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Abstract. Tracking anatomical structures in X-Ray sequences has broad
applications, such as motion compensation for dynamic 3D/2D model
overlay during image guided interventions. Many anatomical structures
are curve-like such as ribs and liver dome. To handle various types of
anatomical curves, a generic and robust tracking framework is needed to
track shapes of different anatomies in noisy X-ray images. In this paper,
we present a novel tracking framework, which is based on adaptive mea-
surements of structures’ shape, motion, and image intensity patterns.
The framework does not need offline training to achieve robust tracking
results. The framework also incorporates an online learning method to
robustly adapt to anatomical structures of different shape and appear-
ances. Experimental results on real-world clinical sequences confirm that
the presented anatomical curve tracking method improves the tracking
performance compared to a baseline performance.

1 Introduction

Anatomical curve tracking in X-ray sequences have important applications in
image guided surgery, such as motion compensations for 3D /2D dynamic model
overlap, and needle insertion guidance. In such applications, it is desirable to
compensate organ motions, in order that models can be properly visualized on
X-ray images to guide the interventional procedures. Since many anatomical
structures are curve-like, e.g., ribs and liver dome, as shown in Fig. [I} this pa-
per presents a generic framework that tracks a wide variety of anatomical curve
structures in a fluoroscopic sequence, to provide motion compensation informa-
tion for image guided interventions.

The generic anatomical curve tracking in X-ray sequences is challenging.
Shown in Fig. [ the image quality is usually poor due to preferred low radia-
tion dose. Anatomical structures have different shapes which undergo continuous
changes due to breathing and cardiac motions during interventions. The motion
could cause image blurs, and occlusions between different structures. Traditional
tracking methods that are based on the constant image intensity assumptions,
such as optical flow based method [I], will suffer from severe drifting when being
used in such challenging situations. A variety of curve tracking methods have
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Fig. 1. Exemplar anatomical curves in X-ray image sequences, denoted by blue curves.
The curves include ribs, liver dome, and diaphragm.

been developed for tracking anatomical structure in [2/5/10] or devices in [9I7I4].
In [2], an endocardium tracking method based on fusing optical flows with learn-
ing based shape subspace is used. In [5], a shape-based segmentation and tracking
of deformable anatomical structures method is presented. In [9], a probabilistic
tracking method is presented in order to track the guidewire in fluoroscopy im-
ages. This method requires offline learning to build classifiers specifically for
guidewires. In [7], a deformable guidewire tracking method is proposed based on
offline training. [4] proposed a graph-based guidewire tracking method which re-
lies on B-spline curve model and strong geometric interests points. However, all
the above methods focus on tracking specific anatomical structures or devices,
rather than a generic form of anatomical structures.

In this paper, we present a probabilistic framework for anatomical curves
tracking in X-ray image sequences. Through novel measurement models and
probabilistic measurements fusion, the framework can capture the shape and
image intensity variations of generic anatomical curves, and adapt to different
tracking situations. Compared with existing methods [2I59I7/4], the presented
framework makes the following contributions: 1) It is a generic approach and
can be applied to track a variety of anatomical curve structures; 2) It introduces
novel measurements in a Bayesian framework, including a novel formalization of
combining optical flow, binary image patterns, and an online learning method as
measurements for curve tracking; and 3) by the fusion of multiple measurements,
the method is adaptive to motions, shapes and intensity pattern changes during
tracking. The details of the tracking framework are explained in Section 2 and
the experimental results in Section [3] demonstrates the effectiveness of presented
tracking method.

2 Anatomical Curve Tracking Framework

2.1 Framework Overview

In this paper, the anatomical curve tracking is formalized with a Bayesian infer-
ence framework. A spline I is used to represent an anatomical curve structure to
be tracked. To simplify the representation, a spline curve is sampled and noted
as I'(x), where x = {x1,...,zn} are the set of N uniformly sampled landmarks.
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Fig. 2. (a) The hierarchical tracking framework; (b) The Bayesian framework for curve
tracking

At the t-th frame, a curve candidate is noted as I';(xF) and the landmarks are
xF. Base on the Bayesian rule and a commonly assumed Markov property for
tracking, the posterior probability of a curve to be tracked has the form of

P(Ft(xf)‘zt) X P(Ft(xf))P(Zt|Ft(xf)) (1)

where Z; is the image observation on the ¢-th frame. The tracking result I’} (x;)
is the curve that maximizes the posterior probability, i.e.,

Iy(x;) = arg max P(I}(xF)|Z;) (2)

Ly (x¥)

In Eqn. (@), P(I:(x})) is a prior probability of a curve candidate I';(x}). The
prior probability imposes a constraint on 2D motions between a curve candi-
date I';(xF) and the previous tracked curve I't_;(x;_1). The likelihood model
P(Z¢|Ty(xF)) measures the likelihood of the tracking candidate I';(xF) based
on the observation at the t-frame. To adaptively track anatomical curves in X-
ray images, carefully designed prior models and likelihood measurement models
are applied in our framework, with more details provided in Section and
Section 23] respectively.

Our tracking framework follows a hierarchical scheme, i.e, from a local scale
to a global scale, as illustrated in Fig.[2l(a). At the local scale, a curve is divided
into several sub-curves (each two neighbouring sub-curves have 50% overlaps
with each other), and then each sub-curve is independently tracked. The local
tracking provides multiple candidates for each local curve, and their combi-
nations (using global fitting, Fig. Pl(a)) provide hypotheses for the subsequent
global tracking, which is to maximize the posterior probability of the whole curve.
Both local and global tracking follow the same Bayesian tracking framework, as
shown in Fig. Pl(b). The hierarchical tracking scheme allows the adaptive and
effective tracking of an anatomical curve: first, the local tracking allows flexible
affine deformation for each sub-curve whose motion may be different from the
other part of the curve; second, the global tracking combines all the possible
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Fig. 3. Illustration of: (a) intensity pattern; (b) optical flow measurement; (c) online
learned discriminant measurement

combinations from local tracking results and impose constraints from a global
shape, so it can prevent possible drifting of local sub-curves.

2.2 Curve Prior

Most motions of anatomical structures such as ribs and livers, are mainly caused
by breathing motions, and less impacted by cardiac motions. So we can conve-
niently assume that the motion can be approximated by an affine transformation.
At the t-th frame, a curve candidate I';(xF) is transformed from the tracked curve
at a previous frame f’t,l(xt,l), via an affine transformation:

L) = AeFio (xe-1) (3)

Ay is an affine transformation matrix. Through our experiments, we find such
motions can well describe the anatomical curve movements in X-ray images.

By further decomposing Ay with the QR decomposition A, = Qi Ry [8], we
can retrieve the affine motion parameters set My. Based on My of each curve
candidate, we define the curve prior as:

P(Li(x¥)) o< G(M[0, %) (4)

where G(Mj|0, ) is a Gaussian distribution with zero mean. X is the diagonal
covariance matrix. Without sacrificing the generalization of the algorithm, X is
empirically set and the same parameters are applied to all the data.

2.3 Likelihood Measurements

It is challenging to robustly and adaptively model the shape and appearance of a
generic curve, as it can be of a variety of continuously changing shapes and image
intensities. In this work, we achieve the robust tracking in two ways: 1) design-
ing novel measurements that can effectively model curves’ shape and appearance
during tracking; 2) fusing multiple measurements. The measurement models used
in this framework include optical flow measurement noted as P?(Z;|I};(x)), in-
tensity pattern matching noted as P?(Z|I;(x)), and online learned discriminant
measurement noted as PP(Z;|I;(x)). Each of the measurement models is ex-
plained at subsequent sections. By fusing multiple measurements, the likelihood
measurement model can be written as

P(Zy|I'i(x1)) = PoP?(Zi|I(x1)) + PP (Ze | (x1)) + PpPP(Z4| [y (x)) (5)
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where Pp, Py, Pg are the prior probability of each measurement model, and
Po + Pr+ Pg = 1. In the experiments, Pp, P; and Pg can be equally weighted.

Optical Flow Measurement. Optical flow assumes constant image intensity
of corresponding pixels, and provides motion estimation of individual pixels.
However, optical flow suffers “aperture” and “drifting” problems on a homoge-
neous region, thus we use the optical flow results as one of measurements, instead
of fully depending on optical flow results. Assuming that the new position of a
point 2% ,_, in the curve I_1(xF ) estimated by the optical flow method is o,
illustrated in Fig. Bl(b), we can define the likelihood of 2% ,, the new position of
xfmfl, as:

P(Zt‘xﬁ,t) = G[ii,ﬁgo}(ﬂfz,t) (6)

where G [i‘fm; 0,) is a Gaussian distribution with 2% , as the mean, and o, as the
standard deviation. The measurement of the a curve is therefore the integration
of the measurements of all the N points along the curve Z;, given that the
landmarks are uniformly sampled along the curve:

N
PO () = S P(ileh) (7)

Intensity Pattern Matching. In the anatomical curve tracking, it is observed
that the intensity patterns of a curve needs to remain similar between two suc-
cessive images. However, directly using image intensity for template matching
leads to poor results due to low image quality of X-ray. In this method, three
intensity patterns, similar to the LBP (Local Binary pattern) [6], are defined
to describe the curve intensity. For simplicity, we name them SLBP, Spline and
Bar pattern. As shown in Fig. Bl(a), given a tracking candidate I';(xF) shown
as the black curve and its landmarks shown as magenta points, then for each
landmark z% ;, on the curve, we define three profiles: (1) along positive curve
norm with average intensity I7 (green bar); (2) along I';(x¥) and centered at
af , with average intensity I (blue curve); and (3) along negative curve norm
with average intensity IV (red bar). Then a binary 3-tuple (a),a?,a3) can be
defined as

al_{é,fjj>w 2_{1,w>1;§ 3_{1,173>I;§ ®)

a? = a
n else n 0, else n 0, else

Then we can define SLPB, Spline and Bar intensity patterns (I, I's and Ip) as
follows respectively:

IL(Ft(Xf)):(a%’a%’ailga"' vajl\ha?\hasN)v IS(Ft(Xf)):(IiSv vIJ'%)a (9)
IB(Ft(Xf)) = (Iz)alisvlf\/v o alﬁalﬁvljj\\[/)
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The measurement of intensity pattern P!(Z;|I;(x¥)) is then defined based on the
correlation between each curve and the template (tracked curves at a previous
frame) as:

PHZy|Ti(xF)) = 0.5 % (

) ] (10)
|

‘I(Ft (Xf)) : |Itemplate|

Online Learned Discriminant Measurement. To further improve the track-
ing robustness, we introduce a discriminative measurement model. Different from
previous two measurement models, the discriminant measurement further distin-
guish the curve from backgrounds. Since we aim at tracking generic anatomical
curves, we use the online boosting method [3] (rather than offline methods) to
build the online discriminant model. Given a tracked curve I';_;(x) in (¢t —1)-th
frame, its neighboring region in a X-ray image can be warped into a straightened
image, as illustrated in Fig.[Bl(c). The straightened image together with positive
(sampled within upper red box in Fig. Bl(c)) and negative samples (randomly
sampled surround the red box) are used to train an online-boost tracker dur-
ing the tracking [3]. Through online updating, the discriminant measurement
model enables itself to adapt to the appearance changes during tracking. During
tracking, for each curve candidate, we input its straightened image patch (lower
red box in Fig. Bl(c)) to online-boost tracker. The probabilistic score from the
online-boost tracker is used as the online discriminant measurement:

N/
PB(Zy|Ty(xe)) = )i - B3 (11)
=1

where hfel are the selectors of the online boost tracker, «; are the linear combi-
nation weights, and N’ is the number of selectors in the tracker [3].

3 Experiments

Our framework is validated on a set of X-ray image sequences acquired in clin-
ical scenarios. The dataset includes 22 sequences, more than 2,000 frames in
total. The anatomical structures in the dataset include lung, ribs, diaphragm,
and liver. The frame sizes range from 512 x 512 to 1024 x 1024 where the physical
distance between neighbouring pixels is 0.1mm. The dataset is further divided
into two sub-datasets: Dataset-1 and Dataset-2. Dataset-1 contains 22 sequences
which are acquired under normal radiation dose and have reasonably distinguish-
able curves. Dataset-2 is only consist of challenging sequences (11 sequences) in
Dataset-1, where the images are acquired under lower radiation dose which makes
curves even hard for human to observe.

For each sequence, we annotate multiple (2 to 8) curves along anatomical
structures throughout the image sequence as the ground-truth. The annotation
on the first frame is used to initialize tracking ( physicians we collaborated with
agree to manually specify the curves of interests to track), and the annotations
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drifting

Fig. 4. Qualitative tracking results comparison between only using optical flow mea-
surement (green curves) and using SLBP+optical flow measurements+discriminative
online-learned measurement (red curves)

Table 1. Comparison of tracking error rates of different methods and combinations:
(I)SLBP+Spline, (II)SLBP+Bar, (III)Spline+Bar, and (IV)SLBP+Spline+Bar

Evaluation on Dataset-1
Threshold 7 Physical Distance Optical flow SLBP Spline Bar (I) (II) (III) (IV)
10 1lmm 10.0%  7.7% 9.5% 8.1% 7.7% 8.6% 8.5% 8.9%
Evaluation on Dataset-2
Threshold 7 Physical Distance Optical flow SLBP Spline Bar (I) (II) (III) (IV)
10 Imm 12.3% 8.6% 10.9% 9.2% 8.7% 9.5% 9.6% 10.4%

on the rest frames are used for quantitative evaluations. We define the follow-
ing quantitative evaluation metrics. For a landmark on a curve, we calculate
the shortest distance d from this landmark to the corresponding ground-truth
curve. For a pre-defined threshold 7, if d <= 7, we consider the landmark as
being correctly tracked. We use the averaged tracking error rate (rate of in-
correctly tracked landmarks number over total landmarks number) as tracking
performance.

We tested the proposed framework and compared the tracking performance
between different measurement combinations. Figure @l shows some visual track-
ing results. We notice that the results from only using optical flow measurement
suffer from drifting problem, especially when the image quality is low. The av-
erage tracking error rate curves of using different measurement combinations
are shown in Fig. Bl From the figure, using SLBP+optical flow+online-learned
discriminative measurements achieves the best performance on both Dataset-1
and Dataset-2 from thresholds 5 to 15, except only a few thresholds.

Further from Table [l at 7 = 10 where the physical distance is 1mm, us-
ing SLBP+optical flow—+online-learned discriminative measurements achieves
the best performances on Dataset-1 and Dataset-2 with error rates 7.7% and
8.6%, respectively. This is much better than only using optical measurements
whose tracking error rates are 10% and 12.3%, respectively. This demonstrates
that the presented tracking framework improves the baseline performance (when
only using optical flow) by a significant amount.
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Fig. 5. The quantitative comparisons between the results of using different measure-
ment combinations on: (a)Dataset-1 and (b)Dataset-2

4

In

Conclusion

this paper, we present a probabilistic framework for adaptively tracking

generic anatomical curve structures in X-ray images. We demonstrate the ef-
fectiveness of integrating appearance pattern, shape and motion information in
tracking curve structures. We plan to extend the method to other image modali-
ties such as ultrasound, and to further explore its usages in clinical applications.
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