
Classification of Ambiguous Nerve Fiber

Orientations in 3D Polarized Light Imaging

Melanie Kleiner1, Markus Axer1,2, David Gräßel1, Julia Reckfort1,
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Abstract. 3D Polarized Light Imaging (3D-PLI) has been shown to
measure the orientation of nerve fibers in post mortem human brains at
ultra high resolution. The 3D orientation in each voxel is obtained as a
pair of angles, the direction angle and the inclination angle with unknown
sign. The sign ambiguity is a major problem for the correct interpretation
of fiber orientation. Measurements from a tiltable specimen stage, that
are highly sensitive to noise, extract information, which allows drawing
conclusions about the true inclination sign. In order to reduce noise, we
propose a global classification of the inclination sign, which combines
measurements with spatial coherence constraints. The problem is formu-
lated as a second order Markov random field and solved efficiently with
graph cuts. We evaluate our approach on synthetic and human brain
data. The results of global optimization are compared to independent
pixel classification with subsequent edge-preserving smoothing.

1 Introduction

Fiber tracts are composed of axons, which connect nerve cells between each
other, and thus transmit information between brain areas. The exact courses
of fiber tracts are still far from being fully understood. Several methods for
mapping fiber tracts have been developed to approach a complete model of all
fiber tracts, the connectome. 3D-PLI is a method that measures the birefringence
of lipids surrounding single axons (myelin sheath) by transmitting polarized light
through histological sections [1], [2]. 3D fiber orientations can be reconstructed
at micro scale resolution (Fig. 1(a)). For comparison, the measurement of water
diffusion by Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) can
resolve fiber orientations in vivo [3], but on scales of millimeters.

In 3D-PLI measurements, the sign of the fiber inclination angle is unknown.
This ambiguity has been addressed previously by Larsen et al. [4], who used a
simulated annealing technique to optimize a smoothness criterion, but did not
collect additional measurements about the inclination sign at each individual
pixel. Pajdzik et al. [5] developed a microscope tilting-stage to identify the sign
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of the optical indicatrix of birefringent, uniaxial crystals, which corresponds to
the inclination sign in the context of 3D-PLI.

The inclination sign ambiguity can be regarded as a binary labeling prob-
lem, similar to segmentation or denoising in digital imaging, that can be solved
efficiently by Markov random field (MRF) theory [6], [7].

2 3D Polarized Light Imaging

Polarimeter Setup. Linearly polarized light is transmitted through a brain
section, a retarder, an analyzer and then imaged by a digital camera (Fig. 1(b)).
The polarizing filters are rotated simultaneously to generate a series of intensity
images. The measured signal can be modeled as a sine curve with phase ϕ and
amplitude r [8]. Referring to the histological sectioning plane, the parameter ϕ
(direction) corresponds to the in-plane angle of measured fibers in relation to the
polarizing filters. The parameter r (retardation) is correlated nonlinearly with
the out-of-plane angle α (inclination). The pair of angles (ϕ, α) represents a 3D

(a) (b)

Fig. 1. (a) Reconstructed fiber tracts from 3D-PLI as presented in [2, Fig. 6] (b) The
3D-PLI setup shows a specimen stage, which is tiltable in four directions (N, W, E, S).
The measured in-plane fiber direction ϕ is related to the polarizing filters and annotated
in degrees. The inclination sign can be derived most reliably, when the tilting direction
and the in-plane fiber direction are similar.

fiber orientation with unknown direction. To avoid alternating notations for the
same orientation, we restrict ϕ to [0◦, 180◦] and α to [−90◦, 90◦]. According to
[8, Eq. 6], α can be approximated as

|α| = arccos

⎛
⎝

√
2 · arcsin(r)
π · drel

⎞
⎠ (1)
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with a reference value drel depending on section thickness, wavelength and bire-
fringence. Assuming a constant value of drel ignores the inhomogeneity of the
examined tissue, and limits the accuracy of (1). The restriction to slice thick-
nesses with drel ≤ 1 is necessary for a bijective relation between |α| and r.
Equation (1) shows that only the absolute value of α can be determined from r,
which leads to the inclination sign ambiguity in 3D-PLI.

Tilting Setup. In addition to the measurement of the flat specimen stage, fur-
ther measurements can be acquired in four tilting directions ψ ∈ {north(N)=90◦,
west(W)=180◦, east(E)=0◦, south(S)=270◦} by tilting the stage along one of two
perpendicular axes. All tilted images are registered to the flat image by a pro-
jective linear transformation. The specimen stage is tilted by the angle τ ≤ 4◦

to avoid strong distortions. The relation between tilting directions and fiber in-
plane directions is illustrated in Fig. 1(b). We denote the tilted measurements by
αψ and rψ in contrast to α and r on a flat specimen stage. For each tilting direc-
tion ψ, the opposite direction is ψ± 180◦. If the fiber in-plane direction and the
tilting direction are similar, fibers with positive inclination can be distinguished
from those with negative inclination by their decrease in absolute inclination af-
ter tilting (Fig. 2(a)). Otherwise, the change is less significant or even inversed.
Generally, these changes are marginal and hence very sensitive to noise. We can
formalize this relationship for fiber directions ϕ ∈ (ψ − 90◦, ψ + 90◦) as

α ≥ 0 ⇔ |αψ | ≤ |αψ±180◦ | . (2)

(a) (b)

Fig. 2. (a) The absolute inclination, i. e. steepness, of fibers with a positive inclination
sign (top row) decreases when tilting from S to N. If the inclination sign is negative
(bottom row), the steepness increases. (b) The fiber orientation can be represented as a
vector v = (x, y, z)T. A tilt by the angle τ can be modeled as a rotation Ry(τ ) applied
to v.
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3 Solving the Inclination Sign Ambiguity

The classification of the inclination sign can be considered as a labeling problem.
Given the image domain Ω and a binary set of labels S = {−1,+1} reflecting
the unknown inclination sign, we want to find a labeling function s : Ω → S that
assigns one of two possible values to every i ∈ Ω. A second order MRF can take
spatial coherence into account and leads to an energy function of the form

E(s) =
∑
i

θi(si) + λ ·
∑

(i,j)∈N
θi,j(si, sj) . (3)

for any non-negative potentials θi (data potential), θi,j (smoothness potential)
and a neighborhood relation N .

Data Potential. A large difference between oppositely tilted, unsigned incli-
nation angles |αψ | − |αψ±180◦ | indicates high reliability of a positive inferred
inclination sign. We therefore require the data potential to be proportional to
the sum of these differences for all tilting directions, i. e.

θi ∝
∑
ψ

|αψi | − |αψ±180◦
i | . (4)

However, due to the reference value drel in (1), the inclination values possess
limited accuracy. Therefore, we develop an alternative formulation that does not
require drel. We achieve this by deriving the sign and the absolute value of the
given difference separately.

First, we take advantage of the dependency

|αψi − αψ±180◦
i | ≈ 2 · cos(ϕi − ψ) · sin(τ) , (5)

which is restricted to small angles τ , such that τ ≈ sin(τ). Equation (5) is
obtained by rotating the flat fiber orientation vector as shown in Fig. 2(b).
Second, we need the sign of |αψi |− |αψ±180◦

i | to distinguish positive and negative
inclination signs. Again, we avoid the approximation of inclination angles by (1).
Instead, we consider the difference of retardation values rψi − rψ±180◦

i . The non-
linear relation between inclination αi and retardation ri, is strictly decreasing
(for drel ≤ 1, see (1)), so we expect

sgn(αψi − αψ±180◦
i ) = sgn(rψ±180◦

i − rψi ) . (6)

Equations (6) and (5) finally lead to the data potential

θi ∝
∑
ψ

cos(ϕi − ψ) · sin(τ) · sgn(rψ±180◦
i − rψi ) (7)

that does not require drel. By inserting ψ ∈ {E=0◦, N=90◦, W=180◦, S=270◦},
and applying a normalization term, (7) becomes

θi(si) =
1
2

+ si · sin(ϕi) · sgn(rNi − rSi ) + cos(ϕi) · sgn(rEi − rWi )
2
√

2
. (8)
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Smoothness Potential. We assume that neighboring pixels tend to belong to
the same anatomical structure with a similar fiber orientation. Hence, if neigh-
boring pixels have similar in-plane fiber directions, their inclination signs are
very likely to be the same as well. This leads to a contrast-sensitive Potts model
[9, Eq. 3], where the contrast is defined as the absolute difference of neighboring
in-plane angles.

θi,j(si, sj) =
(

1 − |ϕi − ϕj |
180◦

)
·
{

1 , if si 
= sj

0 , else
(9)

This function is regular and graph-representable according to [7, Theorem 4.1].
Therefore, the minimization of (3) can be computed efficiently via graph cuts.

4 Evaluation

The inclination sign and the resulting vector fields are evaluated on synthetic
images and selected regions of various human brain sections. The presented
approach by MRF optimization (GlobalOpt) is compared to the direct de-
termination of the inclination sign by tilted measurements (DataOnly), which
corresponds to GlobalOpt without a smoothness potential (λ = 0). The third
approach to be compared is DataOnly with subsequent median filtering with
variable radius (DataMedian).

Synthetic Data. A synthetic data set consisting of a direction image ϕ̃ and an
inclination image α̃ was created. The structure consists of rounded and crossing
fiber tracts (Fig. 4(a)). The corresponding direction measurements ϕ were simu-
lated by adding noise with σϕ = 0.5. The retardation measurements r were sim-
ulated in several steps. First, the tilted inclination angles α̃ψ were calculated by
rotation as shown in Fig. 2(b). Second, retardation values were calculated from
α̃ according to (1) with drel = 0.4. Finally, noise was added with σr = 0.006.
The simulated inclination measurements α were obtained from the absolute in-
clination |α| calculated from r and an inclination sign s ∈ {sλ, sR or s′}. sλ
was determined by GlobalOpt and weighting factor λ, s′ was determined by
DataOnly, and sR was determined by DataMedian with radius R ∈ {1, 2, 3}.
The noise levels σr and σϕ were determined in 30 repeated measurements.

For evaluation, the true orientation vector ṽ was composed from the syn-
thetic orientation angles ϕ̃ and α̃. Accordingly, the orientation vector v ∈ {vλ,
vR,v′} was composed from the simulated measurements ϕ and α. The differ-
ence between the true and the simulated vector field was measured by the root
mean squared deviation (RMSD) of both vectors at each pixel location. Back-
ground pixels displayed in black in Fig. 4(a) are not considered. Fig. 3(a) shows
that GlobalOpt achieves an RMSD of 2.5◦ (optimum at λ = 0.32) compared
to DataOnly with an RMSD of 3.36◦ and DataMedian with RMSD values
above 6◦. The sensitivity of GlobalOpt to determine the correct inclination
sign at pixels that are not classified correctly by DataOnly was examined in
Fig. 3(b).
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(a) GlobalOpt achieves the lowest RMSD
values with an optimum at λ = 0.32.
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(b) GlobalOpt can detect wrong
classification to 80%.

Fig. 3. evaluation of the determined inclination signs on synthetic data

Human Brain Data. Regions in histological sections of three post mortem
brains without pathological findings were selected to demonstrate the different
behavior of all approaches (Fig. 4(b)–(d)). The manual evaluation of inclina-
tion signs requires an appropriate visualization of the vector field. The resulting
3D orientations were visualized in HSV color space, but brightness was reduced
where local differences were high in terms of the mean absolute deviation (MAD)
in the local 8-neighborbood of each pixel i. The color coding (Fig. 4(e)) em-
phasizes abrupt changes in a vector field by dark pixels or edges. Accordingly,
unexpected changes in the vector fields, which could be caused by wrong incli-
nation signs, are made visible. For GlobalOpt, the results appeared best with
λ = 0.2. This is not equal to the optimum for synthetic data (λ = 0.32), which
reflects the lack of realistic noise modeling in the simulation.

Both GlobalOpt and DataMedian are able to remove isolated deviating
inclination signs in DataOnly, which is shown in the white matter beneath the
cerebellar cortex, containing mainly parallel fibers (Fig. 4(b)). DataMedian
introduces severe artifacts into the vector field, which is demonstrated in the
optic radiation (Fig. 4(c)). The inhomogeneous vector field in the corpus cal-
losum (Fig. 4(d)), where fibers of both hemispheres cross to the contralateral
side, also clearly benefits from regularization. GlobalOpt with λ = 0.2 and
DataMedian with R = 1 eliminate noise on an equal level, while GlobalOpt
with λ = 0.32 slightly oversmoothes the vector field. The influence of λ is strong
and therefore must be determined carefully.

5 Discussion

The classification of ambiguous inclination signs is an essential step, when deter-
mining the fiber orientation in 3D-PLI. Until now, the inclination sign ambiguity
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ground truth DataOnly
GlobalOpt
with λ = 0.32

DataMedian
with radius = 1

(a) synthetic data

brain regions
(12.8 × 12.8 mm2) λ = 0.2

(b) parallel fibers beneath the cerebellar cortex

(c) optic radiation

(d) genu of the corpus callosum

0°

60°120°

180°

240° 200° 90°0° 45°15° 30° 60° 75° 90°0° 45°15° 30° 60° 75°

Hue(ϕ) = 2ϕ Saturation(α) = |α|/90◦ Value(MAD) = 1 − MAD
(e) HSV color coding. The mean absolute deviation (MAD) of each vector to its

neighbors was emphasized as decreased brightness to visualize the homogeneity
of the resulting vector fields.

Fig. 4. On brain data, the apparently best results were achieved with GlobalOpt for
λ = 0.2. The quantitative evaluation on synthetic images determined the optimum for
GlobalOpt at λ = 0.32. The parallel fibers beneath the cerebellar cortex and the
corpus callosum demonstrate the benefit of regularization opposed to DataOnly. The
optic radiation shows that DataMedian introduces undesired artifacts.
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has been tackled by using either tilted measurements [5] or context information
[4] separately. We have presented a global solution for this problem based on a
second order Markov random field, which considers both sources of information
simultaneously. In contrast to DW-MRI, which aims at identifying fiber path-
ways with a millimeter resolution, 3D-PLI aims at ultra-high resolution up to a
few microns. Working with such high spatial accuracy demands for eliminating
as much noise as possible. In our experiments, the new method better conserves
the true inclination sign than sole tilted measurements with subsequent edge-
preserving smoothing by a median filter, which has shown to introduce artifacts.
These problems especially appear where the fiber direction angle changes from 0◦

to 180◦ and vice versa. In contrast to the proposed contrast-sensitive smoothness
term, the median sorting criterion cannot adequately handle these changes. The
global optimization leaves a single parameter controlling the influence of context
information. In the synthetic data set, λ = 0.32 is optimal, while λ = 0.2 seems
optimal for real data. Future work will include further validation with reference
tissue samples to enable more precise analysis of errors. With a well-balanced
smoothness term, the presented method shows significant improvements, but
only on a small fraction of pixels. However, considering the envisaged accuracy,
we believe that such a small fraction is still crucial for meaningful fiber tracking.
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