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Abstract. Registration of Diffusion-weighted imaging (DWI) data emerges as an
important topic in magnetic resonance (MR) image analysis. As existing methods
are often designed for specific diffusion models, it is difficult to fit to the regis-
tered data different models other than the one used for registration. In this paper
we describe a diffeomorphic registration algorithm for DWI data in a large de-
formation setting. Our method generates spatially normalized DWI data and it is
thus possible to fit various diffusion models after registration for comparison pur-
poses. Our algorithm includes (1) a reorientation component, where each diffu-
sion profile (DWI signal as a function on a unit sphere) is decomposed, reoriented
and recomposed to form the orientation-corrected DWI profile, and (2) a large de-
formation diffeomorphic registration component to ensure one-to-one mapping
in a large-structural-variation scenario. In addition our algorithm uses a geodesic
shooting mechanism to avoid the huge computational resources that are needed
to register high-dimensional vector-valued data. We also incorporate into our al-
gorithm a multi-kernel strategy where anatomical structures at different scales
are considered simultaneously during registration. We demonstrate the efficacy
of our method using in vivo data.

1 Introduction

DWI registration presents a direct way of establishing correspondences for white mat-
ter micro-structures, which are often elusive in anatomical scans, such as T;- and T,-
weighted images. Asitis required to deal with both spatial alignment of macro-structures
and reorientation of local angular structures, DWI registration is more challenging to de-
velop than traditional scalar-based image registration.

DWI data are often acquired in up to hundreds of diffusion-sensitizing gradient di-
rections so as to precisely delineate local angular structures. Various diffusion models
are often fitted to the acquired data for analytical purposes. However, analysis can not
yet be performed without aligning similar structures across different subjects. To this
end, a number of registration algorithms have thus been developed. Geng et al. [1]] used
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a spherical harmonic (SH) representation of orientation distribution functions (ODFs)
to guide registration. Yap et al. [2] developed a hierarchical registration scheme where
the alignment is refined using features extracted from a SH-based representation with
gradually increasing order. Raffelt et al. [3]] utilized a subject-template-symmetric dif-
feomorphic framework to align fiber orientation distribution (FOD) fields. Hong et al.
[4] performed registration with the help of T,-weighted images and applied the result-
ing deformation fields to the diffusion-weighted images with re-transformation—taking
into account rotation, scaling, and shearing effects of the spatial transformation of the
FOD. Du et al. [3] designed a large deformation framework to register the ODF data.

However, all of the above methods are designed for specific diffusion models, which
makes it difficult to fit other models to the registered data. In this paper we describe a
method that is able to generate spatially normalized DWI data so that one can fit any
diffusion model after registration. Key highlights of our method include:

1. DWI Reorientation: Our method can directly reorient DWI diffusion signal pro-
files.

2. Large Deformation: We use a large deformation diffeomorphic metric mapping
(LDDMM) framework [i6] to tackle large structural variations. Spatial image align-
ment is achieved by optimizing over a spatio-temporally varying velocity field.

3. Geodesic Shooting: A major problem with the LDDMM algorithm [6] is the large
memory consumption. This is often aggravated for vector-valued and high dimen-
sional DWI data. We thus use a geodesic shooting algorithm [7] to avoid the storage
of the entire series of velocity fields, so that only an initial image and an initial mo-
mentum are needed to parameterize the full deformation path.

4. Multi-Kernel: We use multiple Gaussian kernels [8] to simultaneously register
anatomical structures at different scales.

Works on registering the raw DWI data are few. To the best of our knowledge, the only
closest work is that of Dhollander et al. [9], where they achieved the goal by using SHs
[3] as well as a diffeomorphic demons algorithm [[10]. Our method differs fundamen-
tally from theirs in three aspects: (1) We achieve reorientation by using Watson distri-
butions instead of SHs. This avoids the computational complexity of SHs as well as the
loss of sharp directional information when SH basis functions of insufficient order are
used; (2) Our method can work with single-shell DWI data, whereas their method re-
quires multi-shell data acquisition, which might be clinically infeasible; (3) Our method
explicitly considers large deformation.

2 Methodology

Below we will first describe the approach to reorienting DWI data in Q-space. We will
then focus on the simplified shooting algorithm used for registration. Finally, a summary
of the proposed method will be given.

2.1 Reorientation of DWI Data

To reorient the DWI data in Q-space we first decompose the diffusion signal profile
into a series of fiber basis functions (FBFs), which are based on the Watson distribu-
tion function [[11]]. We then apply a local transformation, computed from the estimated
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Fig. 1. Two fiber populations (gray lines) are shown together with their individual diffusion signal
profiles. When the two fiber populations cross each other, the acquired diffusion signal profile is
a combination of the responses from both fiber populations. As each fiber population transforms
differently with respect to a local transformation (horizontal shearing in this example), the pro-

file at the crossing should be decoupled, reoriented individually, and then recombined to form a
reoriented diffusion signal profile.

map, to reorient each FBF independently. Finally, we recompose the reoriented FBFs
to obtain the orientation-rectified DWI profile. See Fig. [[lfor an illustration.

Diffusion Profile Modeling. Let S(q;) be the diffusion signal measured in direction
q; (i =1,..., M). Our goal is to represent S(q;) in terms of a series of FBFs. As we
use a set of Watson distributions [[L1] to realize the FBFs, we can write

N
S(qi) :wofoJrijf(qZ‘Wjaﬁ), Kk <0, (D

=1

where f(q|p,x) = C(k)exp(k(urq)?) is the probability density function of the
Watson distribution [11], g and g are unit vectors indicating the diffusion gradient
direction and the mean orientation respectively, « is a constant, and C'(k) is the nor-
malization factor. w; is the weight associated with each FBF f(-). fo = C(0) is a con-
stant representing the isotropic diffusion component. Given the diffusion signal profile

S =[S(qi),---,S(qun)]T, we have S = Fw, where w = [wo, wr, - .., wy]T and
foo flanlps, k) - flailpn, k)
F=: : :
fo flamlps, k) - flamlpn, k)

Since typically, M < N + 1, we have a set of underdetermined linear equations. We
solve this using a L regularized least-squares solver with a non-negative constraint.
The reader is referred to [12] for details of the algorithm and evaluation.

Transformation and Recomposition. To reorient the direction of each FBF, p;, we
apply a local affine transformation A estimated from the map resulting from registra-
tion, i.e. p; = Ap;/||Ap;ll. A matrix of rotated FBFs, F, can be then computed
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based on p;. The transformed DWI signal S' is finally computed as S’ = F'w. Note
that the isotropic component is not rotated.

2.2 A Simplified Geodesic Shooting Algorithm

We now describe the registration method for a pair of DWI data. To avoid the com-
putational complexity of a full adjoint shooting method [13]], we follow the simplified
shooting approach [7]]. However, we modify it to allow for a gradient descent directly
on the initial Hamiltonian momentum (the co-adjoint variable to the transported image,
instead of the vector-valued momentum).

Below we use I to represent a vector-valued image of a diffusion profile S at each
voxel location, and I to denote the i-th channel of I. Let I, be the source image and I;
be the target image. Our goal is to minimize

E(v,I) = / Hv||vdt+ ZHI’ —IY)2,, st. I+V(IHTv =0, I°(0) = I},

i=1

2)
where v is the sought-for time-dependent velocity field, ¢ > 0 is a constant and ||v||?, =
(LTLv,v) 2, where L is a proper differential operator. Instead of defining L we define
a desired smoothing kernel K = (LTL)_l. We use a multi-Gaussian kernel [8] to
introduce a natural multi-resolution property to the solution and to provide an intuitive
way of parameter tuning based on the desired scales that should be captured by the
registration. Note that we run our algorithm with multiple iterations to minimize @). In
each iteration, [ is spatially transformed and reoriented using the map estimated in the

previous iteration (see Sect. 2.3 for details).
The minimization of () leads to the following optimality and boundary conditions:

I+ v({IH)T =0, I'(0) = I§,
—p} — div(p'v) =0, p'(1) == 2(I'(1) - 1Y), 3)
LTLv + Zf\il p'VIt =0.

Note that V,FE = LT Lv + Zfﬁl p*VI. Hence, instead of solving (3) as a boundary
value problem [6] we follow a simplified shooting approach [7]], performing the gra-
dient descent only for ¢ = 0. In contrast to [7], here we perform the gradient descent
directly on the {p®(0)} by pulling the final conditions {p’(1)} back to ¢ = 0. This can
be accomplished by computing a backward map (from ¢t = 1 to ¢ = 0) on the fly during
a forward integration (from ¢ = 0 to ¢ = 1). To obtain the gradient with respect to these
momentum variables note that at convergence (or on a geodesic in general) for all times
LtLv + Zfﬁl p'VI' = 0. Therefore at t = 0

L Lsv(0 +Z5p 0)VI'(0) =0 “

because I(0) = Iy is known.
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In the vector-valued version of the standard LDDMM scheme [6] (which, given a
velocity field v uses a forward sweep for I and a backward sweep for p?) the Hilbert
gradient at ¢ = 0 is computed as

Vo E = v(0) + (LTL)~ (Z 0)VI*(0 >

where p%(0) is the adjoint at ¢ = 0 obtained after the forward sweep for I?, which
allows the computation of p?(1) followed by a backward sweep for p’. Since v(0) =

—(LTL)~! (Zﬁ1 p'(0)VI%(0)) is the initial velocity given the current initial momen-
tum p*(0) the gradient can be rewritten as

M

> (9°(0) = p'(0)) VI’(O)] :

i=1

Voo E = (L'L)™*

Substituting into (@) we obtain

M

Zap 0)VI'(0) =Y (p'(0) — p'(0)) VI*(0).

i=1

Since this needs to hold for any initial image I(0) it follows that Vi o) E = p*(0) —
$%(0). Given the (on-the-fly) computed map ¢ which maps ¢ = 1 to ¢ = 0 the gradient
is then Vpi(O)E =p"(0) — |DP|p"(1) o D.

2.3 Summary of the Approach

We first use the method described in Sect. 2.1lto decompose both Iy and I, and then run
the above geodesic-shooting LDDMM to iteratively transform and reorient Iy. Specifi-
cally, we first estimate a global affine transformation A 4 between the anisotropy images
of Iy and I;. And then at each iteration, we (1) reconstruct both Iy and I; with a de-
creasing  and an increasing number of diffusion directions. Iy is reconstructed using
the FBFs reoriented with the map estimated in the previous iteration together with A,
while I is reconstructed using the original FBFs with an identity map; (2) weight each
reconstructed image using the associated anisotropy image; (3) estimate the map be-
tween the weighted images; and (4) compose the resulting map with the one estimated
in the previous iteration. At the end of the registration we will obtain the final map
between I and I; as well as a transformed and reoriented source image 1}).

3 Experiments

The DWI data were acquired from 11 adults using a Siemens 3T TIM Trio MR Scanner
with an EPI sequence. Diffusion gradients were applied in 120 non-collinear directions
with diffusion weighting b = 2000 s/mm?. The imaging matrix is 128 x 128 with rectan-
gular FOV of 256 x256 mm?. 80 contiguous slices with a slice thickness of 2 mm cover
the whole brain.
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We randomly chose a subject and used the associated data as the target image, and
used the rest of the data as the source images. We computed the anisotropy images of
all data and used them to estimate a set of affine transformations { A, }. We then warped
each source image to the target image using the associated A, and computed the mean
image of the anisotropy images of the warped source (Fig.2b). This blurred mean image
implies that the DWI data cannot be well aligned by affine transformation.

We then used our method (3 iterations) to register each source image to the target
image. After registration, we reconstructed each source in the original 120 directions
using the associated A, together with the resulting map. Averaging the anisotropy im-
ages across the subjects leads to the mean image shown in Fig. 2. Repeating the above
process with the map generated in the first iteration gives the mean in Fig. Pk. We
found that our method significantly outperforms affine registration by producing a much
crisper mean. Further improvement can be achieved by running the registration multiple
times.

To quantify the comparison, we computed the RMS error between the vector-valued
voxels at corresponding positions. This was done between the target and each source
image, warped either using { A/} or the map estimated by our method. Averaging the
resulting RMS error images across the subjects leads to the mean images shown in Fig.
Rk-g. The mean and standard deviation (s.d.) of these mean images are 13.54+6.2 for
affine registration, 11.044.8 for the first iteration, and 10.3+4.6 for the final iteration.

Target anisotropy Affine Initial iteration Final iteration

Mean anisotropy
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Fig. 2. Comparison of registration accuracy between affine registration and our method
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Fig. 3. A region of interest is indicated by the yellow circle in the left figure and some typical
ODFs associated with this region are given on the right. (a) and (d): the ODFs of the target
image; (b) and (e): the ODFs of the mean image generated using affine registration; (c) and (f):
the ODFs of the mean image generated using our method.

Target Multi-kernel Single-kernel

Fig. 4. Comparison of registration results given by multiple Gaussian kernels and a single kernel

We also labeled a set of salient landmark points (around the lateral ventricles) on the
anisotropy images. For affine registration we used {A,} to warp the landmarks of each
source to the target space, and computed the mean and s.d. of the Euclidean distances
(in mm) between the warped landmarks and the corresponding landmarks on the target.
For our method this was done by using { A} as well as the resulting maps. The results
for affine registration, the first iteration and the final iteration are 7.0+3.0, 4.44+2.4 and
3.6+2.2.

The results from these two quantitative comparisons are in agreement with our ob-
servations based on the mean anisotropy images.

Figure 3] shows that at voxel level the alignment of the DWI profiles across sub-
jects can greatly benefit from registration using the proposed method. The ODFs of the
average DWI data can deviate significantly when registration is inaccurate.

To demonstrate the advantage of using multiple Gaussian kernels, we repeated the
above experiment by using only one Gaussian kernel. Figure [ clearly shows that a
single kernel is unlikely to capture all shape variations that are present in the data.
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4 Concluding Remarks

We have described a method for direct registration of DWI data. Our method is capable
of producing spatially normalized DWI data, based on which any diffusion model can
be fitted for comparison purposes. Future work includes unifying the registration and
reorientation steps for further improvement on alignment accuracy as well as comparing
the performance of different diffusion models within the proposed framework.
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