorithm of Grady [13,14], which was previously exposed in a different and less
general form by Marroquin et al [15]. In this work, we show how to re-tune RW
to yield a powerful MRF-MAP relaxation method that boils down to solving a
sparse linear system. Although RW stems from a variational problem similar to
the min-cut in the two-label case [16], its deep connections with MRF-based seg-
mentation have been somewhat overlooked so far. We further advocate a method
that combines the proposed relaxation with the traditional VEM algorithm.

2 MRF-MAP Segmentation

The MRF-MAP problem under the Potts model for labeling an image Y in
K classes amounts to minimizing the following energy [17]:

L(δ, θ) = −
∑

i

δ�i log �i(θ) + β
∑

i,j

wij(1− δ�i δj), (1)

where δ = (δ1, δ2, . . .) is a collection of “delta-distributions”, that is, for each
voxel i, δi is a K-dimensional vector with a single non-zero component δik = 1
corresponding to the voxel label. The weights wij encode spatial interactions be-
tween voxels and are usually symmetric, equal to one if voxels i and j are neigh-
bors according to a given discrete topology, and zero otherwise. The first term
in the right hand side involves the likelihood �ik(θ) = p(yi|k, θ) of the labels at
voxel i, where θ is a nuisance parameter vector to be estimated. Under the usual
Gaussian noise model, p(yi|k, θ) = N(yi;μk, σk) and θ = (μ1, σ1, . . . , μK , σK) is
the concatenation of mean intensities and standard deviations over classes. Note,
however, that the likelihood can be substituted with any external field without
changing the analysis that follows.

2.1 Free Energy Relaxation

A known relaxation method to approximate the minimization of (1) is to mini-
mize the so-called free energy function over arbitrary probability masses qi,

L̃(q, θ) = −
∑

i

q�i log �i(θ) + β
∑

i,j

wij(1− q�i qj) +
∑

i

q�i log qi, (2)
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which defines a continuous extension of (1) in the sense that L̃(δ, θ) and L(δ, θ)
coincide on the space of delta-distributions. While the global minimization of
(2) is intractable, one may resort to a greedy approach based on an alternate
minimization along the qi’s, yielding explicit updates [10]:

qi ∝ �i(θ)e
2β

∑
j wijqj

Applying this equation iteratively by cycling through the voxels corresponds to
the E-step of a VEM algorithm and is guaranteed, under broad conditions, to
converge to a local minimum of free energy. In the VEM algorithm, probability
updates are interleaved with minimizations along θ to concurrently refine in-
tensity parameters. The VEM algorithm is nevertheless dependent on starting
values for both q and θ, and there is no theoretical warranty as to the accuracy
of the resulting MAP approximation even at fixed θ.

2.2 Laplace Relaxation

We now describe another MAP relaxation approach that yields a convex problem
unlike (2). Let us start with defining a surrogate MAP energy function:

Ls(δ, θ) =
∑

i

(1 − δ�i πi(θ)) + β
∑

i,j

wij(1− δ�i δj)−
∑

i

log zi(θ),

where πi(θ) = �i(θ)/zi(θ) is the likelihood at voxel i normalized to unit sum and
zi(θ) is the associated partition function. Using the inequality log(x) ≤ x − 1,
we see that Ls(δ, θ) ≤ L(δ, θ) for any delta-distribution, with equality iff πi is a
delta-distribution and δi = πi at each voxel. Moreover, we have:

‖δ‖2 = 1, 1− δ�v =
1

2
‖δ − v‖2 + 1

2
− 1

2
‖v‖2,

for any delta-distribution δ and vector v. Therefore, the following function defines
a continuous extension of Ls over arbitrary distributions:

L̃s(q, θ) =
1

2

∑

i

‖qi − πi(θ)‖2 + β

2

∑

i,j

wij‖qi − qj‖2 + C(θ), (3)

where C(θ) =
∑

i(− log zi(θ) +
1
2 − 1

2‖πi(θ)‖2). Clearly, L̃s is quadratic and
strictly convex in q. Minimizing it at fixed θ yields the first-order condition:

∀k, (I+ λL)Qk = Πk, with λ = 2β, (4)

which is a set of sparse linear systems, where L is the Laplacian matrix of
the image grid considered as a graph with weights wij and I is the identity
matrix with size equal to the number of voxels. Qk stands for the probability
image associated with class k, i.e. Qki = qik, and Πk similarly represents the
normalized likelihood image for class k.
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Equation (4) turns out to be a vector-valued discrete Laplace equation and is
equivalent to the method proposed by Marroquin et al [15] as an approximation
to the same MAP problem. The key property is that the unique solution is a
probability map without the need to incorporate explicit equality or inequality
constraints, which provides a massive computational advantage over other relax-
ation approaches [3,4,5]. In [15], the smoothing parameter λ was not related to
the MRF parameter β and was tuned empirically. We showed here that setting
λ = 2β ensures that the surrogate energy Ls is uniformly upper bounded by the
MAP objective (1), therefore (4) qualifies as a relaxation method for the MAP
problem.

A generalization of (4) is the multilabel RW algorithm [13,14]. Our strategy
should however be expected to differ significantly from the original RW in prac-
tice, since both the weights wij and the “diagonal matrix” (here, the identity)
are chosen in different ways, independently from the data in our case.

Owing to the inequality Ls(δ, θ) ≤ L(δ, θ), the MAP may be bracketed using
the Laplace relaxation solution q� and its binarization δ�:

L̃s(q�) ≤ min
δ

L(δ) ≤ L(δ�),

hence providing some confidence bounds on the MAP approximation. Note that
such a lower bound is not available for the VEM output as it may not be a global
minimizer of free energy (2).

Also, we shall note that there is no explicit solution to minimizing (3) with
respect to θ, unlike the case of free energy. Therefore, Laplace relaxation does
not come with a simple built-in method for intensity parameter estimation.

3 Experiments

This section compares both relaxation methods presented above in brain
tissue classification. We used a subset of 248 brain MR T1-weighted im-
ages from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI,
adni.loni.ucla.edu) acquired on both 1.5 Tesla and 3 Tesla scanners from
different manufacturers, with voxel volume ranging from 1 to 1.9 mm3. The
dataset includes 163 healthy controls and 85 diagnosed AD patients (55% males,
45% females) with mean age 77± 7 years. As a pre-processing, the images were
corrected for bias field using the N3 method [18] and skull-stripped by non-rigid
registration with a template [19].

We here focus on further classifying the skull stripped data into cerebrospinal
fluid (CSF), gray matter (GM), and white matter (WM). To this end, we used a
4-class Potts prior model using a 6-neighborhood system with two classes repre-
senting GM to account for the usually rather large intensity variations between
cortical GM and deep GM in T1-weighted images. The spatial regularization
parameter was set to β = 0.5 based on previous tests. No external field was
incorporated to the model at this stage to avoid biasing tissue classification to-
wards an atlas [20]. This model was found to yield high overlap with ground

adni.loni.ucla.edu
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truth segmentation on Brainweb data [21] using the conventional VEM algo-
rithm (Jaccard indices larger than 0.88).

The VEM algorithm was mainly implemented in Python based on the Scien-
tific Python package (www.scipy.org) with a subroutine in C for higher per-
formance. Laplace relaxation was implemented in pure Python inspired by the
random walker implementation by E. Gouillart (github.com/emmanuelle) using
a smoothed aggregation solver [22]. The θ parameter supplied to each method
was computed using a simple moment matching technique [10].

The computation time on a single processor Intel Core i7-975 CPU 3.33GHz
was about 1.5 seconds per iteration for VEM (including update of θ), and about
15 seconds for Laplace relaxation. The VEM algorithm was run for 50 iterations,
which achieved satisfactory convergence in all cases (relative variations of free
energy lower than 2.5×10−4), resulting in a total computation time of 75 seconds
per image.

Fig. 1. Comparison of MAP estimates found by Laplace relaxation (middle) and the
VEM algorithm (right) for a skull-stripped MR T1-weighted image (left). Label colors
are red for CSF, blue and green for GM, and yellow for WM.

Figure 1 illustrates that MAP estimates found by Laplace relaxation generally
look very similar from visual inspection to those provided by the VEM algorithm.
To quantify this, we computed minimum Jaccard overlap coefficients,

J = min
k

|Ak ∩Bk|
|Ak ∪Bk| ,

where Ak and Bk denote the sets of voxel labeled as k in the respective clas-
sifications. Overlap coefficients ranged from 0.33 to 0.87 on the whole dataset
with mean 0.64 and standard deviation 0.13. They were found from ANOVA to
correlate negatively with voxel volume (p-value < 10−10) and, to a lesser extent,
with pathology (p-value < 10−2), the agreement between both segmentation
methods being higher for AD patients. Correlations with age and gender were
not significant.

www.scipy.org
github.com/emmanuelle
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While the VEM algorithm was slower than Laplace relaxation, it converged
to a solution of lower energy (1) in all of the 248 cases and was therefore more
accurate at tracking the MAP despite being theoretically prone to local min-
ima. To further investigate the benefit of Laplace relaxation, we tested a VEM
variant, hereafter referred to as LR-VEM, where the class probability map q
is initialized as the binarized solution of Laplace relaxation, as opposed to the
standard initialization with a uniform distribution over labels.

Fig. 2. Comparison between standard VEM and LR-VEM algorithms: plot of final
relative MAP energy values against Jaccard indices for 248 ADNI subjects

Figure 2 plots a relative measure of MAP estimation quality of LR-VEM
versus VEM, defined as LVEM

final/L
LR-VEM
final − 1, where Lfinal denotes the energy

level reached after 50 iterations, against the overlap indices computed between
the respective corresponding MAP estimates. In 83.5% cases, LR-VEM achieved
lower energy than VEM, while the converse happened in 16.5% cases. Segmenta-
tion results showed non-negligible differences in 10% cases as shown by overlap
indices lower than 0.95. In all such cases, the MAP estimate from LR-VEM
had the lower energy. Conversely, when VEM achieved lower energy than LR-
VEM, the respective MAP estimates were almost identical. This provides some
evidence that initialization with Laplace relaxation makes the VEM algorithm
more robust in tracking the MAP.

ANOVA revealed that overlap indices correlate strongly with pathology (p-
value < 10−6) and age (p-value < 10−5) in the sense that differences between
VEM and LR-VEM are reduced for diseased or aged subjects. A slight negative
correlation with voxel volume (p-value < 10−2) was found in this case, and again
no significant correlation with gender.
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Moreover, the LR-VEM algorithm required an average of 7±10 iterations less
than VEM to achieve the same tolerance on free energy variations as in the last
VEM iteration, meaning that the computational overhead of Laplace relaxation
is compensated for by faster convergence.

4 Discussion

Laplace relaxation offers a fast alternative to the VEM algorithm for MRF-MAP
classification that is independent from an initial label probability assignment. In
our brain tissue classification experiments, Laplace relaxation produced results
quite similar to the VEM algorithm (as shown by minimum Jaccard indices of
0.64±0.13). The MAP classifications output by VEM were, however, more accu-
rate. In a different scenario, Laplace relaxation can be used as an initialization
step for the VEM algorithm, leading to noticeable improvements in MAP es-
timation in about 10% cases without significant overhead in computation time
due to faster convergence.

We did not expect massive improvements in the whole-brain classification
setting where the VEM algorithm has previously been reported to be robust.
We anticipate that the effect of Laplace relaxation may be more substantial in
segmentation applications that target specific anatomical structures since local
volume or shape assessments are likely to be sensitive to small variations in tissue
probability maps. The benefit of Laplace relaxation in brain morphometry is thus
to be further investigated.

Laplace relaxation is currently applicable to a subclass of MRF models that in-
cludes extensions of the Potts model that involve non-stationary scalar-weighted
interactions and addition of any external field. Future work will aim to extend
the methodology to other MRF models for which iterative methods such as the
VEM algorithm may have serious local convergence issues, in particular models
that incorporate strong topological constraints via tissue-dependent interaction
potentials.
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