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Abstract. This paper presents a new approach for filter design based on
stochastic distances and tests between distributions. A window is defined
around each pixel, samples are compared and only those which pass a
goodness-of-fit test are used to compute the filtered value. The technique
is applied to intensity Synthetic Aperture Radar (SAR) data, using the
Gamma model with varying number of looks allowing, thus, changes in
heterogeneity. Modified Nagao-Matsuyama windows are used to define
the samples. The proposal is compared with the Lee’s filter which is
considered a standard, using a protocol based on simulation. Among the
criteria used to quantify the quality of filters, we employ the equivalent
number of looks (related to the signal-to-noise ratio), line contrast, and
edge preservation. Moreover, we also assessed the filters by the Universal
Image Quality Index and the Pearson’s correlation between edges.
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1 Introduction

SAR plays an important role in Remote Sensing since they provide complemen-
tary information to that provided by optical sensors. SAR data are subjected to
speckle noise, which is also present in laser, ultrasound-B, and sonar imagery [4].
This noise degrades the SAR information content and makes image interpreta-
tion classification difficult [5].

Statistical analysis is essential for dealing with speckle. In addition, statistical
modeling provides support for the development of algorithms for interpreting the
data efficiently, and for the simulation of plausible images. Different statistical
distributions are proposed in the literature to describe speckled data. We used
the multiplicative model in intensity format for homogeneous areas, ergo the
Gamma distribution was employed to describe the data [3].

This work presents new filters based on stochastic distances and tests between
distributions, as presented in Nascimento et al. [§]. The filters are compared to
Lee’s filter using a protocol proposed by Moschetti et al. [6] using Monte Carlo
simulation. The criteria used to evaluate this filters are the equivalent number of
looks, line contrast, edge preserving, the ) index [I0] and Pearson’s correlation
between edges.
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The paper is organized as follows: In Section Pl we summarise the model for
speckle data. Section [3] describe the new filters. Section [4] presents the measures
for assessing the quality of filtered images, with conclusions drawn in Section [l

2 The Multiplicative Model

According to Goodman [4], the multiplicative model can be used to describe SAR
data. This model asserts that the intensity observed in each pixel is the outcome
of the random variable Z: {2 — Ry which is the product of two independent
random variables: X: (2 — R, that characterizes the backscatter; and Y: 2 —
R, which models the speckle noise. The distribution of the observed intensity
Z = XY is completely specified by the distributions of X and Y.

This proposal deals with homogeneous regions in intensity images, so a con-
stant X ~ A > 0 defines the backscatter, and the speckle noise is described by a
Gamma distribution Y ~ I'(L, L) with unitary mean E(Y) = 1, where L > 1 is
number of looks. Thus, it follows that Z ~ I'(L, L/\) with density

L _
fz(z; L A) = )\L?(L)ZL_IGXP{ fz}’ (1)

where I" is the gamma function, z, A > 0 and L > 1.

3 Stochastic Distances Filter

The proposed filter is based on stochastic distances and tests between distribu-
tions [8], obtained from the class of (h, ¢)-divergences. It employs neighborhoods
as defined by Nagao and Matsuyama [7], presented in Figure and extended

versions as shown in Figure
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(a) 5 x 5 neighborhood (b) 7 x 7 neighborhood
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Fig. 1. Nagao-Matsuyama neighbourhoods
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Each filtered pixel has a 5 x 5 neighborhood (see Figure or a 7 x 7 neigh-
borhood (see Figure , within which nine disjoint areas are defined. Denote
61 the estimated parameter in the central 3 x 3 or 5 x 5 neighborhood, respec-
tively, and (1927 . 99) the estimated parameters in the eight remaining areas.
To account for pos&ble departures from the homogeneous model, we estimate
0 = (L;, A;) by maximum likelihood; reduced equivalent number of looks are
related to heterogeneous areas [1J.

Based on a random sample of size n, z = (21, 29, . .., z5,), the likelihood func-
tion related to the I'(L, L/)\) distribution is given by

L(L,X\;z) = ()\LF >n ﬁzL 1exp{*i2’j}. (2)

Thus, maximum likelihood estimators for (L, A), namely, (E, X), are the solution
of the following system of non-linear equations:

{lnsz(Z)ln(l DD

where ¢ is the digamma function.

The proposal is based on the use of stochastic distances on small areas within
the filtering window. Consider Z; and Z; random variables defined on the same
probability space, whose distributions are characterized by the densities fz, (21; 61)
and fz,(z;; 6;), respectively, where 61 and 6; are parameters. Assuming that the
densities have the same support I C R, the h-¢ divergence between fz, and fz, is

given by
D}(Z1,Z;) = h(/zel ¢(§jg:gi;) fz,(x;0;) d$)7 3)

where h: (0,00) — [0,00) is a strictly increasing function with h(0) = 0 and
R'(x) > 0 for every z € R, and ¢: (0,00) — [0,00) is a convex function [9].
Choices of functions h and ¢ result in several divergences.

Divergences sometimes are not distances because they are not symmetric.
A simple solution, described in [8], is to define a new measure dg given by
dg(Zl,Zi) = (Dg(Zl,Zi) —s—Dg(Zi,Zl))/Z Distances, in turn, can be conve-
niently scaled to present good statistical properties that make them statistical
hypothesis tests [§]:
2mnk

D DY) —
S50:.0)=""""

dy(61,6), (4)

where 51 and éi are maximum likelihood estimators based on samples size m
and n, respectively, and k = (h'(0)¢”)~!. When 6; = 0;, under mild conditions
Sg (01, 60,) is asymptotically x3, distributed, being M the dimension of 8;. Ob-
serving 52(01, 6;) = s, the null hypothesis 8; = 0, can be rejected at level i if
Pr(x3; > s) < 7. Details can be seen in the work by Salicrt et al. [9].
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Since we are using the same sample for eight tests, we modified the value
of n by a Bonferroni-like correction, namely, Siddk correction, that is given by
n=1—(1—a)"* where t is the number of tests and, « the level of significance
for the whole series of tests.

Nascimento et al. [§] derived several distances for the G° model, which includes
the one presented in Equation (). We opted for the latter, due to the numerical
complexity of the former; the lack of flexibility is alleviated by allowing the
number of looks to vary locally. The statistical tests used in this paper are then:

. . __ 8mn _ QE(Xlxi)E/z
Hellinger test: Sy = " (1 Ca4xE )

m—+n

Kulback-Leibler test: Sy = 2™ Z(ﬁ*i? — 1>.

4 : . B _ 2mn T b Xl :
Rényi test of order f: S = [\7 555_1) log (ﬁxﬁ-(l—ﬁ)il)l (sRra-px)’
which 0 < 8 < 1.

Although these are all different tests, in practice they led to exactly the same
decisions in all situations here considered. We, therefore, chose to work only with
the test based on the Hellinger distance since it has the smallest computational
cost in terms of number of operations.

The filtering procedure consists in checking which regions can be considered as
coming from the same distribution that produced the data in the central block.
The sets which are not rejected are used to compute a local mean. If all the
sets are rejected, the filtered value is updated with the average on the central
neighborhood around the filtered pixel.

4 Results

Image quality assessment in general, and filter performance evaluation in partic-
ular, are hard tasks [6]. A “good” technique must combat noise and, at the same
time, preserve details as well as relevant information. In the following we assess
the filters by two approaches. Firstly, we use simulated data; with this, we are
able to compare the true image (phantom) with the result of applying filters to
corrupted version of the phantom. Secondly, we apply measures of quality to a
real image and its filtered version.

4.1 Simulated Data

The Monte Carlo experiment discussed in Moschetti et al. [6] consists of sim-
ulating corrupted images with different parameters. Each simulated image is
subjected to filters, and quality measures are computed from each result. The
quality of the filter with respect to each measure can then be assessed analyzing
the data, not just a single image. We use a phantom image (see Figure
which consists of light strips and points on a dark background, and we corrupt
it with speckle noise (see Figure [2(b)]). The following measures of quality on the
filtered versions as, for instance, Figures [2(c) and [2(d)} are then computed:
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Equivalent Number of Looks: In intensity imagery and homogeneous areas,
it can be estimated by NEL = (2/52)?, i.e., the square of the reciprocal of
the coefficient of variation. In this case, the bigger the better.

Line Contrast: The preservation of the line of one pixel width will be assessed
by computing three means: in the coordinates of the original line (z,) and
in two lines around it (z¢, and xs,). The contrast is then defined as 2z, —
(¢, +4,), and compared with the contrast in the phantom. The best values
are the smallest.

Edge Preserving: It is measured by means of the edge gradient (the abso-
lute difference of the means of strip around edges) and variance (same as
the former but using variances instead of means). The best values are the
smallest.

. 25, .
The Q Index: Q = °*** 2%, 2% where s2 and e denote the sample vari-
Sxsy T=+Y* sg+sy

ance and mean, respectively. The range of @ is [—1, 1], being 1 the best
value. Sy (=) (051
. i—1 CEJ —x §—
The 8, index: 3, = \/Z;;j(xj—i)zE}L=1(yj_g)2’
between the Laplacians of images X and Y, where o; and e denote the
gradient values of the jth pixel and mean of the images V2X and V?Y,
respectively. The range of 3, is [—1, 1], being 1 the perfect correlation.

it is a correlation measure is

(a) Phantom (b) Corrupted (c) Lee’s filter (d) Hellinger filter

Fig. 2. Lee’s Protocol, speckled data and filtered images

The proposed filter was compared with Lee’s filter [5] which is considered a
standard. All filters were applied only once for the whole series of tests. The re-
sults obtained are summarized by means of boxplots. Each boxplot describes the
results of one filter applied to 100 images formed by independent samples of the
I'(L, L/ X) distribution with the parameters shown in Table[Il These parameters
describes situations usually found when analyzing SAR imagery in homogeneous
regions. The tests were performed at the 80%, 90% and 99% level of significance.

Figure [Bl shows the boxplot of six measures corresponding to four filters. Ver-
tical axes are coded by the filter (‘L’ for Lee and ‘H’ for Hellinger), the situation
ID (from 1 to 4, see Table[Il), the filter size (5 x 5 and 7 x 7). Only results at the
99% level of significance are shown; the rest is consistent with this discussion.

Lee’s filter presents better results than our proposal with respect to Edge
Variance and the 8, index in most of the considered situations, c.f. ﬁgures
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Table 1. Simulated situations with the I'(L, L/X) distribution

Situation ID L X Background mean

#1 1 200 70
#2 3 195 55
#3 5 150 30
#4 7 170 35
Haw7 99 I Haw7 99
Haws 99 [3n mEs] Haws 99
Law7 - m Law7 -
Laws HO+ Laws —
H3w7 99 {0+ H3w7 99 —
H3w5 99 PO H3w5 99 —
L3w7 [ L3w7
L3ws (13 L3w5
H2w7 99 HIH H2w799 o +--
H2w5 99 WO+ H2w5 99 —
w7 q HI4 L2w7 o
L2ws HO L2w5
H1w7 99 - H H1w7 99
H1w5 99 HCH H1w599 -
Liw7 o -4 Liw7 o ) P-4
Liws o 04 Liws o -+
10 15 20 25 30 1.75 1.80 1.85 1.90
worse — better better « worse
(a) Equivalent Number of Looks (b) Line Contrast
. awr o |
w75 ] wowros |
w75 | vawros |
0 5 10 15
better - worse better « worse
(c) Edge Gradient (d) Edge Variance
Haw 99 -| ) Haw7 99 o
Haws 99 * H4w5 99 —
Law7 L Law7
Laws 11} Laws
H3w7 99 — ok H3w7 99 -
H3w5 99 L] H3w5 99 —
L3w7 L) L3w7 o
L3ws 1 L3ws
H2w7 99 — [i] H2w7 99 -
H2w5 99 Li} H2w5 99 —
L2w7 L] L2w7 o
L2ws Hlo L2ws
H1w7 99 — [Ri i) Hiw7 99 —
H1w5 99 — 4 H1ws 99
Lw7 o F{IH Liw7 o
Liws Qun} Liws
0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.575 0.580 0.585 0.590

worse - better

(e) Values of @

worse —» better

(f) Values of 8,

Fig. 3. Boxplots of measures applied to four filters in four situations

and The filters based on stochastic distances consistently outperform Lee’s
filter with respect to all the other criteria, namely Number of Looks (figure ,
Line Contrast (figure[3(b)]), Edge Gradient (figure[3(c))), and the Universal Index

Quality measure (figure [3(e))).
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4.2 Real Data

Not all the quality measures presented in Section [£.]] can be applied to real data,
unless the ground truth is known. For this reason, the following metrics will be
used in this case [2], where the smaller is the better (they are all error measures):

Mean Absolute Error: MAE =n~" 37 | |z; — ;.
Mean Square Error: MSE =n"' 37" | (z; — y;).

. . _ E;L=1(xj_yj)2
Normalized Mean Square Error: NMSE = n el

j=1%;

Distortion Contrast: DCON = n~' 377 | alfx:_ﬁlj, where « depends on the
relationship between luminance and gray level of the display; we used a =

23/255.

Figure Ml presents the real image, its filtered versions and analysis 1-D of the
row = 50. The original data were produced by the E-SAR sensor in the L. band
(HH polarization) with 2.2 x 3.0m of ground resolution and four nominal looks.
Nascimento et al. [8] analyzed this image, and the equivalent number of looks in
homogeneous areas is always below three.

The Lee filtered image is smoother that the ones obtained with stochastic
distances, but comparing figures and one notices that our proposal

(a) SAR data (b) Lee filter (c) Hellinger filter (d) Profile

Fig. 4. SAR data, filtered images and 1D analysis

Table 2. Image quality indexes in the real SAR image

Speckle Measures of Quality Q@ index

a Filter MAE MSE NMSE DCON @  sq
Lee wb 0.145 0.037 0.110 0.184 0.142 0.138
Lee w7 0.156 0.042 0.126 0.195 0.082 0.127
80% H w5 0.117 0.025 0.076 0.155 0.486 0.170
H w7 0.141 0.035 0.104 0.180 0.265 0.187
Hw5 0.120 0.026 0.080 0.159 0.453 0.176
H w7 0.142 0.035 0.106 0.182 0.250 0.189
Hw5 0.127 0.029 0.085 0.166 0.397 0.180
H w7 0.145 0.036 0.109 0.185 0.222 0.189

90%

99%
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retains much more detail than the classical technique. Figure presents the
profile of the images in the highlighted line. While combating speckle with almost
the same success: the bright spots in the upper right corner, which are seldom
visible after applying the Lee filter, stand out in the image filtered with the
Hellinger distance and windows of side 5 at a level a = 80%.

Table 2] presents the assessment of the filters, and we note that the Hellinger
filter of order 5 with a = 80% achieved the best results.

5 Conclusions

We presented new filters based on stochastic distances for speckle noise reduction.
The proposal was compared with the classical Lee filter, using a protocol based
on Monte Carlo experiences, showing that it is competitive. An applications
to real SAR data was presented and, numerical methods were used to assert
the proposal. The proposed filters behave nearly alike, and they outperform the
Lee filter in almost all quality measures. However, other significance levels will
be tested, along with different points of parameter space to have a yet more
complete assessment of proposal. The proposal can be extended to any problem,
requiring only the computation of stochastic distances.
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