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Abstract. A new generalized Statistical Complexity Measure (SCM)
was proposed by Rosso et al in 2010. It is a functional that captures the
notions of order/disorder and of distance to an equilibrium distribution.
The former is computed by a measure of entropy, while the latter depends
on the definition of a stochastic divergence. When the scene is illuminated
by coherent radiation, image data is corrupted by speckle noise, as is the
case of ultrasound-B, sonar, laser and Synthetic Aperture Radar (SAR)
sensors. In the amplitude and intensity formats, this noise is multiplica-
tive and non-Gaussian requiring, thus, specialized techniques for image
processing and understanding. One of the most successful family of mod-
els for describing these images is the Multiplicative Model which leads,
among other probability distributions, to the G0 law. This distribution
has been validated in the literature as an expressive and tractable model,
deserving the “universal” denomination for its ability to describe most
types of targets. In order to compute the statistical complexity of a site
in an image corrupted by speckle noise, we assume that the equilibrium
distribution is that of fully developed speckle, namely the Gamma law
in intensity format, which appears in areas with little or no texture. We
use the Shannon entropy along with the Hellinger distance to measure
the statistical complexity of intensity SAR images, and we show that it
is an expressive feature capable of identifying many types of targets.

Keywords: information theory, speckle, feature extraction.

1 Introduction

Synthetic Aperture Radar (SAR) is a prominent source of information for many
Remote Sensing applications. The data these devices provides carries information
which is mostly absent in conventional sensors which operate in the optical
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spectrum or in its vicinity. SAR sensors are active, in the sense that they carry
their own illumination source and, therefore, are able to operate any time. Since
they operate in the microwaves region of the spectrum, they are mostly sensitive
to the roughness and to the dielectric properties of the target. The price to pay
for these advantages is that these images are corrupted by a signal-dependent
noise, called speckle, which in the mostly used formats of SAR imagery is non-
Gaussian and enters the signal in a non-additive manner. This noise makes both
automatic and visual analysis a hard task, and defies the use of classical features.

This paper presents a new feature for SAR image analysis called General-
ized Statistical Complexity. It was originally proposed and assessed for one-
dimensional signals, for which it was shown to be able to detect transition points
between different regimes [18]. This feature is the product of an entropy and a
stochastic distance between the model which best describes the data and an
equilibrium distribution [12,13].

The statistical nature of speckled data allows to propose a Gamma law as the
equilibrium distribution, while the G0 model describes the observed data with
accuracy. Both the entropy and the stochastic distance are derived within the
framework of the so-called (h, φ) entropies and divergences, respectively, which
stem from studies in Information Theory.

We show that the Statistical Complexity of SAR data, using the Shannon
entropy and the Hellinger distance, stems as a powerful new feature for the
analysis of this kind of data.

2 The Multiplicative Model

The multiplicative model is one of the most successful frameworks for describ-
ing data corrupted by speckle noise. It can be traced back to the work by
Goodman [9], where stems from the image formation being, therefore, phe-
nomenological. The multiplicative model for the intensity format states that
the observation in every pixel is the outcome of a random variable Z : Ω → R+

which is the product of two independent random variables: X : Ω → R+, the
ground truth or backscatter, related to the intrinsic dielectric properties of the
target, and Y : Ω → R+, the speckle noise, obeying a unitary mean Gamma
law. The distribution of the return, Z = XY , is completely specified by the
distributions X and Y obey.

The univariate multiplicative model began as a single distribution for the
amplitude format, namely the Rayleigh law [10], was extended by Yueh et al. [23]
to accommodate the K law and later improved further by Frery et al. [7] to the
G distribution, that generalizes all the previous probability distributions. Gao [8]
provides a complete and updated account of the distributions employed in the
description of SAR data.

For the intensity format which we deal with in this article, the multiplicative
model reduces to, essentially, two important distributions, namely the Gamma
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and the G0 laws. The Gamma distribution is characterized by the density func-
tion

f(z) =
(L/c)

L

Γ (L)
zL−1 exp{−Lz/c}, (1)

being c > 0 the mean, z > 0 and L ≥ 1, denoted Γ (L,L/c). This is an adequate
model for homogeneous regions as, for instance, pastures over flat relief. The G0

law has density function

f(z) =
LLΓ (L− α)

γαΓ (L)Γ (−α)

zL−1

(γ + Lz)L−α
, (2)

where −α, γ, z > 0, L ≥ 1, denoted G0(α, γ, L). This distribution was proposed
as a model for extremely heterogeneous areas [7], and Mejail et al. [15,16] demon-
strated it can be considered a universal model for speckled data.

Data obeying the Γ law are referred to as “fully developed speckle”, meaning
that there is no texture in the wavelength of the illumination (which is in the
order of centimeters). The absolute value of the parameter α in Equation (1)
is, on the contrary, a measure of the number of distinct objects of size of the
order of the wavelength with which the scene is illuminated. As α → −∞, the
G0 distribution becomes the Γ law.

3 Generalized Measure of Statistical Complexity

The information content of a system is typically evaluated via a probability dis-
tribution function (PDF) describing the apportionment of some measurable or
observable quantity (i.e. a time series S(t)). An information measure can primar-
ily be viewed as a quantity that characterizes this given probability distribution
P . The Shannon entropy is often used as a the “natural” one [21]. Given a discrete
probability distribution P = {pi : i = 1, · · · ,M}, with M the degrees of free-

dom, Shannon’s logarithmic information measure reads S[P ] = −∑M
i=1 pi ln(pi).

It can be regarded as a measure of the uncertainty associated to the physical
process described by P . From now on we assume that the only restriction on
the PDF representing the state of our system is

∑N
j=1 pj = 1 (micro-canonical

representation). If S[P ] = Smin = 0 we are in position to predict with complete
certainty which of the possible outcomes i, whose probabilities are given by pi,
will actually take place. Our knowledge of the underlying process described by
the probability distribution is then maximal. In contrast, our knowledge is min-
imal for a uniform distribution and the uncertainty is maximal, S[Pe] = Smax.

It is known that an entropic measure does not quantify the degree of structure
or patterns present in a process [4]. Moreover, it was recently shown that mea-
sures of statistical or structural complexity are necessary for a better understand-
ing of chaotic time series because they are able to capture their organizational
properties [5]. This kind of information is not revealed by measures of random-
ness. The extremes perfect order (like a periodic sequence) and maximal ran-
domness (fair coin toss) possess no complex structure and exhibit zero statistical



Generalized Statistical Complexity of SAR Imagery 659

complexity. There is a wide range of possible degrees of physical structure these
extremes that should be quantified by statistical complexity measures. Rosso and
coworkers introduced an effective statistical complexity measure (SCM) that is
able to detect essential details of the dynamics and differentiate different degrees
of periodicity and chaos [12]. This specific SCM, abbreviated as MPR, provides
important additional information regarding the peculiarities of the underlying
probability distribution, not already detected by the entropy.

The statistical complexity measure is defined, following the seminal, intuitive
notion advanced by López-Ruiz et al. [13], via the product

C[P ] = H [P ] ·D[P, Pref ]. (3)

The idea behind the Statistical Complexity is measuring at the same time the
order/disorder of the system (H) and how far the system is from its equilib-
rium state (the so-called disequilibrium D) [14,17]. The first component can be
obtained by means of an entropy, while the second requires computing a stochas-
tic distance between the actual (observed) model and a reference one. Salicrú
et al. [19,20] provide a very convenient conceptual framework for both of these
measures.

Let fZ(Z
′; θ) be a probability density function with parameter vector θ which

characterizes the distribution of the (possibly multivariate) random variable Z.
The (h, φ)-entropy relative to Z is defined by

Hh
φ (θ) = h

(∫

A
φ(fZ(Z

′; θ))dZ ′
)
,

where either φ :
[
0,∞) → R is concave and h : R → R is increasing, or φ

is convex and h is decreasing. The differential element dZ ′ sweeps the whole
support A. In this work we only employ the Shannon entropy, for which h(y) = y
and φ(x) = −x lnx.

Consider now the (possibly multivariate) random variables X and Y with
densities fX(Z; θ1) and fY (Z; θ2), respectively, where θ1 and θ2 are parameter
vectors. The densities are assumed to have the same support A. The (h, φ)-
divergence between fX and fY is defined by

Dh
φ(X,Y ) = h

(∫

A
φ

(
fX(Z; θ1)

fY (Z; θ2)

)

fY (Z; θ2)dZ

)

, (4)

where h : (0,∞) → [0,∞) is a strictly increasing function with h(0) = 0 and
φ : (0,∞) → [0,∞) is a convex function such that 0φ(0/0) = 0 and 0φ(x/0) =
limx→∞ φ(x)/x. The differential element dZ sweeps the support. In the following
we will only employ the Hellinger divergence which is also a distance, for which
h(y) = y/2, 0 ≤ y < 2 and φ(x) = (

√
x− 1)2.

The influence of the choice of a distance when computing statistical complex-
ities is studied in Reference [11]. Following Rosso et al. [17], we work with the
Hellinger distance and we define the Statistical Complexity of coordinate (i, j)
in an intensity SAR image as the product

C(i, j) = H(i, j) ·D(i, j), (5)
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where H(i, j) is the Shannon entropy observed in (i, j) under the G0 model, and
D(i, j) is the observed Hellinger distance between the universal model (the G0

distribution) and the reference model of fully developed speckle (the Γ law).
As previously noted, if an homogeneous area is being analyzed, the G0 and

Γ model can be arbitrarily close, and the distance between them tends to zero.
The entropy of the G0 model is closely related to the roughness of the target, as
will be seen later, that is measured by α.

Computing these observed quantities requires the estimation of the parame-
ters which characterize the Γ distribution (c, the sample mean) and the G0 law
(α and γ), provided the number of looks L is known. The former is immediate,
while estimating the later by maximum likelihood requires solving a nonlinear
optimization problem. The estimation is done using data in a vicinity of (i, j).
Once obtained ĉ and (α̂, γ̂), the terms in Equation (5) are computed by numeri-
cal integration. References [1,6] discuss venues for estimating the parameters of
the G0 law safely.

4 Results

Figure 1 presents the main results obtained with the proposed measures. Fig-
ure 1(a) shows the original image which was obtained by the E-SAR sensor,
an airborne experimental polarimetric SAR, over Munich, Germany. Only the
intensity HH channel is employed in this study. The image was acquired with
three nominal looks. The scene consists mostly of different types of crops (the
dark areas), forest and urban areas (the bright targets). 2 Figure 1(b) shows
the Shannon entropy as shades of gray whose brightness is proportional to the
observed value. It is remarkable that this measure is closely related to the rough-
ness of the target, i.e., the brighter the pixel the more heterogeneous the area.
The entropy is also able to discriminate between different types of homogeneous
targets, as shown in the various types of dark shades.

Figure 1(c) shows the Hellinger distance between the universal model and the
model for fully developed speckle. As expected, the darkest values are related to
areas of low level of roughness, while the brightest spots are the linear strips in
the uppermost right corner, since they are man-made structures.

The Statistical Complexity is shown in Figure 1(d). It summarizes the ev-
idence provided by the entropy (Figure 1(b)) and by the stochastic distance
between models (Figure 1(c)). As it can be seen in the image, the values exhibit
more variation than their constituents, allowing a fine discrimination of targets.
As such, it stems as a new and relevant feature for SAR image analysis.

The data were read, processed, analyzed and visualized using R v. 2.14.0 [22]
on a MacBook Pro running Mac OS X v. 10.7.3. This platform is freely available
at http://www.r-project.org for a diversity of computational platforms, and
its excellent numerical properties have been attested in [2,3].

http://www.r-project.org
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(a) Original E-SAR image (b) Entropies

(c) Hellinger distances (d) Statistical Complexities

Fig. 1. Results of applying the proposed feature extraction to an E-SAR image over
Munich, Germany
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5 Conclusions

The Statistical Complexity of SAR images reveals information which is not avail-
able either through the mean (which is the parameter of the model for homo-
geneous areas) or by the parameters of the model for extremely heterogeneous
areas. As such, it appears as a promising feature for SAR image analysis.

Ongoing studies include the derivation of analytical expressions for the
entropy and the Hellinger distance, other stochastic distances, the sample prop-
erties of the Statistical Complexity and its generalization for other models in-
cluding Polarimetric SAR.
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