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Abstract. We formulate the pigmented-skin-lesion (PSL) matching problem as
a relaxed labeling of an association graph. In this graph labeling problem, each
node represents a mapping between a PSL from one image to a PSL in the second
image and the optimal labels are those optimizing a high order Markov Random
Field energy (MRF). The energy is made up of unary, binary, and ternary en-
ergy terms capturing the likelihood of matching between the points, edges, and
cliques of two graphs representing the spatial distribution of the two PSL sets.
Following an exploration of various MRF energy terms, we propose a novel en-
tropy energy term encouraging solutions with low uncertainty. By interpreting the
relaxed labeling as a measure of confidence, we further leverage the high confi-
dence matching to sequentially constrain the learnt objective function defined on
the association graph. We evaluate our method on a large set of synthetic data as
well as 56 pairs of real dermatological images. Our proposed method compares
favorably with the state-of-the-art.

1 Introduction

The presence of a large number of pigmented skin lesions (PSL) is a strong predictor
of malignant melanoma [7]. Since detecting newly appearing, disappearing, and chang-
ing PSL is important for early detection of the disease, many dermatologists advocate
total-body photography for high-risk patients (Figure 1(a)). However, manual inspec-
tion and matching of PSLs is a subjective, tedious, and error prone task. A computer
vision system for tracking the corresponding PSLs greatly improves the matching pro-
cess, thereby easing the workload on dermatologists while also improving matching
accuracy and removing operator variability [7]. There exists limited works on automat-
ing the matching between lesions. Huang and Bergstresser developed a PSL matching
algorithm based on a Voronoi decomposition of the image space [3]. Yet, their method
does not deal with the presence of the newly appearing or disappearing PSLs. Prednia
and White performed affine registration between the two sets of PSLs [8]. However,
their method does not take into account the elastic deformation of the human back.
Roning and Riech defined a set of geometric properties as a similarity metric to find the
corresponding PSLs. Their method requires manually determining two initial matches
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Fig. 1. (a) Example back images of the same subject at two different times. The green and red
dots are overlaid at the PSL’s coordinates. The thickness and the color of the edges encode
the matching confidence between the connected points; the thicker and darker the line, the higher
the confidence (please refer to Section 2.3 for more details). The five rows in (b) and (c) represent
the output of five iterations of the learning step. (b) The probabilistic solutions. (c) The selected
high confidence matchings. The ground truth matching is shown in (d). (e) and (f) show the esti-
mated matching without and with the learning step. Wrong matches are shown in red on the back
images. It can be noticed that the unsupervised learning step improves the matching accuracy (i.e.
less red lines).

[9]. The authors in [7] computed the matching probabilities of the edges of two graphs
representing the spatial distribution of the two PSL sets. They then extracted pointwise
probabilities utilizing the marginalization matrix of the computed pairwise matchings.
However, they did not make use of high-order term to the PSL matching. Recently,
there have been several works on high order graph matching, combining both appear-
ance similarity and geometric compatibility [1,10,11,12].

Compared with the previous works on PSL matching, we present the first appli-
cation of high-order term to PSL matching. Our approach is most closely related to
the work of Zeng et. al [12], who formulate a non-rigid surface registration problem
as a high order graph matching problem and extract the matchings by solving a corre-
sponding pseudo-boolean function. Their matching cost function depends on the feature
appearance and geometric compatibility of the pair-wise and triplet-wise correspon-
dences (Section 2.1). To solve their non-convex optimization problem, they make use
of the dual-decomposition (DD) approach, similar to the work by Torresani et. al [10].
Our method differs from those in [10,12] in several ways. First, we relax the labels to
continuous variables. By interpreting the relaxed labeling as a measure of confidence,
we sequentially leverage the high confidence matchings via a self-learning approach to
learn the features of the association graph (Section 2.3). We further propose to add a
novel entropy energy term encouraging solutions with low uncertainty. We evaluate our
method on a large set of synthetic data (hundreds of pairs) as well as 56 pairs of real
dermatological images. The experimental results confirm the usefulness of adopting the
entropy term and the unsupervised learning procedure (Section 3).
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(a) G1, G2, and G (b) (c) (d)

Fig. 2. (a) Association graph G for graph matching between two graphs, G1 and G2. Each node
in G represents a connection between a point in G1 and a point in G2. The matching problem
between G1 and G2 is formulated as a labeling problem for G. (b-d) illustrate examples of the
unary, binary, and ternary terms used in the MRF-based labeling cost function in (1) (please refer
to Section 2.1 for further details).

2 Method

Let us denote the PSLs coordinates of the lth image by a graph Gl(Vl, El, Cl), l ∈
{1, 2}, consisting of a set of nodes Vl (|Vl| = Nl), edges El ⊂ Vl × Vl, and cliques
Cl ⊂ Vl × Vl × Vl. We define a set of intra and inter-edges between the graphs to
encode features related to the nodes connected by the edges and the cliques. An intra
edge Elm,ln ∈ Gl connects the mth vertex Vlm to the nth vertex Vln, where n �= m. An
inter-edge E1m,2n connects V1m to V2n. Our aim is to find a mapping Π(V1) → V2.

The matching problem (i.e. finding the mapping Π) can be formulated as a graph
labeling problem. To this end, given Gl|l=1,2, we first construct their association graph
G(V,E,C), in which each vertex in V corresponds to an inter-edge, e.g. V1m,2n =
Vmn ↔ E1m,2n (|V| = N1N2) (Figure 2(a)). The matching problem can then be
solved by binary labeling, x, of G [10]. A correspondence Π(V1m) → V2n is active
iff x(Vmn) = 1 and 0 otherwise. The details describing the objective function for bi-
nary labeling is provided in Section 2.1.

Compared with [10], we solve the matching problem as a relaxed (fuzzy) labeling,
i.e. x ∈ [0, 1]. We interpret the fuzzy labels as a measure of confidence. The high
confidence matchings are then extracted for unsupervised learning of the features of the
association graph (Section 2.3).

Let us denote the label by � ∈ {0, 1}. Then, x�(V) represents our confidence in V

having the label �. Since we have the following equality x0(V) = 1 − x1(V) in our
framework, we denote x1 by x for simplicity.

2.1 MRF-Based Binary Labeling

MRF-optimization seeks the labeling xp for each vertex Vp of graph G(V,E,C) by
optimizing an energy function of the form:

E (x) = wu

∑

p∈V

φx (xp) + wb

∑

(p,q)∈E

φxx (xp, xq) + wt

∑

(p,q,z)∈C

φxxx (xp, xq, xz) (1)

where φx is the unary term which measures the likelihood of labeling a vertex with a
specific label disregarding the labels of any of the neighbours; and φxx and φxxx are
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regularization terms penalizing different label configurations of neighboring vertices.
w’s are the weights of the different terms.

We define our unary term as a weighted sum of the two energy terms:

φx(xij) = w(1)
u φ(1)

x (xij) + w(2)
u φ(2)

x (xij). (2)

φ
(1)
x (xij) measures the dissimilarity between the appearance descriptors of V1i and V2j ,

denoted by FV1i and FV2j :

φ(1)
x (xij) = xijdu(V1i,V2j) + (1 − xij)(1− du(V1i,V2j)), (3)

du(A,B) =

R∑

r=1

|FA(αr)−FB(βr)|, α = [α1α2...αR], β = [β1β2...βR]

α, β are the indices of FA and FB , which are compared to each other in computing du
in (3), and are given by:

FVlm
= x(Vlm)11×Nl+1 − [0, x(Vl1), x(Vl2), ..., x(VlNl

)], l ∈ {1, 2}. (4)

where x2×1 is the normalized coordinate of the PSLs resulting from applying the skin
back-template proposed in [7]. In the first iteration, α and β in (3) are initialized with 1.

Therefore, du measures the Euclidean distance between V1i and V2j , i.e. du
(
FV1i(α =

1),FV2j(β = 1)
)
= |x(V1i)− x(V2j)|, and later on, as explained in Section 2.3, α and

β in (3) will be updated in a sequential learning step to include more entries of F in
computing du.

φ
(2)
x (xij) in (2) is our new entropy term, which is used to encourage the cost function

towards solutions with low entropy or low uncertainty:

φ(2)
x (xij) = −

(
xij log2 xij + (1− xij) log2(1 − xij)

)
≈ xij(1− xij). (5)

Equation (5) shows a quadratic approximation term achieved using a second order Tay-
lor expansion. We treat x as a probability when calculating Shannon’s entropy although
we didn’t present our method in a formal probabilistic framework. Nevertheless, the
intuition of having higher uncertainty as x nears 0.5 and lower uncertainty as x gets
close to 1 or 0 still holds.

To measure compatibility between pairwise correspondences, we use:

φxx(xij , xmn) = xijxmndb(
−−−−→V1iV1m,

−−−−→V2jV2n) + (1− xijxmn)(1− db(
−−−−→V1iV1m,

−−−−→V2jV2n))
−−−−→VliVlm =x(Vli)− x(Vlm), db(

−→
A,
−→
B ) = ω1

b |1−
−→
A.
−→
B

|−→A ||−→B |
|+ ω2

b ||−→A |− |−→B ||. (6)

db evaluates the length and direction agreement between the line segments
−→
A and

−→
B .

w1
b , w2

b weight the direction and length terms.
To measure the compatibility in corresponding triplets, e.g. triangles T1 =
̂V1iV1mV1p and T2 = ̂V2jV2nV2q, we use:
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Algorithm 1.1. Our proposed MRF-based point matching algorithm.

1: Input: Two point sets V1 and V2; the spatial coordinates of the points: x(V1) and x(V2).
2: Output: A mapping between the vertices: Π(V1)→ V2.
3: Initialization: Construct G(V,E) (Section 2); construct FVlm (4); τ = 0.9; α = 1; β = 1;

w
(1)
u = 0.04; w(2)

u = 0.1; w(1)
b = w

(2)
b = 0.04; w(1)

t = w
(2)
t = 0.02.

4: Compute db (6), dt (7), and du
(
FV1i(α = 1),FV2j (β = 1)

)
= |x(V1i)− x(V2j)|.

5: Define the objective function E(x) = func(φ(1)
x , φ

(2)
x , φxx, φxxx) (Section 2.1).

6: Optimize E(x). � e.g. apply SP [11] or TIP [1] to maximize x = maxx E(x).
7: (A,B) = {(i, j)|xij > τ}. � A and B are the indices of the high confidence nodes in G.
8: ifA+ 1 = α & B + 1 = β � The high confidence nodes do not change any more.
9: Π← Hard matching obtained by discretizing X = [xij ].

10: else
11: α← A+ 1, β ← B + 1.

12: Compute du
(
FV1i(α),FV2j (β)

)
=

|A|+1∑
r=1

|FV1i(αr)− FV2j (βr)|.
13: Go to step 5.

φxxx(xij , xmn, xpq) =xijxmnxpqdt(T1, T2) + (1− xij , xmn, xpq)(1 − dt(T1, T2)

dt(T1, T2) =w1
t |area(T1)− area(T2)|+

3∑

i=1

w2
t |�T i

1 − �T 2
2 | (7)

dt measures the difference between the area and the angles of the triangles. The weights
w1

t and w2
t encode the trade off between preserving areas vs. angles.

2.2 Solving for the PSL Matching via MRF Optimization

Since we bootstrap our PSL matching from the high confidence matches in Section 2.3,
we restrict our work to the relaxed version of the problem, while having the entropy term
discouraging high uncertainty. We explore: (i) tensor power iteration (TPI) [1], and (ii)
successive projection (SP)1 [11] optimization methods (Section 3). Both TPI and SP
provide a soft solution considering global constraints

∑
i xij ≤ 1 and

∑
j xij ≤ 1

to ensure partial matching and to avoid multiple matchings. Note that in Section 3 the
results are provided using TPI.

2.3 Self-Learning

As shown in [6], learning the parameters that control the graph matching is impor-
tant for improving the matching accuracy. The authors in [6] learn the weights w in
(1) using gradient descent-based approach. We instead learn an improved objective
function by encoding into the unary term new geometric information from the cur-
rent high confidence matching. In the learning step of our method, we update α and

1 The SP algorithm is applied to the marginalization matrix computed based on the probability
of matching the edges and the cliques [11].
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Table 1. Comparison between the different methods in terms of the optimization domain, energy
terms, and the self-learning (SL) characteristics

Method
Optimizer

φ
(1)
x φ

(2)
x φxx φxxx SL

Objective
Soft vs. Hard Function

CVPR09 [7] SP (Soft) � × � × × MRF1 MRF1 = func(φ(1)
x , φxx)

CVPR08 [11] SP (Soft) � × � � × MRF2 MRF2 = func(φ(1)
x , φxx, φxxx)

ECCV08 [10] DD (Hard) � × � × × MRF1 MRF1EN = func(φ(1)
x , φ

(2)
x , φxx)

CVPR10 [12] DD (Hard) � × � � × MRF2 MRF2EN = func(φ(1)
x , φ

(2)
x , φxx, φxxx)

PAMI11 [1] TPI (Soft) � × � � × MRF2
Proposed TPI (Soft) � � � � � MRF2EN

β in (3), which indicate the indices of F that should be considered in measuring du.
As shown in Algorithm 1.1, given the current high confidence matching x(VAB), i.e.
(A,B) = {(i, j)|xij > τ}, where τ is a confidence-threshold and |A| = |B| = R
and R is the total number of the high confidence points, α and β in (3) are updated:
α = A+ 1 and β = B + 1. Therefore,

du

(
FV1i(α),FV2j (β)

)
=

R+1∑

r=1

|FV1i(αr)−FV2j (βr)| (8)

The αr-th entry of FV1k
represents the distance between the vertex V1k and V1α. In

fact, we are effectively diffusing the binary term to the unary term, since this entry in F
is related to the length agreement between the edges. Figure 1 shows examples of the
selected high confidence mappings at different iterations.

3 Results

Given a ground truth matching Π∗, and an estimated mapping Π obtained by discretiz-
ing the estimated fuzzy solution X = [xij ] (e.g. applying simple thresholding or the
Hungarian algorithm [1,4], where Πij = 1 is interpreted as a mapping Π(V1i) = V2j),
we use the following error measurement to evaluate the quality of the estimated map-
ping: Δ =

∑
|Π− Π∗|/(N1N2). We evaluate our method on synthetic data as well as

56 pairs of real images [2]. Note that we identify the PSLs’ coordinates on our real data
manually and the number of PSLs in our dataset is varied between 3 and 60.

Our synthetic data follows a setup similar to [7]. A cloud of nc points are generated.
The corresponding points in the second set are constructed by perturbing the nc points.
Then, different number of outliers n1

o and n2
o (representing disappearing and newly

appearing PSLs) are added to the two sets.
In Table 1, we analyse our method and five state of the art point matching algorithms

in terms of different characteristics. In summary, CVPR09 [7], CVPR08 [11], ECCV08
[10], CVPR10 [12], PAMI11 [1], and our method, can be implemented by setting the
objective function in the form of MRF1, MRF2, or MRF2EN mentioned in Table 1,
and applying different optimization approaches. For example, we can arrive to PAMI11
[1] by setting the objective function to MRF2 and using the TPI optimizer. To study
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the effectiveness of the entropy term (5), we compare the matching errors resulting
from using a given function, with and without the entropy term; i.e. compare MRF1
vs. MRF1EN and MRF2 vs. MRF2EN. The results in Figure 3 indicate that adding the
entropy term can lead to lower error. The effect of applying different iterations of the
self-learning procedure is shown in Figure 4. The results confirm the usefulness of our
unsupervised learning from high confidence matches. Note that the errors are gradually
decreasing by increasing the number of the iterations.

A comparison between the point matching methods: CVPR09 [7], CVPR08 [11],
PAMI11 [1], and our method on the real data is shown in Figure 5. Note that all the
methods are fed with the normalized coordinates of the PSLs resulting from apply-
ing the skin back-template proposed in [7]. It can be seen that the lowest error is re-
sulting from MRF2EN+SL, i.e. the results of augmenting MRF2EN with the learning
procedure.
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4 Conclusion

We formulate the PSL matching problem in dermoscopic images as the relaxed labeling
of the corresponding association graph in a high order MRF optimization framework.
We add a novel entropy term to the objective function encouraging the cost function
towards solutions with low uncertainty. We also propose to learn the objective function
in a sequential framework by leveraging the high confidence matching of the fuzzy
solutions. Although we evaluate the usefulness of the entropy term and the learning
procedure on a specific application, the same idea can be used to extend other existing
point matching algorithms.

This work can be extended in a number of ways. As mentioned in Section 2.3, for
example, the learning step can be generalized for the binary and ternary terms of the
matching objective function.
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