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Abstract. We propose a novel approach for the combination of classi-
fiers based on two commonly adopted strategies in multiclass classifica-
tion: one-vs-all and one-vs-one. The method relies on establishing the
relevance of nodes in a graph defined in the space of concepts. Following
a similar approach as in the ranking of websites, the relative strength
of the nodes is given by the stationary distribution of a Markov chain
defined on that graph. The proposed approach do not requires the base
classifiers to provide calibrated probabilities. Experiments on the chal-
lenging problem of multiclass image classification show the potentiality
of our approach.

Keywords: multiclass, classification, random walks, image classifica-
tion, Fisher vectors.

1 Introduction

Multiclass classification is a fundamental problem in pattern recognition. Here,
the task is to assign a given sample to one or more instances from a predefined
set of concepts or classes. According to whether a sample can belong either
to just one or to several of such concepts, the classification problem can be
further characterized as a multiclass single-label (MCSL) or a multiclass multi-
label (MCML) task. In what follows, we assume the availabily of a training set
consisting of a fair amount of manually annotated samples of each class.

Although a large number of methods exists aiming to solve the multiclass
problem as a whole, the most common approach is to decompose the classification
task into a set of binary subproblems and to solve them independently. This
class of methods have been shown to perform on par with more elaborated
techniques when used properly [15,4]. Let C = {1, . . . , C} denote the set of
classes. A common binarization strategy, known as one-vs-all (OVA) or one-vs-
the-rest, is to generate a set of C binary classifiers trained by using as positives
the samples form each class and as negatives those from the others, i.e. each
model is trained to separate one class from the rest. Given a new sample, each
classifier provides a score si, 1 ≤ i ≤ C, reflecting its confidence in assigning the
input sample to the class i ∈ C. The final decision regarding class membership
is generally made using the “argmax” rule (MCSL), i.e. î = argmaxi si, or via
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a simple threshold (MCML), i.e. the input sample belongs to class î ⊂ C ⇐⇒
si > threshold.

Another strategy, known as one-vs-one classification (OVO), consists in train-
ing a set of

(
C
2

)
binary classifiers to discriminate between every pairs of classes.

Let rij be the output of the classifier trained with samples of the ith and jthe
classes as positives and negatives respectively. In order to decide which class the
input sample belongs, a common approach is to compute a weighted vote, e.g.∑

j rij , followed by the application of one of the above assignment strategies.
As the OVA and OVO schemes use different subsets of data for learning the

classifiers, they are likely to provide complementary information about the struc-
ture of the feature space they act on. Based on this hypothesis, we propose a
novel approach for combining the scores of OVA and OVO classifiers based on
the stationary distribution of a Markov chain defined in the space of concepts.
The approach does not requires the base classifiers to provide calibrated prob-
abilities, nevertheless the combined scores do. We demonstrate the effectiveness
and potentiality of the approach on the challenging problem of multiclass image
classification, for both the single- and multi-label settings.

Related Work. Next, we provide a summary of the methods most closely
related to our work in the context of multiclass classification.

Garcia-Pedrajas and Ortiz-Boyer [5] proposed a method for the combination
of OVO and OVA classifiers. The method is a two-stage approach in which the
best two scoring classes of an OVA scheme are used as hypothesis for OVO
classification. The method relies on the following observations: i) in many cases,
when an OVA scheme using the “argmax” rule fails, the correct class is given
by the second best performing classifier; and ii) most of the errors in OVO
classification are due to incompetent classifiers, i.e. those classifiers that have not
been trained using the correct class of the query sample. Our method differs from
[5] in that we take into account not only the second but all the scores provided
by the pool of OVA classifiers in a principled way, avoiding early decisions that
may affect the final classification. Reid [14] proposed to weight each pairwise
(OVO) prediction by an estimate of the probability that the sample belongs
to that pair. The method is very computationally demanding as it involves the
training and evaluation of C(C − 1) classifiers, half of which must be learned
using all available sample instances. Moreover, an additional calibration step
must be performed in order to use state-of-the-art classifiers, e.g. Support Vector
Machines (SVM). Also close to our work is the first of the methods proposed
by Wu et al. [16]. The authors formulate an optimization problem involving
all pairwise (OVO) estimates and the unknown class-probabilities. The solution
to this problem is shown to be the stationary distribution of an irreductible
Markov chain (cf. Sec. 2) whose transition matrix involves the set of (calibrated)
pairwise predictions. Our method differs from [16] in the following: a) we go
beyond simple OVO classification, b) we do not require the base classifiers to
provide calibrated probabilities and c) we do not assume the training data to be
balanced.
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This paper is organized as follows: we first give a brief introduction to the
theory of random walks on graphs and its application to the node ranking prob-
lem (Sec. 2). In Sec. 3 we formalize our approach for classifier combination. In
Sec. 4 we give a detailed explanation of the experimental setup. Results of our
experiments are shown in Sec. 5. Finally, we draw some conclusions in Sec. 6.

2 Preliminaries

Let G = (V , E ,A) be a weighted directed graph with nodes V = {1, . . . , n} and
edges E = {(i, j)|i ∈ V , j ∈ V}. The n× n adjacency matrix A = [aij ] is defined
such that aij > 0 ⇐⇒ (i, j) ∈ E and 0 otherwise. Let us now consider the
following random walk on G: starting from an arbitrary node, if at time t the
walker is at node i, it makes a jumps to node j with probability pij := âij =
aij/

∑n
j=1 aij (independent of t). Each “step” of the process can be associated

with a random variable Xt taking values on V . The sequence X1, X2, . . . , Xt, . . .
corresponds to a Markov chain defined on the space of nodes and P (Xt+1 =
j|Xt = i) = pij . Thus, a random walk on G is a Markov chain with states in V
and transition matrix P = [âij ]. The distribution Π is said to be stationary if

ΠT = ΠTP . (1)

It can be shown that such a distribution exists if the Markov chain encoded
by P is irreductible (any state must be reachable from any other state in a
finite number of steps) and aperiodic (returning to state i can occur at irregular
number of steps). Given P , the stationary distribution Π can be found by solving
the eigenvalue problem (1) with the constraint ΠTe = 1. Here, e denotes the
n-dimensional vector whose elements are all equal to 1. The solution to this
problem can be found numerically, e.g. by the power-method.

PageRank and the Relevance of Nodes in a Graph. PageRank [10] was proposed
as a model to determine the relevance of web-pages. The model considers the
hyperlink structure of the web as a directed graph, on which a random walker
located at node i can jump to any of the nodes linked by i with equal probability,
i.e. pij = 1/

∑
k aik. Here, aij = 1 if (i, j) ∈ E and 0 otherwise. A particularity

of this structure is the presence of nodes with no out-going links (“dangling”
links). For these nodes, the corresponding row of the transition matrix contains
only zeros. Beeing non-stochastic, the resulting P do not corresponds to a valid
transition matrix. Page et al. proposed the following definition for P :

P̃ = αP + (1− α)
eeT

n
(2)

where 0 ≤ α ≤ 1. Here, the convex combination of P with the perturbation

matrix E = eeT

n ensures P̃ to be irreductible by definition1 [7]. The intuition
behind this approach is to model the behaviour of a “random surfer” that with

1 Note that by adding E we are effectively creating an arc between every pair of nodes.
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probability (1−α) gets bored and makes a jump to an arbitrary site. An extension
to this model –known as personalization– consists on replacing eT /n by vT : a
distribution over states reflecting the preferences of each particular user [6].

3 Random Walks for Classifier Combination

Let GC be a graph with nodes V = C, i.e. a graph defined on the space of
concepts. Let us consider a random walk on GC with a transition matrix defined
as the convex combination of two terms, as follows:

P̃ = αPO + (1 − α)PA , (3)

where 0 ≤ α ≤ 1. Let us also define the matrix A = [aij ], with elements:

aij =

{
σ(βrij), if i �= j

0, otherwise
, (4)

where β > 0 corresponds to a tuning parameter and σ(x) = (1 + exp (−x))−1 is
the logistic function. The matrix A can be seen as the adjacency matrix of the
graph corresponding to the first term in (3). The C × C matrix PO is defined
as the the row-normalized version of the adjacency matrix (4). The matrix PA

is defined as PA = eqT , where the “personalization” vector q = (q1, . . . , qC)
T

takes the form:

qi =
σ(βsi)

∑C
k=1 σ(βsk)

. (5)

Using (4) and (5) in the definition of P̃ makes it a valid transition matrix2. It
comprises two terms: the first, reflecting all pairwise relations between nodes; the
second, modelling the behaviour of a “random surfer” which prefers those nodes
with a high one-vs-all classification score. The trade-off between these terms is
controlled by the parameter α.

Given a new sample x and a set of trained OVO and OVA classifiers, we
define the classification score w.r.t. the ith class as the corresponding element
of the stationary distribution vector of the Markov chain having P̃ as transition
matrix.

The computation of P̃ involves the evaluation of C(C + 1)/2 classifiers. It
is interesting to see that in the case of α = 0, i.e. when considering only the
OVA-terms, the stationary distribution is Π = q. From the definition of qi in
eq. (5), it follows that the “argmax” rule will make the same prediction as with
a traditional OVA scheme.

4 Experimental Setup

We evaluate our approach in the context of multiclass image classification.
The evaluation was performed using two challenging image datasets: PASCAL

2 It corresponds to a fully connected graph, as qi > 0, ∀i.
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VOC2007 [3] and MIT Indoor Scenes [13]. The image representation we used
was the improved Fisher Vector (FV) but without spatial pyramids (cf. [12]).
Before going into details regarding the experimental procedure, we give a brief
overview of this state-of-the-art image signature. Details can be found in [11,12].

4.1 Image Signature

Let X = {xt, t = 1 . . . T } be the set of D-dimensional local descriptors extracted
from a given image. Let uλ : RD → R+ be a pdf with parameters λmodelling the
generation process of low-level descriptors in any image. Here, uλ is defined to
be a mixture of N Gaussians with diagonal covariances: uλ(x) =

∑N
i=1 wiui(x),

λ = {wi, μi, σi, i = 1 . . .N}. wi, μi and σ2
i denote, respectively, the mixing

weight, mean and variance vectors corresponding to the ith component of the
mixture. The FV is defined as GX

λ = LλG
X
λ , where GX

λ corresponds to the

gradient of the (average) log-likelihood of X , i.e. 1
T

∑T
t=1 ∇λ log uλ(xt) and Lλ

a diagonal normalizer. The image signature is the concatenation of normalized
partial derivatives, resulting in a vector of dimensionality 2ND. Following [12],
we apply the transformation f(z) = sign(z)

√|z| on each dimension and L2-
normalize the resulting vector as it was shown to improve classification accuracy.

Low-Level Features. We used 128-dimensional SIFT descriptors [9] extracted
from image patches of 32× 32 pixels uniformly distributed on the image (from
the nodes of a regular grid with a step size of 8 pixels). We did not perform any
normalization on the image patches before computations. The dimensionality of
the resulting descriptors were further reduced to 80 by Principal Components
Analysis (PCA). To account for variations in scale, we extracted patches at 5
different resolutions using a scale factor of 0.707 between levels.

Generative Model. We trained a GMM under a Maximum Likelihood (ML)
criterion using the Expectation-Maximization (EM) algorithm. We used 1M
random samples from the training set of PASCAL VOC2007. We initialized the
EM iterations by running k-means and using the statistics of cluster assignments
(relative count, mean and variance vectors) as initial estimates.

4.2 Base Classifiers

As base classifiers we used linear SVMs trained on the primal using Stochastic
Gradient Descent (SGD) [1], i.e. minimizing the L2 regularized hinge-loss in a
sample-by-sample basis. The regularization parameter λ was chosen by cross-
validation on the training set.

4.3 Datasets

PASCAL VOC2007. This dataset contain images of 20 object categories. The
set of images for each class exhibits a large degree of intra-class variation, in-
cluding changes in viewpoint, illumination, scale, partial occlusions, etc.. Images
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from this dataset are split into three groups: train, val and test. We followed the
recommended procedure of tuning parameters on the train set while using the
val set for testing. Once the best choice for the parameters have been selected,
the system was re-trained using the train+val sets. Classification performance
is measured using the mean Average Precision (mAP) computed on the test set.

MIT Indoor Scenes. This dataset consists on more than 15K images depicting
67 different indoor environments. We created 10 different train/test splits by
randomly selecting 50% of the images for training and 50% for testing. In order
to adjust model parameters, we ran a 5-fold cross validation on the training set of
the first of such splits. The best configuration was used in all runs. Classification
performance was measured using the multiclass prediction accuracy (MPA), i.e.
the mean over the diagonal elements of the confusion matrix [13]. We report the
mean as well as standard deviation over runs.

5 Results

We observed that finely tuning the parameter β has little effect on performance.
For the hyperparameter α, we found that a value of 0.6 was the optimal choice
in most situations. We set α = 0.6 and β = 2 in all our experiments.

Table 1 show classification performances obtained on PASCAL VOC 2007 as
a function of the model complexity (the number of Gaussian components, N) for
two classification schemes: one-vs-all (OVA) and our RW based approach (RWC).
We compare only against OVA because it is the best performing method on this
dataset3. It can be observed that the gain brought by our method decreases as
the model complexity increases. For instance, our approach achieves a better
score on 16, 15, 14, 13, 10 and 7 classes out of 20 for model complexities of
N = 8, 16, 32, 64, 128 and 256 respectively. This seems to indicate that the
proposed approach helps to ameliorate –in the final stage of the classification
pipeline– the use of representations with less expressive power. For this dataset,
the feature space induced by models with more than 64 Gaussians makes OVA
classification a good multiclass scheme, provided this particular representation.
From this point, a better performance can be expected due to a more descriptive
(complex) model and not to the capabilities of the system on solving possible
ambiguities between concepts.

Table 2 show the performance obtained by the OVA and RWC systems on a
problem involving a larger number of classes (MIT Indoor Scenes). As before,
it can be seen that the gain in performance is greater for systems based on less
complex representations. In this particular case, the RWC approach allows a
model with a small number of Gaussians to achieve a performance comparable
to that achieved by a model using twice as many components.

3 In preliminary experiments we also considered the use of OVO classification with
voting, but its performance was consistently lower compared to the simpler and more
usual OVA strategy.
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Table 1. PASCAL VOC2007. Classification performance for one-vs-all (OVA) and the
proposed approach (RWC), for increasing model complexity (number of Gaussians, N).

N=8 N=16 N=32 N=64 N=128 N=256
Class OVA RWC OVA RWC OVA RWC OVA RWC OVA RWC OVA RWC

aeroplane 69.3 72.4 71.0 72.1 72.6 73.9 75.8 75.3 78.2 77.5 78.4 77.2
bicycle 50.8 53.7 53.0 54.9 59.0 60.4 61.2 62.2 64.7 64.5 65.9 65.8
bird 31.8 35.6 39.2 39.5 43.9 46.5 46.0 47.3 45.4 46.7 48.3 47.8
boat 62.0 63.9 64.6 66.1 65.1 66.4 68.2 69.0 68.7 68.4 69.6 69.7
bottle 24.2 24.9 28.3 29.0 32.3 31.3 31.1 30.9 31.9 31.9 33.6 32.2
bus 54.9 55.3 56.5 59.1 59.2 61.0 63.7 65.0 64.0 64.8 64.7 64.7
car 70.5 73.4 73.2 76.1 75.9 77.6 76.7 78.9 78.1 79.2 79.9 80.5
cat 46.5 46.2 51.0 49.5 54.0 53.9 55.8 56.8 56.8 55.4 58.6 57.2
chair 45.3 46.6 43.2 46.4 46.6 48.6 48.5 50.1 48.4 49.0 49.8 51.1
cow 30.0 26.8 35.2 32.5 35.3 36.6 41.4 41.1 42.5 39.8 45.2 42.5
diningtable 41.0 41.6 42.8 43.0 48.0 48.2 50.7 51.4 53.7 54.8 55.3 54.7
dog 31.0 41.9 36.3 44.8 40.4 45.1 40.2 46.6 41.5 46.1 45.5 48.3
horse 68.9 67.9 72.8 73.6 74.5 74.3 75.1 74.7 76.4 75.6 77.6 76.8
motorbike 51.3 50.4 57.5 56.7 62.3 60.9 64.0 63.6 66.5 65.2 65.7 65.4
person 76.6 74.7 79.2 78.1 81.1 80.8 81.5 80.9 82.2 81.5 82.6 82.3
pottedplant 14.1 15.7 21.9 25.3 24.2 26.5 27.5 28.9 30.9 32.0 30.1 31.2
sheep 30.6 34.4 38.4 36.8 40.6 39.8 40.2 38.5 38.9 38.0 43.3 40.2
sofa 43.7 45.1 43.5 45.5 45.8 47.4 49.9 51.1 49.2 49.8 51.9 51.7
train 68.2 70.2 72.0 73.6 74.2 76.1 75.1 76.2 77.6 77.8 79.2 79.1
tvmonitor 44.6 46.8 46.0 48.9 47.6 50.1 49.8 51.9 50.8 54.4 51.8 54.1

average 47.8 49.4 51.3 52.6 54.1 55.3 56.1 57.0 57.3 57.6 58.8 58.6
gain +1.6 +1.3 +1.2 +0.9 +0.3 -0.2

Table 2. MIT Indoor Scenes. Multiclass prediction accuracy (in %). OVA vs. RWC
(left). Comparison with the state-of-the-art (right).

N=16 N=32 N=64 N=128 N=256
OVA RWC OVA RWC OVA RWC OVA RWC OVA RWC

avg. 46.3 48.7 48.9 50.8 51.2 52.6 52.9 53.9 53.6 54.4
s.d. 0.6 0.7 0.6 0.6 0.5 0.5 0.6 0.6 0.6 0.6
gain +2.4 +1.9 +1.4 +1.0 +0.8

Method MPA

OB [8] 37.6
NNbMF [2] 47.0
OVA 50.7
RWC 52.3

As a final comparison, we ran experiments using the same train/test as in [13].
We compare the OVA and RWC schemes based on Fisher vectors (N = 128)
and simple linear classifiers against the Object Bank (OB) approach of Li et
al. [8] and the Nearest-Neighbor based Metric Functions (NNbMF) of Çakir et
al. [2]. Results are shown in Table 2 (right). It can be observed that the system
based on FVs and linear OVA classification outperforms the state-of-the-art on
this dataset and that even such a powerful representation can benefit from the
proposed classifier combination scheme.
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6 Conclusions and Future Work

We proposed a method to combine the scores of two common multiclass classi-
fication schemes: one-vs-all and one-vs-one. The approach is based on the sta-
tionary distribution of a Markov chain defined in the space of concepts. Results
on the challenging problem of image classification showed the potentiality of our
approach. In a future work we will investigate other types of graph connectivity
structures, specially those leading to sparse transition matrices.
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