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Abstract. Osteoporosis, characterized by low bone mineral density (BMD) and 
micro-architectural deterioration of trabecular bone (TB), increases risk of frac-
tures associated with substantial morbidity, mortality, and financial costs. A 
quantitative measure of TB micro-architecture with high reproducibility, large 
between-subjects variability and strong association with bone strength that may 
be computed via in vivo imaging would be an important indicator of bone quali-
ty for clinical trials evaluating fracture risks under different clinical conditions. 
Previously, the notion of tensor scale (t-scale) was introduced using an ellip-
soidal model that yields a unified representation of structure size, orientation 
and anisotropy. Here, we develop a new 3-D t-scale algorithm for fuzzy objects 
and investigate its application to compute quantitative measures characterizing 
TB micro-architecture acquired by in vivo multi-row detector CT (MD-CT) im-
aging. Specifically, new measures characterizing individual trabeculae on the 
continuum of a perfect plate and a perfect rod and their orientation are directly 
computed in a volumetric BMD representation of a TB network. Reproducibili-
ty of these measures is evaluated using repeat MD-CT scans and also by  
comparing their correlation between MD-CT and µ-CT imaging. Experimental 
results have demonstrated that the t-scale-based TB micro-architectural meas-
ures are highly reproducible with strong association of their values at MD-CT 
and µ-CT resolutions. Results of an experimental mechanical study have proved 
these measures’ ability to predict TB’s bone strength. 
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1 Introducation 

Osteoporosis increases risk of fractures associated with substantial morbidity, mortali-
ty, and financial costs. Approximately, 30% of postmenopausal white women in the 
United States suffer from osteoporosis [1] and the prevalence in Europe and Asia is 
similar. Approximately one in two women and one in four men over age 50 will have 
an osteoporosis-related fracture in their remaining lifetime. Clinically, osteoporosis is 
defined by low bone mineral density (BMD). However, increasing evidence suggests 
that micro-architectural quality of trabecular bone (TB) is an important determinant of 
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bone strength and fracture risk [2-5]. BMD only explains about 65% to 75% of the 
variance in bone strength [6,7], while the remaining variance is due to the cumulative 
and synergistic effect of various factors including bone macro- and micro-
architecture, tissue composition, and micro-damage [8,9]. Therefore, a quantitative 
measure of TB micro-architecture with high reproducibility, large between-subjects 
variability and strong association with bone strength that may be computed via in vivo 
imaging would be an important indicator of bone quality for clinical trials evaluating 
fracture risks under different clinical conditions. 

Saha et al. developed digital topological analysis (DTA) [10,11]which classifies 
surfaces (plates), curves (rods), junctions, and edges in a skeletal representation of a 
TB network using local topological parameters [10,12,13]. Although DTA is widely 
applied [5,6,14,15], a major limitation of the method is that resulting classifications 
are inherently discrete failing to distinguish between narrow and wide plates. Later, 
Saha et al. developed volumetric topological analysis algorithm (VTA) [16] characte-
rizing the topology of individual trabeculae on the continuum between a perfect plate 
and a perfect rod. Although VTA provides an effective measure of TB micro-
architecture, its premise is built on digital topology and path propagation approaches 
and misses some important information related to structure orientation and anisotropy.  

Here, a simultaneous solution to estimate TB plateness/rodness and orientation is 
presented using a geometric approach of representing local structures with tensor 
scale (t-scale) [17]; initial results of application of t-scale in TB micro-architectural 
analyses were reported in [18]. T-scale provides a parametric representation of local 
structures using an ellipsoidal model. A new 3-D t-scale algorithm is developed for 
fuzzy objects and its application is studied to characterize TB micro-architecture ac-
quired by in vivo multi-row detector CT (MD-CT) imaging. Other applications of t-
scale may include assessment of vessel and airway wall geometry and detection and 
segmention of lung fissures in pulmonary CT imaging, and also, assessment of gyri 
and polyps geomtery in neuro-imaging and in virtyal colonoscopy, respectively. In the 
following section, we briefly present the algorithms for computation of t-scale and TB 
measures which will be followed by description of experimental plans and methods. 
Finally, we discuss the results and draw our conclusion.  

2 Methods and Algorithms 

2.1 3-D T-Scale Computation 

T-scale-based quantitative micro-architectural assessment algorithm may be applied 
on fuzzy representation of an object where the membership value at each image voxel 
is interpreted as local object content or density. Here, we intend to apply the algo-
rithm on TB bone images where the value at each voxel ݌ represents the bone miner-
al content (BMC) at ݌ and is denoted by ܥܯܤሺ݌ሻ. In the rest of this section, fuzzy 
membership and BMC will be used synonymously. T-scale computation is performed 
by locally tracing an object along m pairs of mutually opposite sample lines selected 
at an approximately uniform distribution over the entire 3-D angular space ensuring 
that the final t-scale is not skewed in any direction. Here, we have used 22.5o of angu-
lar interval between every two neighboring sample lines. Interval length between two 
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eigenvalue ߣଶሺ݌ሻ as shown in Fig. 2b; local structure measure using the VTA algorithm 
is presented in in Fig. 2c which has been thorough evaluated in [16]. The agreement of 
the TB width measures using the two different approaches as shown in Fig. 2b,c is en-
couraging. The motivation of investigating the t-scale method is two-folded – (1) t-scale 
computes the local structure width measure using a geometric approach as compared to 
the VTA method based on digital topology and path propagation and (2) simultaneous 
measures of local structure orientation and thickness. Here, we study the orientation 
measure of TB. The orientation of the structure, denoted by ܶܵைሺ݌ሻ, is defined by the 
cosine of the angle between the eigenvector ܑଵሺ݌ሻ corresponding to the largest eigenva-
lue and the bone’s longitudinal axis; color-coded illustration of the orientation measure is 
shown in Fig. 2e. As observed in the figure, the t-scale-based orientation measure suc-
cessfully distinguishes between the longitudinal (green) and transverse (red) trabeculae. 
Also, the normalized plateness measure over the [0,1] interval, denoted by ܶܵ௉ሺ݌ሻ, is 
classically defined using the anisotropy between the length of the second largest eigenva-
lue ߣଶሺ݌ሻ and the smallest eigenvalue ߣଷሺ݌ሻ as follows: ܶܵ௉ሺ݌ሻ ൌ ඥ1 െ ሺߣଷሺ݌ሻ ⁄ሻ݌ଶሺߣ ሻଶ.                        (1) 

It may be noted that the above plateness measure does not require threshold values as 
needed in VTA [16]. The normalized rodness measure ܶܵோሺ݌ሻ is defined as:  ܶܵோሺ݌ሻ ൌ 1 െ ܶܵ௉ሺ݌ሻ.                             (2) 

The above measures at an individual voxel location may be directly computed from 
its local t-scale. However, it can be shown that these measures suffer from edge arti-
facts when the target voxel is far from the skeleton due to the failure of covering the 
entire geometry of the local structure within its t-scale. Therefore, we define our algo-
rithm as follows using an initialization and feature propagation approach. 

1) Compute the surface skeleton  ܵ for the TB structure ܱ where ܱ is set of all 
voxels with nonzero BMC value.  

2) For each volxel ݌ א ܵ, initiate the TB measures values: ܶܵௐሺ݌ሻ, ܶܵைሺ݌ሻ,  ܶܵ௉ሺ݌ሻ and ܶܵோሺ݌ሻ as defined above. 
3) At each non-skeletal voxel ݍ א ܱ െ ܵ , inherit the TB measures: ܶܵௐሺݍሻ , ܶܵைሺݍሻ ,  ܶܵ௉ሺݍሻ  and ܶܵோሺݍሻ  from the nearest skeletal voxel ݌  using a 

feature propogation algorithm. 

In the above steps, the surface skeletonization is computed using the algorithm by 
Saha et al. [19] and the noise removal procedure presented in [16]. The feauture 
propagation is accomplished using the classical algorithm introduced in [16]. Finally, 
the following TB measures are computed over a VOI ܸ as a parameter representing 
the micro-architectural properties of the TB over ܸ: 

1. Bone mineral density: ܦܯܤ ൌ ∑ ௏אሻ௣݌ሺܥܯܤ ԡܸԡ⁄ , 
2. Surface width: ܵ ்ܹௌ ൌ ∑ ܶܵௐሺ݌ሻܥܯܤሺ݌ሻ௣א௏ ∑ ⁄௏אሻ௣݌ሺܥܯܤ  , 
3. Surface curve ratio: ்ܴܵܥௌ ൌ ∑ ܶܵ௉ሺ݌ሻܥܯܤሺ݌ሻ௣א௏ ∑ ܶܵோሺ݌ሻܥܯܤሺ݌ሻ௣א௏⁄ , 
4. Longitude bone mineral density: ܦܯܤL୭୬୥ ൌ ∑ ܶܵைሺ݌ሻܥܯܤሺ݌ሻ௣א௏ ԡܸԡ⁄ , 

5. Transverse bone mineral density: ܦܯܤT୰ୟ୬ ൌ ∑ ൫ଵି்ௌೀሺ௣ሻ൯஻ெ஼ሺ௣ሻ೛אೇ ԡ௏ԡ . 
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4 Results and Conclusion 

Results of t-scale based classification of TB micro-architecture are illustrated in Fig. 2 
and the plateness/rodness classification results are visually compared with VTA re-
sults. Results of t-scale-based plateness classification of TB network for three speci-
mens with different experimental mechanical strengths are shown in Fig. 3. As shown 
in the figure, a 8% difference in BMD from a strong bone (a) to a weak bone (c) leads 
to 70% loss in bone strength and manifests into 60% difference in TB micro-
architectural measure ்ܴܵܥௌ establishing its high sensitivity in bone degeneration. 

Repeat scan MD-CT reproducibility of the method under in vivo condition was deter-
mined for BMD and all five t-scale measures. Color-coded illustration of t-scale  
plateness measure over a matching region in three repeat scans MD-CT data is shown  
in Fig. 4. For this study, ten spherical VOIs each of 3.75 mm radius were randomly  
selected in the first MD-CT scan of each specimen above the position 8mm proximal  
to the distal endplate leading to a total of 150 VOIs. Post-registration algorithm was  
used to locate the matching VOIs in the second and the third scans. Finally, the intra-
class correlation (ICC) of three repeat scans was computed for each TB measure and  
the observed results are – (1) ࡰࡹ࡮ (2) ,0.997 :ࡰࡹ࡮L୭୬୥: 0.983, (3) ࡰࡹ࡮T୰ୟ୬: 0.987, 
(4) ܵ ௏்ܹ஺: 0.966 and (5) ܴܵܥ௏்஺: 0.953. Although the two t-scale-based measures ܵ ்ܹௌ ்ܴܵܥௌ have demonstrated slightly lower ICC values than the BMD measures, 
which are expected to be highly reproducible in CT imaging modality, the observed 
ICC values are satisfactory considering the fact that the measures were computed over 
small VOIs and less averaging of errors.  

Linear correlations of three different TB measures derived from MD-CT and µ-CT 
imaging are graphically illustrated in Fig. 5. For these experiments, 15 VOIs were 
used from 15 specimens and same VOIs are used for correlation study with TB pres-
sure experiments. The t-scale-based measure ்ܴܵܥௌ shows higher linear correlation 
between in vivo (MD-CT) and ex vivo (µ-CT) resolutions as compared to the BMD 
measure; note that BV/TV measure was used for µ-CT.  

For correlation analysis with TB’s experimental Yield stress, the image-based 
measures were computed over a cylindrical VOI with its axis aligned with that of 
distal tibia and its length and position were selected as per the data recorded during 
specimen preparation. The results of correlation analysis between Yield stress and 
different TB measures are shown in Fig. 6. Both t-scale measures have demonstrated 
better strength to predict TB’s Yield stress as compared to BMD.   

In this paper, we have developed a new 3-D t-scale algorithm for fuzzy object and 
have investigated its role in computing quantitative TB micro-architecture measures 
through MD-CT imaging under an in vivo condition. Results of an extensive study on 
fifteen cadaveric ankle specimens evaluating the new t-scale-based method are pre-
sented. Observed results have demonstration satisfactory repeat scan reproducibility 
of method. High correlation of t-scale measures derived via in vivo and ex vivo imag-
ing modalities is observed. Also, t-scale-based TB micro-architectural measures have 
demonstrated higher ability to predict trabecular bone’s experimental mechanical 
properties under an in vivo condition.  
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