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Abstract. This paper proposes a nonlinear regression model to predict soft tis-
sue deformation after maxillofacial surgery. The feature which served as input 
in the model is extracted with Finite Element Model (FEM). The output in the 
model is the facial deformation calculated from the preoperative and postopera-
tive 3D data. After finding the relevance between feature and facial deformation 
by using the regression model, we establish a general relationship which can be 
applied to all the patients. As a new patient comes, we predict his/her facial de-
formation by combining the general relationship and the new patient’s biome-
chanical properties. Thus, our model is biomechanical relevant and statistical 
relevant. Validation on eleven patients demonstrates the effectiveness and effi-
ciency of our method. 
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1 Introduction 

Craniomaxillofacial (CMF) deformities affect human’s head and facial appearance. 
CMF surgery is designed to reconstruct such condition. This type of the surgery 
usually requires extensive presurgical planning. Currently we are able to accurately 
simulate osteotomies. However, soft-tissue-change simulation still remains a chal-
lenge. The most widely used method to simulate soft tissue change is biomechanical 
relevant Finite Element Model (FEM) [1] and its improvements [2-5]. However, a 
major disadvantage of FEM methods is that they are individually-based. Population-
based statistical information was not considered.  On the other hand, a statistical 
based method [6] is efficient but does not consider the biomechanical properties and 
thus it is less-than-accurate.  To this end, we hypothesized that the soft tissue change 
could be accurately simulated if we could combine the FEM and statistical model into 
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one model. This integrated model should not only maintain the integrity of biome-
chanical information, but also be computational efficient.  In this study, we devel-
oped an Incremental Kernel Ridge Regression (IKRR) model to effectively utilize the 
biomechanical information and statistical information.  Kernel Ridge Regression 
(KRR) model was first established from the training data which consisted of a set of 
preoperative and postoperative 3D images. When a new patient arrived, the KRR 
model was adjusted incrementally to incorporate the new patient’s biomechanical 
information.  Compared to [6], our method combined different information, the sta-
tistical information and biomechanical information, into one model.  Eleven patients 
were used for validation. The average prediction error of IKRR was found to be lower 
than other evaluated algorithms. Comparison of running time revealed that IKRR was 
more efficient than KRR. 

2 Methodology 

2.1   Data Acquisition and Pre-Processing 

Eleven sets of patient’s preoperative and postoperative CT scans and facial surface 
scans, obtained from a 3D surface camera, were acquired. The only reason of using 
facial surface scans was to prevent any unintended soft tissue strain during the CT 
scanning. The 3D camera was operated by a doctor who ensured the patient’s facial 
expression was neutral. During the computation, the CT soft tissues were replaced 
with the 3D surface scans. Both preoperative and postoperative surface scans were 
rigidly registered to the preoperative CT images with the Mimics software (Materia-
lise, Belgium). The bones of preoperative and postoperative CT images were seg-
mented in Mimics which would be further used to determine surgical plan. 

2.2 Feature Extraction 

Biomechanical properties, including stress, strain and displacement, were computed 
from FEM. We used stress as a feature. In order to execute FEM, the following two 
components were utilized: the mesh and the surgical plan. 
 
Mesh Generation. A Visible Human Female Dataset was used to generate an ana-
tomic detailed mesh as a template. From the CT data, the following muscles contri-
buted in facial soft tissue deformation were segmented from the dataset: Buccinator, 
Depressor anguli oris, Depressor labii, Levator anguli oris, Levator labii, Levator labii 
alaeque nasi, Mentalis, Orbicularis oris, Zygomaticus major, Zygomaticus minor and 
Masseter [7]. The remaining soft tissue tissues between the skin and mucosa were 
considered as a homogenous material. In order to generate a mesh structure applicable 
to all the patients, the segmented structures were then export as Stereolithography 
(STL) files and subsequently imported into TrueGrid (XYZ Scientific Applications, 
Inc., Livermore, CA).  Finally, a hexahedral block mesh of this dataset was generat-
ed. It served as a template to map the detailed anatomic structures to real patients.  
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    For real patient data, the segmented CT bones and registered 3D surface scan 
were imported into TrueGrid as facial geometries. The facial landmarks of each pa-
tient were manually marked. A surface projection technique of TrueGrid can change 
the template shape into patient shape by matching the corresponding landmarks.  
 
Determination of Surgical Plan. The postoperative skull was firstly manually regis-
tered to the preoperative one based on an unaltered part at cranium. Afterwards, the 
preoperative skull was osteotomized into pieces according to the postoperative CT. 
Then, the bony segments were separately aligned to the postoperative counterparts. 
The Iterative Closest Point (ICP) algorithm [8] was used to compute the displacement 
between the preoperative and postoperative skull parts. After finding the displacement 
of all skull parts, we get surgical plan. 
 
Calculation of Stress with FEM. For each node, it had the following quantity: 
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Linear FEM (LFEM), based on linear elasticity to characterize the deformation beha-
vior of soft tissues, was used to calculate the stress of the node [9]. Since we were 
interested in facial appearance, only the nodes lying on the outer skin were selected. 
There were totally 2652 nodes, and each node had a stress vector of length six. We 

stacked the stress of the selected 2652 nodes together to form a vector 15912
i ∈ℜσ  

for the ith patient, 1, ,i n=  . We called iσ  the feature of the ith patient. 

2.3 Training Kernel Ridge Regression Model 

The feature was served as input in regression model. The true displacement of the 
selected 2652 nodes was calculated from the preoperative and postoperative meshes. 

These nodal displacements were stacked together to form a vector iu  of length 7956. 

Given input-output pairs 15912 7956( , )i i ∈ℜ ×ℜuσ , 1, , ,i n=   we could learn a 

prediction function f  such that ( )i if ≈ uσ  for each i . 

KRR model was adopted [10]. This was a nonlinear regression model. The input 
was first embedded into a higher dimensional space H via a nonlinear mapping φ . 

Space H induced a kernel function which characterized the inner product in H and 

was given by the relation ( , ) ( ) ( ),k φ φΤ= ⋅x y x y  where x  and y  were in the 

input space. The kernel function adopted here was the widely used Gaussian kernel 
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with the width 0ω > . KRR performed linear regression in H which was equivalent 
to performing nonlinear regression in input space. KRR assumed that the prediction 

function was of the form ( ) ( )f φΤ= Wσ σ , where W  was the coefficients to be 

determined. By minimizing an objective function 
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where 0λ > , we could find solution 

 1( )nλ∗ Τ −= Φ Φ ΦW + I U  (4) 

with ( )1( ), , ( )nφ φΦ = σ σ  and 1( , , )n
Τ=U u u .  

For any σ , the prediction of KRR model could be expressed as 

 ( ) 1( ) ( ) ( ),nφ λ
Τ∗ Τ −= +u W = U K I k σ σ  (5) 

where ( )1( ) ( , ), , ( , )nk k
Τ=k σ σ σ σ σ , ,( ( , ))i j i jk=K σ σ , , 1, ,i j n=  . 

In (5), the kernel function was sufficient for calculating the prediction. Therefore, it 
was not necessary to know the nonlinear mapping φ . This could reduce the computa-

tional complexity since we could avoid the operations in high dimensional space. 

2.4 Prediction of Soft-Tissue Deformations with Incremental KRR Model 

We incrementally modified KRR model by adding pair FEM( , )u σ  to the training 

set, where σ  was the stress for the new patient and FEMu  was the displacement 

computed from linear FEM.  Compared with KRR, our method predicted the output 

with biomechanical information FEMu . We called it Incremental KRR (IKRR). 

From (5), we could compute the prediction of IKRR
 
as 

 

1

FEM

FEM KRR

( ) ( )

( ) ( , ) ( , )

   (1 ) ,

n

k k

t t

λ
λ

Τ −

Τ Τ

+     
=      +    
= + −

U K I k k
u

u k

u u

 


     

 

σ σ
σ σ σ σ σ  (6) 



 Incremental Kernel Ridge Regression for the Prediction of Soft Tissue Deformations 103 

 

where the prediction of KRR 1
KRR ( ) ( )nλΤ −= +u U K I k σ , ( ) /t e eλ= − , 

1( , ) ( )( ) ( )ne k λ λΤ −= + − +k K I k   σ σ σ σ . By using the positive semi-

definiteness of K , we could proof that [0,1)t ∈ . 

Equation (6) showed that the prediction of IKRR was a convex combination of the 
prediction of KRR and prediction of FEM. There were three major advantages in 
IKRR.  First, IKRR was more general. It contained KRR as a special case by setting 

0t = . Second, IKRR was more flexible. It combined two parts together, one from 
the KRR, the other from the FEM. The contribution of each part could be tuned by 
changing t . Finally, IKRR was more efficient. It did not need repetitive training 
when adding new training data. The computational complexity of KRR for training 
n+1 data was 3( )O n  (See (5)). However, the complexity of IKKR reduced to 2( )O n  

by updating the results of KRR (See (6)). 

2.5 Implementation Issues 

One key point in statistical model was the corresponding relationship amongst all the 
data. Since all the meshes were generated from the same template, a natural corres-
ponding relationship was established. The input of statistical model was normalized to 
have a zero mean and one standard deviation for each feature. The computations of 
FEM and statistical analysis were implemented in Matlab on a 64 bit Windows PC 
with 1.6GHz CPU and 24GB RAM. The regularization parameter λ  and the width 
of Gaussian kernel ω  were selected via grid search. The best values of the parame-
ters were those that gave the best performance. 

3 Results 

3.1   Predictions with Different Number of Training Data 

We tested different number of training data, from 6 to 10, to generate IKRR models. 
The prediction accuracy of these five IKRR was recorded. The difference between the 
prediction and ground truth was calculated as 

 
2652

1

1
,

2652 i i
i

E
=

= − d d  (7) 

where id  was the true displacement of the ith node, id  was the predicted displace-

ment of the ith node.  Table 1 showed the results. 
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Table 1. Prediction difference v.s. number of training data 

Number of training 6 7 8 9 10 
E (mm) 0.7845 0.7817 0.7814 0.7811 0.7756 

 
The above table clearly showed that the prediction was improved when more train-

ing data were available. The statistical information gained from the added training 
data was beneficial to the prediction of soft-tissue deformations.  

3.2 Empirical Comparisons 

We carried out leave-one-out cross-validation using eleven patients’ datasets.  The 
algorithms to be evaluated included LFEM [9], KRR and IKRR. Table 2 tabulated the 
prediction difference as defined in (7). 

Table 2. Bmax (mm) is the maximal skull displacement during surgery. ELFEM, EKRR and EIKRR 
are the prediction differences of corresponding methods. Surgical plans are described in the 
second column: M represents mandible, X represents maxilla, A represents  advance, B 
represents back, R represents right, L represents left. 

Patient Surgery Bmax ELFEM EKRR EIKRR 
1 MB 11.6847 1.3241 2.9955 1.1963 
2 MB+XB 6.1581 0.8054 1.3840 0.7756 
3 MB 7.3624 1.2456 4.5722 1.0467 
4 MB +XA 7.2343 0.7389 2.4249 0.7082 
5 MR 8.3622 0.8567 1.6896 0.7870 
6 MA 10.5866 0.9391 2.6338 0.8739 
7 MB+XB 13.4578 1.1490 2.6418 0.9551 
8 MB+XA 7.3898 0.8845 3.4110 0.8090 
9 ML 10.5032 0.9978 2.3010 0.9783 

10 MR 6.1608 0.9531 2.1136 0.9209 
11 MB+XA 13.6617 0.9821 2.1602 0.9626 

mean  9.3238 0.9888 2.5752 0.9103 

 
KRR underperformed LFEM because of its lack of the new patient’s biomechani-

cal information. As a biomechanical based model, LFEM provided accurate predic-
tions [9]. However, IKRR method outperformed all other algorithms by combining 
the statistical information learned from the training data and the test patient’s biome-
chanical information. The results indicated that the test patient’s biomechanical in-
formation was critical to the prediction performance. 

The visualization was achieved by using inverse distance weighted interpolation 
[11] (Figure 1). This patient underwent a surgery to setback the mandible (bilateral 
sagittal split osteotomies) and advance the maxilla (Le Fort I osteotomy). As shown in 
Fig. 1, IKRR produced more accurate visualization than LFEM. The lower lip was 
prominent in LFEM prediction. While the lower lip was aligned with upper lip in 
IKRR prediction, which accorded with the postoperative image.  
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(a)                (b)              (c)             (d) 

Fig. 1. (a) preoperative image (b) postoperative image (c) prediction of LFEM (d) prediction of 
IKRR 

3.3 Computation Time 

We compared the computational time of IKRR and KRR side by side. Once an initial 
KRR model was generated, re-training process could be achieved by two methods. 
The first was to recompute KRR entirely when a new patient was added as shown in 
(5). The running time of repetitive KRR was the elapsed time for the computation of 
(5) by replacing n with n+1. The second method was IKRR approach in which it only 
incrementally updated the existing KRR model as shown in (6). The running time of 
IKRR was the elapsed time for the computation of (6). The larger the n is, the more 
meaningful the comparison is. The experimental results in Table 3 clearly showed that 
IKRR was much more efficient than KRR for large number of training data. 

Table 3. Computation time (s) for repetitive KRR and IKRR. “Speedup” means the factor that 
IKRR gained in CPU time over KRR 

Number of training 1000 2000 3000 4000 5000 
KRR 0.8542 3.3293 7.6927 14.1571 22.6551 
IKRR 0.0089 0.0203 0.0357 0.0477 0.0629 

Speedup 96.0 164.0 215.5 296.8 360.2 

4 Conclusions and Discussions 

We applied IKRR for the soft-tissue-change simulation after maxillofacial surgery. 
Unlike previous purly biomechanical based FEM [9] and statistical based model [6], 
our model integrated the statistical information and biomechanical information 
together. The results empirically showed our method outperformed the others.  

Possible future work is discussed. In the future, a varity of preoperative and 
postoperative data with different types of deformities should be included in the train-
ing model. The limitation for the application is the deficiency of postoperative 
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images. In contrast, the preoperative images is easier to obtain. To this end, we will 
investigate a semi-supervised learning approach to use two types of data: paired pre- 
and postoperative data, and purely preoperatively data. We will determine whether the 
performance would be improved by adding the second type of data into the training 
model. 
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