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Abstract. An associative memory is a binary relationship between inputs and 
outputs, which is stored in an M matrix. In this paper, we propose a 
modification of the Steinbuch Lernmatrix model in order to process real-valued 
patterns, avoiding binarization processes and reducing computational burden. 
The proposed model is used in experiments with noisy environments, where the 
performance and efficiency of the memory is proven. A comparison between 
the proposed and the original model shows a good response and efficiency in 
the classification process of the new Lernmatrix. 
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1 Introduction 

An associative memory can be seen as a particular kind of neural network specially 
designed to recall output patterns in terms of input patterns that might appear altered 
by some kind of noise. Associative memories have demonstrated usefulness in the 
pattern processing field and considerable importance in the developed activities of 
numerous researchers, mainly in theory, recognition and pattern classification 
applications [2]. Karl Steinbuch developed the first associative memory in 1961, 
which works as a binary patterns classifier: the Lernmatrix [19, 20]. Researchers have 
tackled the problem of generating models of associative memories, achieving 
important results [5], [9], [13], [22] – [25]. In 1982, the John Hopfield work was a 
very important contribution of research in this field [8], due to Hopfield model works 
as an associative memory and as a neural network, unifying both research fields [1]. 
The Lernmatrix is a crucial precedent in the development of current associative 
memories models and is one of the first successful attempts to encode information in 
an arrangement, known as crossbar grids [16 – 18]. 

A particular limitation with data information is that associative memories in 
general, are based on processing binary patterns; real values (ℜ) must be binarized, 
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which implies huge information loss and high computational burden. In order to 
resolve this gap, different works implement algorithms for building associative 
memories with real valued data, using new or classical models as [13] and Vázquez 
and Sossa [21].  In this sense, the aim of this work is to introduce a new algorithm for 
storing and recovering real valued patterns in the Lernmatrix.  

2 Associative Memories 

An associative memory (M) is a system of inputs and outputs that relates as 
follows: . The input pattern is represented by a column vector denoted 
as x and the output pattern by a column vector y. The goal of an associative memory 
is to restore full patterns from input patterns that can be altered [12], [14], [15]. Each 
input pattern forms an association with the corresponding output pattern as (x, y).  

An associative memory M is represented by a matrix, whose ijth component is mij. 
The M matrix is generated by a finite set of associations known as a fundamental set 
[12]. The set cardinality is denoted as p. For a positive integer µ , the corresponding 
association will be denoted as follows: 

( )






 = pyx ,...,2,1, μμμ  . (1)

The patterns that build the fundamental set associations are called fundamental 
patterns. If it holds that   1,2, … , then the memory is autoassociative; 
otherwise it is heteroassociative. Each column vector that represents an input pattern 
has n components that fall within the set A, where A={0,1} and each column vector 
that represents an output pattern has m components that fall within the set A as 
follows:   1,2, … ,  . (2)

An associative memory works in two clearly established phases: 
 

1. Learning phase (creation of the associative memory M) 
2. Recalling phase (operation of the associative memory M) 

3 The Steinbuch’s Lernmatrix 

The Lernmatrix is a heteroassociative memory that works as a classifier of binary 
patterns if output patterns are properly chosen. It is a system of input-output that 
accepts as input binary patterns xµ ∈ An, and produces output binary patterns such like 
y ∈ Am  [17], [19], [20]. It should be noted that there are m different classes, each one 
coded with a single rule: class k∈{1, 2,…, m} will be represented by a column vector 
whose components will be assigned by 1, 0 for m,...,k,k,...,,j 1121 +−= . 

Learning Phase 

The learning phase consists in finding the way to generate a matrix M that will store 
the information of the p associations of the fundamental set {(x1, y1),.., (xp, yp)} [3], 
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[4]. The process for determining each of the mij components can be described 
following two steps: 1) each of the mij components of M is initialized with zero; 2) 
each of the mij components must be updated according the following rule: 

mij = mij + Δmij . (3)

where Δmij  can be computed using the following expression: 

∆     1 0 1   0  (4)

where ε is a positive constant previously chosen. 
 

Recalling Phase 

The recalling phase consists in determining the corresponding class of an input 
pattern xω ∈ An. Finding the class means to obtain yω ∈ Am  that corresponds to xω ∈ 
An; according to the methodology for constructing the yµ patterns, the class should be 
obtained without ambiguity [10], [15]. 

The ith component of yω can be determined using the following expression, where 

∨ is the maximum operator. 
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4 Our Proposed Modification in the Lernmatrix Model 

Our proposed algorithm is an addendum to the Lernmatrix learning and recalling 
phase, since the new algorithm is applied for real valued patterns that will be stored in 
the associative memory, avoiding the binarization process and reducing 
computational burden.  

4.1 New Learning Phase 

The new learning phase consists on storing the original input vector in the associative 
memory M in order to compute the complete information of real-valued patterns. The 
process for determining each of the mij components can be described following the 
next steps: a) inicialization process can be determined using steps 1 and 2 of section 
3; b) Δmij  can be determined using the following expression: ∆ 10  . (6)

where ε is a positive constant previously chosen. 
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4.2 New Recalling Phase 

The following concepts define the steps to follows in order to recover real valued 
patterns; those concepts are well documented and represent a novelty for the actual 
associative memory. 

Definition 1. Let A={0,1} and  xω ∈ An  be a pattern, then the adjusted vector ai is 
defined as follows:  00  (7) 

Definition 2. Let ai be the adjusted vector, then the inverse vector zi
ω is defined as 

follows:  

.
1

i
i

a
z =  (8) 

Definition 3. Let zi be the inverse vector and mij be the ijth component of an 
associative memory M, then the multiplicative matrix qij can be defined as follows:  

.jijij zmq ⋅=  (9) 

Definition 4. Let qij be the multiplicative matrix, then the asymptotic matrix sij can be 
defined as follows:  

( ) .1tanh −= ijij qs  (10) 

Definition 5. Let sij be the asymptotic matrix, then the class vector si
ω is defined as 

follows:  

.
1

=

=
n

j
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Using the previous definitions, it is possible to enunciate the new Lernmatrix recalling 
rule. The ith component of yω is computed according to the following rule: 
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where Λ is the minimum operator. 

5 Numerical Examples 

For a better understanding of the proposed algorithm, this section exemplifies the 
operation of the new Lernmatrix. Due to space limitations, one pattern is recovered in 
order to show the real-valued Lernmatrix operation; however, the reader can easily 
recover the rest of the proposed input patterns. Suppose a fundamental set with p = 3, 
n = 5 and m = 3 and the fundamental associations expressed as ordered pairs: {(x1, y1), 
(x2, y2), (x3, y3)} as follows: 
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Learning phase 

To create the matrix M using the p associations of the fundamental set, it is necessary 
to follow steps 1 and 2 of section 4.1: 
 

Step 1 Step 2 
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In this case, we have chosen ε = 0.001, due to it provides a good performance of our 
algorithm. Once the learning phase is computed and the associative memory M is 
determined, the next step is to compute the recalling phase.

 

 

Recalling phase 

The recalling phase for the proposed method using the input pattern x1 is computed 
using the matrix M. According to Definition 1 and 2, the inverse vectors zi is 
calculated using Eq. (7) and (8) as follows:                               0.1880.13810.250.833   
 

According to Definition 3, the multiplicative matrices qij can be computed using 
expression (9) as follows: 5.3    7.2    13.1 3.2    4.2 6.4 1.3 4 1.25 2 2.1

0.1880.13810.250.833
1 1    15.84 0.44    0.79 0.88 1.3   1 1  1.25 1.660.52 0.8  

According to Definition 4, the asymptotic matrices sij can be calculated using (10): 
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Using Definition 5, the subclass vector Ci

ω is obtained using the expression (11) as 
follows: 
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Finally, the output class yω is obtained according to expression (12). 
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6 Experimental Results 

Noise can be defined as the presence of an undesirable signal, since it degrades the 
accuracy and precision of analysis [11]. In binary codes, noise can appear in different 
forms. When one or several zeros are changed to one, it is known as additive noise. 
When one or several ones are changed to zero, it is known as subtractive noise. The 
combination between additive and subtractive noise is known as combined noise [6], 
[7]. In this case, true color images (24 bits image depth) of flowers (Fig. 1) with a 65 
× 65 pixel resolution were used as fundamental set in order to estimate the 
performance of the proposed algorithm with real data information. A true color pixel 
has a valued range from 0 to 0xFFFFFF. Therefore, additive noise changes the value 
of selected pixels to the maximum value allowed for RGB pixels (0×FFFFFF).  
Subtractive noise changes the value of selected pixels to the minimum value allowed 
for RGB pixels (0×000000). Mixed noise changes values of selected pixels to the 
minimum value or maximum value allowed for RGB pixels randomly. Gaussian noise 
changes the value of selected pixels between the minimum and maximum value 
allowed for RGB using a Gaussian distribution function.  

A comparison between models (original and proposed) was performed using a 
database of 20 patterns. Those patterns were binarized for making experiments with 
the original associative memory. Different levels of mixed and Gaussian noises were 
introduced in the fundamental pattern set in order to estimate the behavior of the 
proposed model with a density from 5% to 40% respectively. 

 

 

 

 

 
Fig. 1. 20 flower images compound the fundamental set of patterns 

 
a)                                   b) 

Fig. 2.  Different levels of a) mixed and b) Gaussian noises alter the input patterns (0, 5, 10, 15, 
20, 25, 30, 35 and 40% of density) 
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Table 1. Comparison between the Steinbuch Lernmatrix and the Real-valued Lernmatrix 

Steinbuch Lernmatrix Real Lernmatrix 

Noise Combined Gaussian Combined Gaussian 

Density 
Recalled 
patterns 

Recalled
patterns

Recalled 
patterns 

Recalled 
patterns 

0% 20 20 20 20
5% 18 18 20 20 

10% 16 17 20 20 
15% 15 16 20 20 
20% 14 16 20 20 
25% 14 15 20 20 
30% 12 13 20 20 
35% 12 12 19 20 
40% 11 11 18 19 

7 Conclusions 

In this paper a modification for building a real valued data classifier was proposed 
using the Steinbuch’s Lernmatrix. This model is one-shot trained and also is capable 
for storing and recalling real-valued patterns. Algorithms based on the original 
Lernmatrix work their computational processes only with binary patterns; this 
behavior increases the computational burden and presents information loss when real-
valued patterns must be binarized. The proposed modification to the Lernmatrix 
worked perfectly with real patterns and increased the effectiveness in the pattern 
recalling phase against the original associative memory (Table 1).  

Experimental results using true-color patterns and with different kinds of noise 
levels showed good performance on the recalling process of the proposed model and 
in this case, a better recovering of the input patterns. This improvement to the original 
Lernmatrix provides an alternative solution for the pattern processing field.  
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