
Real-Time On-Board Image Processing

Using an Embedded GPU for Monocular
Vision-Based Navigation

Mat́ıas Alejandro Nitsche and Pablo De Cristóforis

Buenos Aires University, Faculty of Exact and Natural Sciences,
Computer Science Department
{mnitsche,pdecris}@dc.uba.ar

Abstract. In this work we present a new image-based navigation
method for guiding a mobile robot equipped only with a monocular
camera through a naturally delimited path. The method is based on
segmenting the image and classifying each super-pixel to infer a contour
of navigable space. While image segmentation is a costly computation,
in this case we use a low-power embedded GPU to obtain the necessary
framerate in order to achieve a reactive control for the robot. Starting
from an existing GPU implementation of the quick-shift segmentation
algorithm, we introduce some simple optimizations which result in a
speedup which makes real-time processing on board a mobile robot possi-
ble. Performed experiments using both a dataset of images and an online
on-board execution of the system in an outdoor environment demonstrate
the validity of this approach.

Keywords: monocular vision-based navigation, image segmentation,
GPU.

1 Introduction

Vision-based robot navigation has long been a fundamental goal in both robotics
and computer vision research in last years. Most vision-based navigation tech-
niques assume that a sequence of images is acquired during a human-guided
training step that allows the robot to build a map of the environment. However,
this is a tedious process as it involves human intervention every time a robot
moves to a new workspace. Therefore, to achieve a completely autonomous nav-
igation system it is necessary to remove human intervention [1] [2].

The final aim of this work is to facilitate a mobile robot equipped only with
a monocular camera to autonomously drive through a naturally delimited path.
This robot should perform all processing on-board, given real-time constraints
imposed by the robot motion.

While in previous works classification in navigable or non-navigable ground
is done at the pixel level [3], in this work we follow more recent proposals that
segment images into regions to perform a better classification [4] [5]. The ad-
vantage of the segmentation is that the pixels belonging to a certain region have

L. Alvarez et al. (Eds.): CIARP 2012, LNCS 7441, pp. 591–598, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

592 M.A. Nitsche and P. De Cristóforis

low internal contrast. This facilitates the search of the navigable terrain, since it
is fair to assume that this area is more or less uniformly colored or textured and
the edges will most likely be of high-contrast. On the other side, the disadvan-
tage is usually the associated high computational cost. For this reason, real-time
image segmentation is difficult to achieve using low-power embedded processors
on autonomous robots, which is the current target of this work.

In this work we present a new image-based navigation method for guiding a
mobile robot equipped only with a monocular camera through a naturally de-
limited path. The method is based on segmenting the image and classifying each
super-pixel to infer a contour of navigable space. We use a low-power embedded
GPU to obtain an acceptable framerate in order to achieve a reactive control
for the robot. Starting from an existing GPU implementation of the quick-shift
segmentation algorithm [6], we introduce some optimizations which result in
a speedup of approximately five times. This increased speed makes real-time
processing on board a mobile robot possible.

2 Related Work

There are previous works that perform visual navigation using only monocular
system and pixel classification. If we can assume that the robot is operating on
a flat surface and all objects have their bases on the ground, the problem is
reduced to classifying pixels into two classes: obstacle or traversable floor. This
approach, that is suitable for robots that operate on benign flat terrains, has
been used in in a variety of works. In [3] classification is done at the pixel level.
First the image is filtered with a Gaussian filter. Second the RGB values are
transformed into the HSV (hue, saturation, and value) color space. In the third
step, an area in front of the mobile robot is used for reference and valid hue and
intensity values inside this area are histogrammed. In the fourth step, all pixels
of the input image are compared to the hue and intensity histograms. A pixel
is classified as an obstacle if its hue or intensity histogram bin value is below
some threshold. Otherwise the pixel is classified as belonging to the ground. This
method is fast, as no complex computation is involved. The main drawback of
this method is it is very unstable at the robot’s movements and sensitive to
noise.

Thus, the idea of segmenting the image into a number of super-pixels (i.e., con-
tiguous regions with fairly uniform color and texture) arises. In [4] a graph-based
image segmentation algorithm [7] is used. Once the image is over-segmented in
super-pixels, each one is labeled as belonging to the ground or non-ground region
using the HSV histogram approach as in [3]. While this method is more stable
and robust, it is quite computational expensive, so the exploration algorithm
that uses this method has to stop the robot periodically to capture and process
images of the workspace. Using the same image segmentation algorithm, in [5]
super-pixels that are likely be classified equal are grouped into constellations.
Constellations can be the labeled as floor or non-floor with an estimator of con-
fidence depending on whether all super-pixels in the constellation have the same

Real-Time On-Board Image Processing Using an Embedded GPU 593

label. This is a more robust method, but computationally expensive. In contrast
to these methods, this work proposes a real-time segmentation algorithm that
allows a reactive control for guiding the robot.

3 Proposed Method

The global idea of the proposed method can be summarized as follows. First,
the image obtained from the camera is smoothed using a median blur filter1.
Then, the image is segmented into a number of super-pixels, allowing the dis-
crimination of individual chunks of pixels with low internal contrast. Given an
example of what the navigable space looks like (by using a sub-region of the
image corresponding to the area directly in front of the robot), each segment is
classified as being similar to it or not. After individual classification, the result-
ing positively classified group of super-pixels nearest to the example area are
assumed to correspond to the most likely navigable path. Finally, by computing
the contour of this area, a motion line can be extracted and used for reactive
control. A control law is defined that restricts the robot to remain inside this
detected navigable area. From these steps, the most computationally demanding
corresponds to the image segmentation. Therefore, we focus on optimizing this
portion of the method to allow real-time execution.

3.1 Image Segmentation

The quick-shift segmentation algorithm is a simpler and faster alternative to
other segmentation algorithm. In listing 1.1 a pseudo-code implementation is
shown. The algorithm first computes the density ρ of each pixel, which is a
measure of local contrast in the vicinity of size 3σ. Next, each pixel is linked
to the nearest neighbor in a vicinity of τ which has a higher density than the
current one. In this fashion, trees are formed where each root is a pixel with
the highest local contrast in the vicinity. Each tree then represents a segment or
super-pixel.

Since with this algorithm the computation can be performed in parallel for
each pixel in the image, it is a good candidate for a GPU implementation. In
fact, such an implementation already exists and reports considerable advantage
when compared to the CPU-based version[8]. The code used in this work by
Fulkerson and Soatto is available on line. Moreover, this code actually includes a
further speedup proposed by James Fung where authors report a 2x relation to
the original. This code was used in the present work, but introducing a series of
simple optimizations, obtaining a speedup of up to four times when performing
all experiments on a low-power embedded GPU (which is used in the experiments
with the robot).

1 In contrast to the commonly used Gaussian blur, the median blur preserves high
contrast edges, which is important for road-detection.

594 M.A. Nitsche and P. De Cristóforis

func t ion dens i ty
f o r i in a l l p i x e l s

ρi = 0
f o r j in neighborhood o f s i z e 3σ

ρi += exp(−||RGB[i]−RGB[j]||2
2∗σ2)

func t ion ne ighbors
f o r i in a l l p i x e l s

f o r j in neighborhood o f s i z e τ
i f ρi > ρj and d i s t an c e (i ,j) i s sma l l e s t among a l l ne ighbors

di = d i s t an c e (i ,j)
parent [i] = j

Listing 1.1. Quickshift algorithm pseudocode

The first optimizations that were introduced consist of careful tuning of the
number of concurrent threads executed, the registers required for code compila-
tion (which affects the efficiency of the thread scheduling and thus the paralelliza-
tion level), taking into account the capabilities of the specific card to be used. The
second main optimization that was introduced involves a simpler handling of out-
of-bound accesses which arise when searching the neighborhood of pixels near the
edges of the image. In the original implementation these were avoided explicitly,
where in our case, the clamping mode of the texture memory is used. Here, these
accesses simply return the nearest valid pixel in the image (effectively repeating
pixels in the image outwards). By introducing this change, the code can be simpler
and more efficient. Finally, memory accesses in general were reduced by delaying
them up to the point where they were for certain to be required.

3.2 Super-Pixel Classification

Once a list of super-pixels has been obtained, the following task is to classify
each as belonging to free or non-free space. For this classification, a positive
example of the floor appearance is provided. As in [3], a sub-region of the image
corresponding to the ground immediately ahead of the robot was chosen for this
example. In this work a rectangular region is used, instead of a trapezoid, to
simplify the computations.

In order to classify each super-pixel according to this example region, a mea-
sure is taken from each and compared. By establishing a certain threshold, the
classification is performed. In this work the measure consists of a simple aver-
age of pixel values belonging to the segment and to the rectangular region. This
measure is not as computationally demanding as other histogram-based methods
generally used, and also produces satisfying results.

While pixel values are generally processed in RGB, alternative color spaces
exist. In particular, the HSV color space is particularly useful since it separates
the tonal and illumination aspects of the image. Even further, in most cases, the
hue channel provides enough information to discern a path (for example, a gray

Real-Time On-Board Image Processing Using an Embedded GPU 595

pavement road delimited by green vegetation). Since the RGB to HSV conversion
can be computationally demanding if performed on all the pixels of each frame,
in this work we reduce this cost by first computing the average in the RGB space
and then converting the final results to HSV. Besides the computational aspect,
this solves the problem of taking the average HSV value of a group of pixels,
since the hue channel is actually a continuous measure that wraps around.

3.3 Control Law

After the super-pixels are classified, several contiguous unconnected regions may
appear as possible ground. Among these, the candidate region which includes
the center point of the rectangular example area is chosen.

In order to achieve a reactive control to guide the robot so that it maintains
its position inside the chosen region, its contour in the image is obtained and
processed in several steps. First, by going through every point of this contour
from bottom to top (up to a predefined row, related to the horizon position),
the horizontal middle position is computed using the left-most and right-most
contour pixels. The resulting middle points are then fitted using a linear regres-
sion, which approximates the middle of the visible free space with a straight line
called motion line. From this line, both its angle and its horizontal deviation
with respect to the image’s middle vertical are computed. These deviations are
scaled in the range [−1, 1] and are identified as ω and d, respectively.

Since these two values indicate the direction and position of the road with
respect to the robot, a simple control law is used to compute turning (va) and
forward (vx) speeds which allow the robot to remain in the road:

va = α · ω + β · d
vx = 1− |va|

where α and β are constants between [0, 1]. In the tests performed, these con-
stants were set to 0.5, giving equal impact by both values to the angular speed.
In other words, when either the fitted road line deviates or turns, the robot will
turn in the same direction. Regarding the forward speed, the control law gener-
ates a constant forward motion whenever the robot is not turning. Otherwise,
the robot reduces (in an inverse proportion) its speed while turning.

4 Results

The system was tested using a previously recorded dataset and also on-line
in an outdoor scenario. In the former case the road-detection capability of the
system was evaluated. In the latter, the complete system was tested including the
control-law that drives the robot, in order to ensure the capability of remaining
inside the road limits.

The robot used in the experiments, the ExaBot[9], consists of a differential-
drive base with an embedded Mini-ITX board (AT5ION-T Deluxe) and a firewire

596 M.A. Nitsche and P. De Cristóforis

camera (model 21F04, from Imaging Source) with a 3.5− 8mm zoom lens. The
embedded computer features a GPU capable of general purpose computing, using
the CUDA technology from NVIDIA. This graphic card features 16 cores running
at 1.1Ghz and with 256MB of memory.

While the camera is capable of capturing images at 640 × 480 px images
at 15 fps, a smaller resolution of 320 × 240 px (at 30 fps) was chosen since
it was enough for proper road detection. This smaller resolution also decreases
computation times. The zoom lens was set-up at 3.5mm, providing a fairly wide-
angle of view.

Additionally, an analysis of the computational times obtained by using the
optimized segmentation step is included.

4.1 Performance Improvement

In this section we measure the execution speed of the segmentation algorithm,
compared to the original GPU-targeted unmodified version. The segmentation
algorithm depends on two parameters (σ and τ) which ultimately control seg-
ment size and affects computational speed. Through several tests with real-world
images, it was experimentally found that the acceptable results were obtained
with values σ = 4 and τ = 10. Therefore, performance results are here presented
with these fixed values.

The speedup obtained when compared to the original implementation running
on the same low-power GPU is around 4.8 times. This relation does not change
with different image resolutions since only an improved implementation of the
same algorithm is used. For a 320×240 resolution (which was used in the on-line
tests) the execution time of the segmentation step is around 145 milliseconds.
This accounts for 60% of the total time required for one processing step, which
is about 240 milliseconds. In the following experiments it can be seen that this
it is enough for on-line processing on the robot.

4.2 Offline Tests

The dataset used for this test was produced by a Pioneer robot, on a several
hundred meter long trajectory, on an outdoor park in Prague, Czech Republic2.
This dataset was processed and the road contour along the middle line used for
control was drawn. In figures 1(a) to 1(e) some example frames are presented3.
While in some frames the system classified some distant parts as road (near the
horizon), what is used for controlling the robot motion is the line fitted from the
yellow middle points which are below of the last row configured by the user. This
way, the road following is reduced to detecting the nearby edges and attempting
to remain away from them.

2 Dataset: http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/
src/gpu/floordetection/dataset/dataset.avi

3 Full video: http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/
src/gpu/floordetection/dataset/frontier.avi

http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/src/gpu/floordetection/dataset/dataset.avi
http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/src/gpu/floordetection/dataset/dataset.avi
http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/src/gpu/floordetection/dataset/frontier.avi
http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/src/gpu/floordetection/dataset/frontier.avi

Real-Time On-Board Image Processing Using an Embedded GPU 597

4.3 Online Tests

The system performance running on a robot was evaluated on an outdoor sce-
nario, where the control-law and system reactiveness was put to test. The trials
consisted of several initial positions were the robot was in the middle of the road
and near the sides, both looking straight forward and also deviated towards a
side. This allowed testing not only of the stability of a good initial configuration
but also of extreme cases (which did not normally occur since the robot always
remained on track) where the robot quickly returned to the middle of the road.
Example frames from the complete video 4 are presented in figures 1(f) to 1(i).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Example frames from the processed images obtained during off-line (1(a)-1(e))
and on-line (1(f)-1(i)) testing. The green square represents the area defined as ground,
the blue contour corresponds to the detected road, the red line is obtained by fitting
the middle yellow points (which is then used for motion commands) and the horizontal
yellow line is the last row that is processed for adding middle points.

5 Conclusions and Future Work

In this work we present a real-time implementation of a navigable floor detection
algorithm for a mobile robot equipped only with a monocular camera.

The main computational requirement of this method is the image-segmentation
step. By using an on-board low-power graphics card which is capable of general
purpose computation, we achieve a reactive control for the robot. Based on an
existing GPU implementation of the quick-shift segmentation algorithm, we in-
troduce some simple optimizations which result in a speedup of approximately
five times. This reduces computational times to a level that allows real-time
execution on the robot.

The capability of the method to detect a road in an outdoor natural scenario
was tested using a pre-recorded dataset. Also, several tests were performed on a

4 http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/

src/gpu/floordetection/results-bien/frontier.avi

http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/src/gpu/floordetection/results-bien/frontier.avi
http://robotica.exp.dc.uba.ar/trac/exabot/export/85/trunk/src/gpu/floordetection/results-bien/frontier.avi

598 M.A. Nitsche and P. De Cristóforis

mobile robot featuring the specified hardware. Besides starting the robot in the
middle of the road and verifying its stability, several extreme initial positions
and orientations were tested. In these conditions the robot quickly returned to
the center line demonstrating the general stability of the road-detection.

After obtaining satisfying results, there are several aspects that can be im-
proved. First, the classification of each segments as road or non-road (based on a
single average measure in HSV color-space) could rely on the fact that a contigu-
ous (i.e.: without holes) region is expected to be detected as road. Therefore, it
could be better if the classification of a single segment could depend on the clas-
sification of nearby segments. Second, while framerate is already sufficient, the
algorithm could possibly be sped up by attempting to utilize the GPU for other
steps than image segmentation alone. Furthermore, robustness of this method
in the long-term (and also to varying illumination) would have to be addressed
by including some form of learning of positive (and possibly negative) examples
of the area considered as free-space. Finally, the classification itself could be
improved by considering not only pixel values (color) but also texture.

References

1. DeSouza, G., Kak, A.: Vision for mobile robot navigation: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)

2. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey.
Journal of Intelligent & Robotic Systems 53(3), 263–296 (2008)

3. Ulrich, I., Nourbakhsh, I.: Appearance-based obstacle detection with monocular
color vision. In: Proceedings of the National Conference on Artificial Intelligence,
pp. 866–871. AAAI Press, MIT Press, Menlo Park, Cambridge (2000)

4. Santosh, D., Achar, S., Jawahar, C.: Autonomous image-based exploration for mo-
bile robot navigation. In: IEEE International Conference on Robotics and Automa-
tion, ICRA 2008, pp. 2717–2722. IEEE (2008)

5. Wang, Y., Fang, S., Cao, Y., Sun, H.: Image-based exploration obstacle avoidance
for mobile robot. In: Control and Decision Conference, CCDC 2009, pp. 3019–3023.
IEEE, Chinese (2009)

6. Vedaldi, A., Soatto, S.: Quick Shift and Kernel Methods for Mode Seeking. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305,
pp. 705–718. Springer, Heidelberg (2008)

7. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. In-
ternational Journal of Computer Vision 59(2), 167–181 (2004)

8. Fulkerson, B., Soatto, S.: Really quick shift: Image segmentation on a gpu. In: ECCV
2010 Workshop on Computer Vision on GPUs, CVGPU 2010 (2010)

9. Pedre, S., De Cristóforis, P., Caccavelli, J.: A mobile mini-robot architecture for
research, education and popularization of science. Journal of Applied Computer
Science Methods 2(1) (2010)

	Real-Time On-Board Image Processing Using an Embedded GPU for Monocular Vision-Based Navigation
	Introduction
	Related Work
	Proposed Method
	Image Segmentation
	Super-Pixel Classification
	Control Law

	Results
	Performance Improvement
	Offline Tests
	Online Tests

	Conclusions and Future Work
	References

