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{nhernandez,italavera}@cenatav.co.cu, rolando.biscay@uv.cl

Abstract. A non Bayesian predictive approach for statistical calibra-
tion with functional data is introduced. This is based on extending to
the functional calibration setting the definition of non Bayesian predic-
tive probability density proposed by Harris (1989). The new method is
elaborated in detail in case of Gaussian functional linear models. It is
shown through numerical simulations that the introduced non Bayesian
predictive estimator of the unknown parameter of interest in calibration
(commonly, a substance concentration) has negligible bias and compares
favorably with the classical estimator, particularly in extrapolation prob-
lems. A further advantage of the new approach, which is also briefly illus-
trated, is that it provides not only point estimates but also a predictive
likelihood function that allows the researcher to explore the plausibility
of any possible parameter value.
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1 Introduction

Statistical calibration plays a crucial role in many areas of technology such as
pharmacology and chemometrics ([1–6]). In general, the calibration problem can
be described as follows. A training sample (zi, xi)1≤i≤n of n independent ob-
servations in some space Z × X is available, which are generated according to
conditional probability distributions F (X/zi) that belong to some specified sta-
tistical model {Fθ (X/Z) : θ ∈ Θ}. The observations zi may be non random (case
of fixed design) or random (case of random design). Given a new observation X
generated according to the distribution F (X/z) with an unknown value z, it is
desired to obtain an estimate or prediction ẑ of z.

There are several works that deal with this problem in the setting in which
z1, ..., zn, z are observations of a real random variable and X is a random func-
tion. All of them are based on different approximations ẑ to the conditional
mean z̃ = E (Z/X) [7, 8]. This estimator z̃ is optimal in the sense of mini-

mizing the quadratic Bayesian risk E (z̃ − Z)
2
. However, these approaches have

two fundamental shortcomings: a) they focus on the case of random design; b)
the estimator z̃ has poor performance for extrapolation, i.e., when the unknown
quantity Z is not generated by the same probabilistic mechanism as the previous
data z1, ..., zn and lies far away from this cluster of points.
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The calibration problem has also been studied in [9] for the setting in which Z
and X are functions, the mean μ (z) of the statistical model Fθ (X/Z) is linear
with respect to z, and the design is fixed. For this problem, a non Bayesian
estimate estimator ẑ is introduced on the basis of a regularized inversion of the
linear operator defined by the mean function μ. This generalizes to a functional
framework the regularization of the so-called classical estimator for calibration
proposed in [10] for the scalar linear model.

In the present work we are interested in the specific functional setting, com-
mon in chemometrics, in which the variable X is a function (e.g., a spectral
curve), the variable z is a finite-dimensional vector (e.g., concentrations of some
substances), and the statistical model is linear and Gaussian with respect to z.
In contrast to previous methods, we introduce an approach for statistical cal-
ibration based on a non Bayesian predictive framework. This extends to such
functional setting the non Bayesian predictive approach for statistical calibration
proposed in [11] for the scalar linear model.

More specifically, the non Bayesian predictive density introduced by Harris
[12] is extended to the calibration setting just described, so providing, on the
basis of the training sample, a non Bayesian predictive density fP (x; z), for a
new observation x corresponding to the unknown z. This allows one to define
the non Bayesian predictive likelihood by

L (z) = fP (x; z) ,

and the non Bayesian predictive estimator ẑ = argmaxz L (z).
It is shown that this new approach has a number of potential advantages:

i) good performance for extrapolation; ii) negligible bias; iii) it can be applied
to both random and fixed designs, iv) it offers not only a point estimate ẑ
but also a predictive likelihood function lP (z) that allows one to explore the
likelihoods of all the possible values of the unknown z; it permits to incorporate
the information that some components of the vector z are known, when such
information is available.

The rest of the paper is organized as follows. Section 2 presents the functional
Non Bayesian Predictive estimator. Sections 3 illustrates its performance in a
simulation study. Finally, some concluding remarks are given in Section 4.

2 Functional Non Bayesian Predictive Estimator

Let be given a sample of previous (training) data (zi, xi) = (zi1, ..., ziq, xi) (i =
1, ..., n) that follow the model:

xi (t) = β1 (t) zi1 + ...+ βq (t) ziq + ei (t) .

Here, xi ∈ X = L2(t,R) is a functional responses (t ∈ [0, 1]); zi ∈ R
q is vec-

tor of covariates; β(t) = (β1 (t) , ..., βq (t))
ᵀ
is a vector of non random functions

(coefficients); and e1, e2, ... are independent zero-mean Gaussian functions in L2
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with covariance function σe. We will denote by NL2(μ, σ) the Gaussian distri-
bution of a random function with mean μ and covariance function σ. Thus, the
distribution of ei is Pe = NL2(0, σe).

This model can be written

x (t) = Zβ (t) + e (t) , (1)

where Z =(Zij) is the n × q design matrix, x (t) = (x1 (t) , ..., xn (t))
ᵀ
, and

e (t) = (e1 (t) , ..., en (t))
ᵀ.

It is assumed that a new data x is available which follows model (1), that is

x(t) = β1(t)z1 + ...+ βq(t)zq + e(t) = βᵀ (t) z+ e (t) . (2)

The problem of interest is to estimate the vector of variables z on the basis of
the current observation x and the training data (zi, xi) , i = 1, ..., n.

Let ̂β be the least squares estimate of β:

̂β (t) = (ZᵀZ)−1 Zᵀx (t) ,

and σ̂e be the usual estimator of σe based on the residuals:

σ̂e =
1

n

n
∑

i=1

(xi − x̂i)⊗ (xi − x̂i) ,

where x̂i = zᵀi ̂β. Since the training vector of observations x is a Gaussian process

with distribution NLn
2
(Zβ, Iσe), where I is the n × n identity matrix, ̂β is a

Gaussian process with distribution P
̂β (·;β,σe) = NLq

2

(

β, (ZᵀZ)−1
σe

)

. Define

the probability distribution

μP (·; z,β, σe) =

∫

PX (·; z,γ, σe)P̂β (dγ;β, σe) ,

where PX (·; z,β, σe) = NL2 (z
ᵀβ, σe) is the distribution of the observationX ac-

cording to the model. Thus, μP (·; z,β, σe) = NL2

(

zᵀβ,
(

1 + zᵀ (ZᵀZ)−1
z
)

σe

)

.

Under mild conditions, this measure has a density g (·; z,β, σe) with respect to
the measure Pe, which is given by

g (·; z,β, σe) =

∫

fX (·; z,γ, σe)P̂β (dγ;β, σe) ,

where fX (·; z,γ, σe) = dPX (·; z,γ, σe) /Pe is the density of PX (·; z,γ, σe) with
respect to Pe.

Let ϕl, λl be, respectively, the eigenfunctions and eigenvalues of the covariance
function σe. From known results on equivalence of Gaussian measures [13] it
follows that

g (·; z,β, σe) =
1√

1 + zᵀ (ZᵀZ)−1 z
exp

{
1

1 + zᵀ (ZᵀZ)−1 z

∞∑
l=1

zᵀβl

λl

(
xl − zᵀβl

2

)}
,
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where

βl =
(〈

βj , ϕl

〉)

1≤j≤q
,

xl = 〈x, ϕl〉 .
Here, 〈·, ·〉 denotes the inner product in L2 ([0, T ]).

Note that g (·; z,β, σe) takes into consideration the uncertainty about β in

determining the true density fX (·; z,β, σe) through the estimate ̂β. On this
basis it is possible, by extending to the functional setting the approach initiated
in [12], to define a non Bayesian predictive density for the new observation x
corresponding to z as the following empirical version of g (·; z,β, σe):

fP (x; z) =
1√

1 + zᵀ (ZᵀZ)−1 z
exp

{
1

1 + zᵀ (ZᵀZ)−1 z

m∑
l=1

zᵀβ̂
l

λ̂l

(
xl − zᵀβ̂

l

2

)}
,

where m = m (n) is a specified integer such that m → ∞ as n → ∞; ϕ̂k, ̂λk

are, respectively, the eigenfunctions and eigenvalues of the covariance function
σ̂e; and

̂β
l
=

(〈

̂βj , ϕ̂l

〉)

1≤j≤q
,

xl = 〈x, ϕ̂l〉 .
We also define the non Bayesian predictive likelihood function by

L (z) = fP (x; z) ,

and the non Bayesian predictive estimator ẑ of z by

ẑP = argmax
z

L (z) .

In cases in which some components of the vector z are known, they are not
considered in this maximization.

3 A Simulation Study

The feasibility and the performance of the introduced functional calibration
method are here explored through a simulation study. For simplicity, we consider
models with only one covariate z (i.e., q = 1), so they have the specific form:

x(t) = β(t)z + e(t).

The covariate values in the training data were generated following a normal
distribution zi ∼ N(15, 1.5), i = 1, ..., n. The size of the training sample was set
to n = 300.



A Non Bayesian Predictive Approach for Functional Calibration 785

The Gaussian error process e(t) was simulated with the covariance function

σe(s, t) =

200
∑

i=1

λiφi(s)φi(t),

where (φi(t))i is the trigonometric basis on L2([0, 1]) (i.e., φ2k−1 =
√
2 cos(2πkt),

φ2k =
√
2 sin(2πkt)), and the eigenvalues were set to λi = 0.06/(i1.01).

The coefficient functions were specified to be of the form β(t) = Cg(t) sin(2πt),
where g(t) is the density function N(0.5, 0.05) (i.e., a peak) and C is a constant.

Different simulation settings were considered according to the signal (β) to
noise (σe) ratio by varying the constant C in the mean function: “good”, “mod-
erate” and “bad” scenarios correspond to C = 2.5, C = 1 and C = 0.2, respec-
tively. The means functions for different scenarios are shown in Figure 1.
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Fig. 1. Mean curves for the good, moderate and bad scenarios

Our interest is in methods with good performance for extrapolation, thus we
focus comparisons with the classical estimator

ẑC =

〈

x, ̂β
〉

∥

∥

∥

̂β
∥

∥

∥

2 .

The Mean Square Error (MSE) E(z − ẑ)2 is used as comparison criteria, which
is computed on the basis of B = 3000 sample repetitions.

Figure 2 shows the MSE curves for both estimators and all the settings. It can
be observed that, in all simulation settings, both estimators perform worse as the
covariate value z goes away from the center of the calibration range. In the good
setting the difference between the estimators is not so noticeable. As the setting
becomes worse, differences between the estimators become remarkable. Inside
the calibration range, the performance of both estimators is quite similar, but
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Fig. 2. Curves of RMSE as function of z for the estimators ẑC and ẑP in scenarios
good(a), moderate (b) and bad (c)

outside such range (i.e., for extrapolation) the non Bayesian predictive estimator
shows much less MSE than the classical estimator.

Figure 3 shows plots of mean values of the estimates (predictions) versus
true values of the covariate in the bad scenarios for both estimators. It can be
appreciated that the classical estimator is highly biased while the introduced
estimator has negligible bias.
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Fig. 3. Points represent predicted z values versus true z values in the bad setting for
the (a) Classic estimator and the (b) Non Bayesian Predictive estimator. The diagonal
line is also shown, for reference.

An attractive feature of the non Bayesian predictive approach for functional
calibration is that it provides not only point estimates of the covariate z but
also predictive likelihoods of all possible values of this parameter. This allows
one to complement the point estimate ẑP with a likelihood-based appreciation of
the location of z by plotting the relative predictive likelihood curve. As an illus-
tration, Figure 4 shows the relative predictive likelihood curves for two samples
generated from the good and the bad setting. It can be observed that predictive
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Fig. 4. Relative predictive likelihood functions for samples from the a) good and b)
bad scenarios corresponding to the true value z = 40 of the covariate

likelihood curves show more precision in the assessment of z (i.e., they are more
spiky) for good settings than for bad settings.

4 Conclusions

This papers introduces a non Bayesian predictive calibration approach for func-
tional data. Its rationality comes from taking into consideration model uncer-
tainty by averaging with respect to the distribution of the parameter estimator,
a device that shows to have a regularizing effect in the resulting solution to the
calibration (inverse) problem. By construction, the introduced method can be
applied to both random and fixed designs. It shows negligible bias, and much
better performance for extrapolation than the classical estimator. It also has
the following advantageous feature that is lacking in previous Bayesian and non
Bayesian approaches to calibration: it provides not only a point estimate but
also a non Bayesian predictive likelihood function that can be used to assess the
plausibility of any possible value of the covariate to be predicted. Finally, it is
worth of note that the introduced approach can be extended to a wide variety
of statistical models. In case of very complex models it might be implemented
by means of a bootstrap approximation to the predictive density.
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