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Abstract. In this paper, we propose a novel method to convert seg-
mentation of objects with quasi-periodic motion in 2D rotational cone
beam projection images into an optimal 3D multiple interrelated surface
detection problem, which can be solved by a graph search framework.
The method is tested on lung tumor segmentation in projection images
of mega-voltage cone beam CT (MVCBCT). A 4D directed graph is con-
structed based on an initialized tumor mesh model, where the cost value
for this graph is computed from the point location of a silhouette out-
line of projected tumor mesh in 2D projection images. The method was
first evaluated on four different sized phantom inserts (all above 1.9 cm
in diameter) with a predefined motion of 3.0 cm to mimic the imaging
of lung tumors. A dice coefficient of 0.87 ± 0.03 and a centroid error of
1.94±1.31mm were obtained. Results based on 12 MVCBCT scans from
3 patients obtained 0.91±0.03 for dice coefficient and 1.83±1.31mm for
centroid error, compared with a difference between two sets of indepen-
dent manual contours of 0.89 ± 0.03 and 1.61 ± 1.19mm, respectively.

1 Introduction

The recent advances of mega-voltage cone beam computed tomography
(MVCBCT) [1] have enabled the use of linear accelerator (linac) treatment
beams for cone beam imaging. This development provides an imaging solution
of patient localization to verify the positioning and anatomy information prior
to treatment delivery. The 3D volumetric image has potential to improve the ac-
curacy for correcting target misalignments and verifying the treatment plan [2].

However, when the system is used for non-small cell lung cancer (NSCLC)
imaging, the existence of respiratory motion during image acquisition causes
blurring and streaking artifacts. This motion-blurred 3D volumetric image alone
cannot provide much information about tumor size and the motion model, which
can change significantly over the full course of a fractionated treatment. It is
highly desirable to derive the tumor motion information during the localization
scan prior to treatment delivery.

One promising solution is to use cone beam projections to detect tumor mo-
tion, since they have high temporal resolution. Previous methods include (1)
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Fig. 1. Flowchart of the proposed approach

monitoring tumor change by projecting a volume of interest for visualization [3],
(2) extracting the 2D/3D position of a projected implanted marker [4] or di-
aphragm edge [5], which can also be used as respiratory signal for gated re-
construction, and (3) registering from 3D image space to projection space for
inter-phase motion compensated reconstruction [6]. Direct tumor tracking or de-
tection in 2D images is mainly focused on fluoroscopy [7]. However, few studies
have addressed direct tumor detection in MVCBCT projection images, which
suffer from relatively poor contrast and the interfering anatomies.

In this study, we present a novel method based on an optimal graph search
framework [8] to extract a (3D+t) tumor motion model from 2D projection
images. Two major advantages make the method robust in the low-contrast
images: (1) The 3D tumor segmentation is based on all the 2D projection images
that belong to the corresponding respiratory phase. The detection inaccuracies
induced by low contrast and interference of one projection image can thus be
reduced. (2) Compared with other 2D-to-3D object shape recovery methods,
such as free form deformation [9], B-splines surface model [10] and triangulated
mesh pulling [11], our approach incorporates both motion and shape constraints
in the segmentation process and obtains a global optimal solution.

2 Method

2.1 General Framework

The main steps of the proposed approach are illustrated in Fig. 1 with the
intermediate results shown in Fig. 2. In preparation for the algorithm, the pro-
jection images are sorted into several respiratory phase bins according to the 3D
anatomical positions of the ipsi-lateral hemi-diaphragm apex (IHDA), which is
automatically extracted from projection images based on the dynamic Hough
transform [12]. The proposed algorithm starts with an initial 3D static lung
tumor mesh model, which reflects the approximate topological structure infor-
mation of the targeted tumor surface. The initial tumor mesh is projected onto
each 2D projection image. The new location of mesh points for all the respi-
ratory bins are determined simultaneously using a multi-surface optimal graph
search method [8], which requires computation of the silhouette outline for each
projected mesh at first.
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(a) (b) (c)

Fig. 2. (a) Full exhale phase of 4D diagnostic CT volume overlaid with tumor mesh
(blue); (b) Projected initial static mesh (green), its silhouette contour (red), motion
direction (yellow) and the silhouette contour after the graph search computation (blue);
(c) A simple illustration of the 4D graph construction

2.2 Model Initialization

The initial static model is the average of the meshes segmented from the full
exhale (FE) and full inhale (FI) phases of the 4DCT. For each mesh point,
a range of motion is determined using the equation [Pm + α(Pfe − Pm)] and
[Pm+α(Pfi−Pm)], where Pfe and Pfi is the corresponding positions in the FE
and FI phase, respectively, and Pm is the mean position. α is used to control
the allowed range, which is typically set between 1.5 and 2. The two meshes
are initialized with the same spherical mesh and manually adjusted according
to the tumor boundary in the 3D volume using our in-house platform. Thus the
correspondence of mesh points is inherently established.

2.3 Silhouette Contour Extraction

The initial mesh, along with pre-defined motion vectors, is projected onto each
2D projection image. In order to move the mesh towards tumor boundary lo-
cations in the projection image, the silhouette outline is extracted from each
projected mesh by using an efficient algorithm [11]. An example of the detected
silhouette outline is shown in Fig. 2.

2.4 Multiple Surface Detection via Optimal Graph Search

A key innovation of the proposed method is converting the segmentation of
objects with quasi-periodic motion in 2D rotational cone beam projection images
into a 3D multiple interrelated surface detection problem, which can be solved
by a graph search framework [8]. The details are presented as follows. A 4D
(3D+t) directed graph G = (V,E) is constructed based on the initial tumor
mesh. The graph contains T (number of phase bins) subgraphs, where each
subgraph corresponds to the tumor surface in one respiratory phase bin. Each
subgraph contains N ×M nodes, where N and M are the number of points of
the static tumor mesh and the number of sampled points along the pre-defined
motion vector. Each combination of [n,m, t] is one unique spatial and temporal
location, which represents the mth sampled point in the column defined by
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mesh point n in phase t. The segmented tumor surfaces are defined by function
N : (n, t) → N (n, t), where n ∈ n = {0, ..., N − 1}, t ∈ t = {0, ..., T − 1}, and
N (n, t) ∈ m = {0, ...,M − 1}.

A cost value is computed for each node [n,m, t], denoted by c(n,m, t), using
the following equation:

c(n,m, t) =

P−1∑

p=0

δ(p, t)ξ(n, p)w(n,m, p), (1)

where P and p is the total number and the index of projection images, respec-
tively. The function δ(p, t) = 1 when the pth projection image belongs to the
tth bin, otherwise it equals zero. The function ξ(n, p) = 1 when the nth point
is included in the silhouette contour of the pth projection image, otherwise it
equals zero. w(n,m, p) is the cost function of the mth sample point in the nth
column in the pth projection image, which is defined as:

w(n,m, p) = −P̈p(normal(n)) · grad(P̈p(P(n,m))), (2)

where P̈p is the 3D-to-2D projection operation of a vector or point in the pth
projection image. P(n,m) is the location of the mth sample point along the pre-
defined motion vector of the nth mesh point. The operation normal(n) gives
the normal direction of the nth point of the static mesh, while the operation
grad computes the image gradient of a given 2D location. The reason for using
the negative dot product between these two vectors is that along the tumor
boundary in 2D projection images, the projected normal direction is opposite
to the image gradient. Equations (1) and (2) show that the cost for each node
in the 4D graph is determined from all the 2D projection images that belong to
the corresponding respiratory bin.

Three different types of arcs are added to the graph: (1) Intra-column arcs
are used to define the graph topology, which connect adjacent nodes that belong
to the same column. The arc goes from each node [n,m, t] (m > 0) to the node
below [n,m− 1, t]. (2) Inter-column arcs are used to connect adjacent columns
in the same respiratory bin. The arc goes from each node [n,m, t] (m > δm) to
[adj(n),m − δm, t], where adj(n) represents adjacent mesh points of n. δm is the
shape smoothness constraint, which is the maximal allowed difference in m be-
tween adjacent columns of one tumor surface. (3) Inter-phase arcs are used to
connect the same columns in adjacent respiratory bins. The arc goes from each
node [n,m, t] (m > δt) to [n,m− δt, t± 1]. δt is the inter-phase constraint, which
is the maximal allowed difference in m between adjacent bins of the same col-
umn. We define that [n,m, 0] = [n,m, T ] to form a closed loop of respiratory bins.
Fig. 2c illustrates the main idea for graph construction, where a simple case of
T = 2,M = N = 7, δm = δt = 1 is shown, where two subgraphs representing the
two phases are shown. The forementioned three types of arcs are illustrated. For
visualization purposes, only one inter-phase arc is drawn. And only two columns
are shown for each subgraph. The subgraph of phase 2 shows all the mesh points,
while phase 1 only shows the two points with columns. In our implementation, N
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is typically from 1000 to 4000, depending on the tumor size. M is 50, making the
step size of the sampled point equal to 1/50 of the allowed range of motion. T is
20, where larger T makes higher temporal resolution, but reduces the number of
projections for each phase bin. The optimal solution can be computed by solving
a maximal flow problem in the constructed graph [8]. The running time based on
those parameters is about 40s on an Intel CoreTM I7 laptop with 4GB RAM.

3 Experiments

3.1 Imaging Data

Our clinic is equipped with a Siemens Oncor MVCBCT system (Siemens Med-
ical Systems, Oncology Care Systems, Concord, CA) with an electrical portal
imaging device (EPID) to acquire 2D projection images. Using the standard
protocol [1], the 200 EPID projection images are acquired as the gantry rotates
clockwise from −90◦ to 110◦ in about 1 minute.

The proposed approach was first verified on an imaging phantom, which has
a predefined motion and size to serve as the ground truth. The phantom consists
of a block of basswood and six different sized spherical inserts. The basswood
frame has a density of about 0.4g/cc to mimic lung tissue, while the six inserts
are made of paraffin wax and have 3.81, 3.18, 2.54, 1.91, 0.95, and 0.48 cm in
diameter, respectively. Fig. 3 shows a picture of the phantom, a coronal slice of
a diagnostic CT and an MVCBCT projection image, respectively. The phantom
is placed on a cart attached to the Quasar respiratory motion (QRM) phantom
(Modus Medical Devices, INC, London, ON, Canada) to simulate respiratory
motion. The QRM phantom is programmed to move only in the superior-inferior
(SI) direction, with its position as a function of time t, defined as:

z(t) = z0 +A0cos
4(π(t+ t0)/τ), (3)

where themotion amplitudeA0 is 30mm, and the period τ is 4s to represent typical
breathing. z0 and t0 are the DC component of the motion and the starting phase
of the phantom motion, which varies among different experiments. The phantom
tests were done on two scans, with a dose of 5MU and 10MU, respectively.

The proposed method was also tested on 12 scans from three patients, who
have relatively large tumors in the lower lobe of the lung. The patient scans used
an imaging dose of 10MU.

3.2 Results

Fig. 4 shows the detection result of the largest insert of the phantom(top) and a real
patient whose tumor is right above the diaphragm (bottom). The top-right corner
shows the detected 3D mesh in the corresponding respiratory bin. The evaluation
is based on 2D contours in projection space. For the phantom images, the detected
contour of the inserts is compared with the contour computed from the predefined
size and themotion, which is considered ground truth. It can be seen that the insert
can be detected robustly in the presence of the interfering superimposed objects,
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Fig. 3. Left: the imaging phantom; Middle: a coronal slice of the FE phase of the
4D diagnostic CT; Right: one projection image of MVCBCT with a dose of 10MU

Fig. 4. Detection result on Top row: the imaging phantom; Bottom row: a patient
with tumor above the diaphragm. Red: silhouette outline of initial mesh; blue: de-
tected tumor contour (deformed silhouette outline); yellow: contour of ground truth
for phantom images, manually annotated contour for patient images. The detected 3D
tumor mesh of the corresponding respiratory bin is displayed on the top-right corner.

such as interfering spheres (Fig. 4.1), the QRMmotion phantom (Fig. 4.2) and the
holes of the plastic support (small white circles in (Fig. 4.3 & 4)).

The evaluation is based on the four largest inserts, since there is no strong
boundary information of the two smaller ones in the projection images (Fig. 3).
Two metrics were employed to validate the detection result: the 2D dice coeffi-
cient and the difference of centroid positions along the SI direction. Fig. 5 shows
the mean and standard deviation values of those metrics over 200 projection im-
ages. The dice coefficient decreases slightly when the tumor size goes down, while
this phenomenon does not occur in the centroid error. An imaging dose of 10MU
obtains better accuracy for centroid and a slight improvement in the dice coeffi-
cient. For patient images, the tumor was independently contoured by two clinical
experts. The averaged contour was computed to compare with the detection re-
sult. The difference between the two manual contours is also quantified. Fig. 6
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Fig. 5. Mean and standard deviation of Left: dice coefficient between detected contour
and ground truth; Right: centroid difference between detected contour and ground
truth over 200 projection images of four spherical inserts

Fig. 6. Mean and standard deviation of Left: dice coefficient; Right: centroid differ-
ence over 200 projection images of 12 patient MVCBCT scans

shows the dice coefficient and centroid difference over 12 MVCBCT scans from
3 patients, where the overall dice coefficient of the proposed method is even bet-
ter than variations between manual contours. This result is expected, since the
segmentation of the 3D shape is based on multiple 2D views, while the manual
contour could be confounded by overlapping tissues in one single image. For both
phantom and patient studies, the quantified centroid error is clinically accept-
able, since a setup error of 5 mm is typically added to the gross tumor volume
(GTV) for treatment delivery.

4 Discussion and Conclusion

In this work, we proposed a novel method to extract the 3D tumor motion
model from 2D projection images of an MVCBCT system. Experiments based
on phantom images show the robustness to detect tumors with diameters larger
than 1.9cm. For patient images, the method can even be used for guidance to
assist the clinician for a better visualization of tumor boundaries. The segmen-
tation framework is based on a simple scaling model between the FE and FI
phases for each mesh point. Though in reality the motion trajectory is more
like an elongated ellipse, the linear scaling model is a good estimation and it
has enabled us to derive accurate detection result. It is potentially helpful to
use a more complicated model established from multiple phases of 4D CT. How-
ever, more computation and complexity will be added to the current framework.
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In the patient studies, the shape of the segmentation changes somehow over the
respiratory cycle. The tumor mass for those patients are relatively large and
they are likely to be deformed in a non-rigid way by the pressure of surrounding
tissues and the diaphragm. The shape and motion constraint in the 4D graph
can further be adjusted to control the degree of shape change. The method can
be easily applied to other organs with quasi-periodic motion, such as the cardiac
chambers or lungs. It can also be extended to other cone beam systems, such as
the C-arm systems. In the future, more patient data will be tested with various
tumor size and shape, imaging dose and breathing pattern.
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