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Abstract. For many applications, a straightforward representation of
objects is by multi-dimensional arrays e.g. signals. However, there are
only a few classification tools which make a proper use of this com-
plex structure to obtain a better discrimination between classes. More-
over, they do not take into account context information that can also
be very beneficial in the classification process. Such is the case of multi-
dimensional continuous data, where there is a connectivity between the
points in all directions, a particular (differentiating) shape in the sur-
face of each class of objects. The dissimilarity representation has been
recently proposed as a tool for the classification of multi-way data, such
that the multi-dimensional structure of objects can be considered in their
dissimilarities. In this paper, we introduce a dissimilarity measure for
continuous multi-way data and a new kernel for gradient computation.
It allows taking the connectivity between the measurement points into
account, using the information on how the shape of the surface varies
in all directions. Experiments show the suitability of this measure for
classifying continuous multi-way data.

Keywords: Classification, Continuous multi-way data, Dissimilarity
representation, Object representation.

1 Introduction

Representation of objects by matrices or higher-order arrays has become very
popular in many application areas. These multi-dimensional structures of objects
can be created for some specific purpose or they can be obtained directly from
acquisition equipments e.g. excitation-emission autofluorescence measurements
and time-frequency representation of signals.

Tools that make a proper use of these multi-way structures are needed. Tra-
ditional multivariate methods are not suitable for it. Data would have to be
re-arranged in a vector, thus the information of the multi-way structure is lost
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and huge-dimensional problems are created. Several methods have been pro-
posed for multi-way data analysis, mainly in the psychometrics and chemomet-
rics fields. However, most of them aim for regression or exploratory analysis [1].
The development of tools for multi-way classification is rather poor in comparison
with the large amount of methods for other purposes. There are basically three
main multi-way classification approaches, namely: NPLS-DA, traditional classi-
fiers on the scores of multi-way decomposition methods like PARAFAC [2], and
NSIMCA [3]. These methods succeed in making use of the multi-way structure.
However, this might not be enough for a proper analysis of the data. Continuous
data, for example, are just numerically analyzed as a set of sampled, individual
features. Features are in this paper the measurement directions of a multi-way
data set. Important discriminative information, like connectivity between fea-
tures and their shape is not considered in the analysis.

Recently, the Dissimilarity Representation (DR) approach was introduced for
multi-way data classification [4]. The DR approach consists in representing ob-
jects by their proximities with respect to other objects [5]. As classes of objects
are determined by how (dis)similar they are, the authors advocate that for clas-
sification, a representation based on dissimilarities between objects may be more
informative than the traditional feature based representation.

One of the goals and advantages of this approach is the possibility of intro-
ducing discriminative context information in the representation of objects by
the dissimilarity measure. In the case of 2D or any-dimensional continuous data,
e.g. spectroscopic data, it could be important for their analysis to consider their
continuous nature. Several 2D measures have been proposed for image compar-
ison; however most of them are just based on pairwise comparison of objects,
ignoring the continuous nature of images [6]. Recently, the 2Dshape [4] measure
was introduced for this purpose. In order to reflect the continuous shape of the
data, comparison of objects is based on the differences between the first Gaus-
sian derivatives in each direction. However, it is based on the combination of 1D
dissimilarities; hence it does not analyze the combined 2D shape changes 1.

In this paper, we propose a new dissimilarity measure, the Continuous Multi-
way Shape (CMS) measure, that exploits the information on the whole structure
of multi-dimensional continuous data. It is based on differences between gradients
of objects, so shape changes of the surfaces are considered. The computation of
the gradient components is usually based on convolution kernel operators. We
introduce a gradient kernel operator where each partial derivative is computed
as the derivative of a polynomial fitted to the analyzed points. The proposed
measure will be compared to 2Dshape [4], and to two 2D measures [6], which are
not designed for continuous data. It is shown that considering the continuous
nature of data can be beneficial to improve its classification.

The paper is organized as follows. Fundamentals of the dissimilarity represen-
tation approach are presented in the first part of Section 2. In the second part,
the new measure and its generalization are detailed. Experiments and results are
discussed in Section 3. Conclusions are presented in Section 4.

1 The naming of the procedure given in paper [4], 2Dshape, can be confusing.
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2 Dissimilarity Representation for Multi-way Data

In the DR [5] approach, new features are defined for the objects, such that
they are represented by their proximities to a set of representative objects of
each class. The fact (property) that dissimilarities should be smaller for similar
objects and larger for different ones, suggests that they could be used as more
discriminative features, if a suitable measure is used.

Thus, in this approach, given a set of training objects X = {x1, x2, ..., xl} , a
representation set (a set of prototypes for each class) R = {r1, r2, ..., rp} , and
a dissimilarity measure; the distance between each object xi ∈ X to each object
rh ∈ R will be defined as d(xi, rh). The representation set R can be a subset
of X, R ⊆ X or X itself, being then D(X,X) a square dissimilarity matrix, or
R and X can be completely different sets. There are a number of approaches to
select prototypes of the representation set [5].

Let us assume we have a multi-way or n-dimensional array Y ∈ R
I1×I2×...×In

(training set), where object Yi∈ R
I1×I2×...×In−1 . To build the dissimilarity space,

the mapping φ(·,R) : RI1×I2×...×In−1 → R
h is defined, such that for every object

φ(Yi,R) = [d(Yi,r1), d(Yi,r2), ..., d(Yi,rh)]. We need then a (n-1)-dimensional
dissimilarity measure for its computation. Classifiers are built in this space, as
in any feature space. Consequently, the relationship between all objects in the
training and representation sets is used for classification. If a suitable measure is
chosen, the compactness property (objects from the same class should be similar
and objects from different classes should be different) of the classes should be
more pronounced. Therefore, it should be easier for the classifiers to discriminate
between them, since linear classifiers in the dissimilarity space may correspond
to non-linear classifiers in the feature space. In general, any arbitrary classifier
operating on features can be used [5].

3 Continuous Multi-way Shape Measure

A measure that somehow respects the multi-way structure of the data (considers
the relationship of different directions) is needed. It should also make use of the
continuity and shape information of the multi-dimensional continuous data.

Given a n− 1 dimensional object, each point in the multi-dimensional surface
could be analyzed with a n − 1 dimensional window, such that shape changes
in all directions can be taken into account. Thus, the comparison between two
objects should be based on the differences of their multi-way shape, considering
the connectivity that exists between the neighboring points in the different di-
rections. In the case of 1D continuous data e.g. spectral data, derivatives are the
commonly used tool to evaluate shape changes. For multi-dimensional functions,
the gradient is the natural extension of the derivative concept.

Although data may have a continuous nature, they are captured by the sam-
pling procedures of sensors as a collection of discrete values. As derivatives are
undefined for discrete functions, they need to be estimated somehow to be used
on these data. A widely used method for approximating the derivative of a dis-
crete function is the application of linear filters by convolution.
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Given the multi-dimensional discrete functions Y and H, a convolution opera-
tion is defined as Y ′= Y ∗H, where ∗ is the convolution operator [7]. Thus, given
two objects Ya and Yb, they can be compared by computing the difference be-
tween the gradients of the surfaces that represent these objects. As derivatives
and therefore the gradient are very noise sensitive, data should be smoothed
before performing these operations. A common way to smooth data is by con-
volving it with a Gaussian filter. Following the previous ideas, the Continuous
Multi-way Shape (CMS) measure is defined as:

Definition 1. Let Y be a n-way data set and let Ya, Yb be two objects from this
data set. The dissimilarity between Ya and Yb can be computed as:

dG(Ya, Yb) =

∥
∥
∥
∥
∥

f
∑

i=1

Ya ∗Gσ ∗Hi − Yb ∗Gσ ∗Hi

∥
∥
∥
∥
∥

F

(1)

where ‖ · ‖
F

is the Frobenius norm for tensors [8], Gσ a Gaussian convolution
kernel to smooth the data first, Hi is a partial derivative kernel and f is the
amount of partial derivatives in the different directions in order to obtain the
gradient.

3.1 Gradient Kernels

The Prewitt and Sobel operators [7] are 2D convolution kernels based on linear
filters that compute the average gradient components of three adjacent lines and
columns to overcome the noise sensitivity. They differ in that central weights for
the smoothing are higher. Horizontal and vertical Prewitt and Sobel kernels are
then defined as follows:

HP
x =

-1 0 1
-1 0 1
-1 0 1

HP
y =

-1 -1 -1
0 0 0
1 1 1

HS
x =

-1 0 1
-2 0 2
-1 0 1

HS
y =

-1 -2 -1
0 0 0
1 2 1

(2)

The previous gradient operators are based on approximating a partial derivative
at a point p by computing the slope of the line that fits the previous and next
point of p in the direction of the derivative. Extensions of these filters to diagonal
directions and to higher dimensions can be found [9], and the same idea of a line
fitting is kept.

3.2 Gradient Polynomial-Based Kernel for the CMS Measure

We propose to approximate each partial derivative in point p as the derivative of
the polynomial of degree t, which is obtained by interpolating p and its t nearest
points in the direction of the derivative.

For a 2D kernel of size [3 × 3] this approach is equivalent to applying the
Prewitt operator. So, the particular case of a 2D kernel of size [5× 5] will be ex-
plained here. For 2D objects, we want to analyze the derivatives in four directions
(horizontal, vertical and the two diagonals). Without loss of generality, let us see
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the case for the horizontal direction. Assume there are five points p0 = (−2, y0),
p1 = (−1, y1), p2 = (0, y2), p3 = (1, y3) and p4 = (2, y4), so a fourth degree
polynomial should be approximated to compute the derivative in each direction.
We chose these values for x just for simplicity, but it really does not matter,
the shape of the polynomial is the same: P (x) = ax4 + bx3 + cx2 + dx + e. Its
derivative is the cubic polynomial P ′(x) = 4ax3 +3bx2 +2cx+ d and, evaluated
in point p2, it is reduced to P ′(0) = d. If we solve the system of equations from
evaluating all points in P (x), we obtain P ′(0) = d = y0−8y1+8y3−y4

12 , which can
be wrapped in a filter kernel.

As for Prewitt and Sobel operators where adjacent lines are averaged, an
approximated average polynomial of the adjacent set of points can be obtained.
Then, the following convolution kernels for horizontal, vertical, main diagonal
and secondary diagonal are defined respectively:

HL
x =

1 -8 0 8 1
1 -8 0 8 1
1 -8 0 8 1
1 -8 0 8 1
1 -8 0 8 1

HL
y =

1 1 1 1 1
-8 -8 -8 -8 -8
0 0 0 0 0
8 8 8 8 8
-1 -1 -1 -1 -1

HL
md =

0 0 0 1 1
0 0 -8 -8 1
0 8 0 -8 0
-1 8 8 0 0
-1 -1 0 0 0

HL
sd =

1 1 0 0 0
1 -8 -8 0 0
0 -8 0 8 0
0 0 8 8 -1
0 0 0 -1 -1

(3)

The same idea can be generalized to larger windows, but higher order polyno-
mials are used. These filters can also be extended to n-way arrays. Polynomials
will be determined in the same manner according to the size of the window, but
now there will be more directions to be analyzed. For example, in the case of a
4-way array where objects are 3D, if we use a [3× 3× 3] window, 13 directions
can be analyzed as in the following figure:

Fig. 1. The 13 directions to be analyzed in a 3D object

The proposed CMS measure can be seen as a generalization of the idea of
the 2Dshape [4] measure for 2D objects. Both measures are based on smoothing
surfaces with a Gaussian kernel and their partial derivatives are compared in
order to take the shape of the functions into account. However, in the case of
the 2Dshape measure, a 1D Gaussian derivative is computed independently for
every feature in the horizontal and vertical directions of a 2D object, treating the
feature as a 1D signal, without taking into account the relationship between the
features in the two directions. Differences in each direction are then combined.

In contrast, the CMSmeasure already considers 2D information in the smooth-
ing process by applying a 2D Gaussian kernel. Moreover, with 2D gradient kernel
operators, more global information (relationship between features) is considered.
As partial derivatives are computed on the average line obtained from a number
of rows/columns (depending on the kernel size), information from the neighbor-
ing signals is used. The most remarkable feature of the CMS measure is that it
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is not restricted to measure the shape in two directions only. Although CMS is
based on the idea of the gradient of an image, which is mathematically defined
by a vector of 2 components i.e. horizontal and vertical, this measure allows ana-
lyzing other directions e.g. diagonals. This way, more accurate approximations of
the information on the shape of objects and dependencies in the different direc-
tions are computed for the comparison. With the introduced polynomial-based
kernels, the partial derivatives can be approximated as the derivative of higher-
degree polynomials instead of a simple line. Consequently, it is to be expected
that the multi-way shape information can be better modeled with the proposed
CMS measure, leading to a better discrimination of these types of objects. At
last, the CMS measure has been defined for continuous multi-way objects in
general, while 2Dshape can only be applied to 2D objects.

4 Experimental Setup and Discussion

In this section, we present experiments with a Regularized Linear Discriminant
classifier based on dissimilarities. Experiments are conducted on five 2D contin-
uous data sets of different sources. Our aim is to compare the performance of
classifiers on the two shape-based measures, 2Dshape and the proposed CMS
measure for multi-way continuous data. These performances will also be com-
pared with the non-shape based measures Frobenius and Yang, which are ver-
sions of the AMD [6] distance with weights p = 2 and p = 1 respectively.

For the different data sets, experiments were carried out differently. For small
data sets (Parma ham and St John’s), classification errors were obtained in a 10
times k-fold cross-validation (CV). The Enzyme data has a training and test set,
so the classifier is evaluated on the test set. In the case of Colon and Volcano
data, 10 different training and test sets were randomly chosen and the error
values were averaged. For the three bigger data sets, i.e. Enzyme, Colon and
Volcano, a part of the data was used to optimize the measures parameters in a
CV procedure. The rest was then used as explained before. For the other two,
as they are too small, the parameters were optimized with the whole data sets.

The first data set is private and it comes from 1200 patches of 1024 × 1024
pixels of 36 colon tissue slides from Atrium hospital in Heerlen, The Netherlands.
Patches were filtered with Laplace filters in 90 different scales using σ = 2.ˆ[0.1 :
0.1 : 9]. The log-squares of the results are summarized in 60 bin normalized
histograms with bin centres [−50 : 1 : 9]. Thus, a 90 × 60 array is obtained
for every patch, leading to a three-way array of 1200× 90× 60. The patches are
labeled in two classes: Normal and Tumor. A representation set of 550 prototypes
was randomly chosen from the training set. The second data set corresponds to
seismic signals from Nevado del Ruiz volcano in the Colombian Andes. The data
set is composed of 12032-point signals of two classes of volcanic events: Long-
Period earthquakes, and Volcano-Tectonic earthquakes. A 2D time-frequency
representation was computed for each signal with a 256-points (window size)
Short-Time Fourier Transform (STFT), with 50% overlap. The concatenation
of the obtained spectrograms results in a 470 × 93 × 129 three-way array. The
dissimilarity matrix has a size of 470× 100.
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The third and fourth data sets are from public domains and they are both
obtained by Fluorescence spectroscopy. The first of them consists of a training
set of size 323×15×15 and a test set of 53×15×15. The two variable directions
correspond to excitation and emission wavelengths respectively. The classifica-
tion problem consists in determining the quality (Low or High) of a process
according to the enzyme activity [10]. A representation set of 100 prototypes
was randomly chosen from the training set, thus the dissimilarity matrices have
a size of 323× 100 and 53× 100 for training and test sets respectively. The other
data set has a size of 67× 11× 13 and the purpose is to determine the age range
of a Parma ham sample: raw (0 months), salted (3 months), matured (11 and
12 months) and aged (15 and 18 months) [3]. The last data set consists of 108
samples of carrot juice, which have been crystallized, with the aim of describing
their quality (Good/Bad) [11]. Images of size 528 × 528 of each biocrystallized
sample were taken. Gabor filters with a bank of 128 filters from 16 orientations
was applied, resulting in a four-way data set of 108× 528×528×128. Thus, 128
dissimilarity matrices were computed with 2D measures on the 528 × 528 ma-
trices of each filter and latter averaged. All objects were used as representation
set in the DR.

Table 1. Classification error with different measures: CMS measure with Prewitt, Pre-
witt in 4 directions (including diagonals), Sobel, Sobel in 4 directions and Polynomial
filter, 2Dshape measure, Frobenius and Yang

CMS No shape
Data Prew. Prew.(4d) Sob. Sob.(4d) Polyn. 2Dshape Frob Yang

Colon cancer 11.0 11.5 11.2 12.0 9.5 12.7 13.3 13.3
Volcano 28.0 25.6 28.2 23.4 23.4 20.9 40.0 28.7
Enzyme 9.4 5.7 9.4 9.4 9.4 13.2 9.4 9.4

Parma ham 3.7 2.4 3.7 2.5 3.7 2.9 4.5 4.3
Carrot juice 7.2 6.0 7.2 6.3 7.1 8.3 9.8 10.7

Results are shown in Table 1. It can be seen that as expected, measures
which take the continuous information of data into account give the best results.
The CMS measure, with most filters, outperforms the results obtained with the
2Dshape measure in general, corroborating our previous analysis. The selection
of the kernel to be applied should depend on the problem at hand and how rough
shape changes are. Larger kernels should be able to capture better the changes
in the surface when these are not so sudden. However, if there are shape changes
in small regions, they might be averaged in a large window. Thus, small windows
should work better in these cases. It is shown that results are improved by using
the diagonal directions in the Prewitt and Sobel operators. This supports the
previously discussed argument that if more directions are analyzed, there can be
more information which contributes to a better discrimination of the classes.

5 Conclusions

We introduced a multi-dimensional dissimilarity measure for multi-way continu-
ous data based on the computation of the gradient. This was proposed with the
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aim of applying the DR approach as a classification tool for this type of data. The
new measure allows taking into account the complex multi-dimensional struc-
ture, such that the connectivity and shape information of the surfaces (objects)
can be considered in the dissimilarity representation of the objects. The way the
measure has been defined, allows to use different gradient convolution kernels,
according to the problem at hand. This measure was compared to the 2Dshape
measure and other non-shape based measures for the classification of 2D objects.
Results have corroborated the presented argument that considering the contin-
uous multi-way nature of these types of data in their analysis can lead to better
results. Moreover, it is shown that by taking into account the information in
more directions, results can be improved.
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[4] Porro-Muñoz, D., Duin, R.P.W., Talavera, I., Orozco-Alzate, M.: Classification
of three-way data by the dissimilarity representation. Signal Processing 91(11),
2520–2529 (2011)

[5] Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation For Pattern Recog-
nition. Foundations and Applications. World Scientific, Singapore (2005)

[6] Zuo, W., Zhang, D., Wang, K.: An assembled matrix distance metric for 2DPCA-
based image recognition. Pattern Recognition Letters 27, 210–216 (2006)

[7] Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall,
Inc., Upper Saddle River (2006)

[8] Lathauwer, L., De Moor, B.: From matrix to tensor: Multilinear algebra and signal
processing. In: Proc. 4th Int’l Conf. on Mathematics in Signal Processing, vol. 1,
pp. 1–11 (1996)

[9] Jetto, L., Orlando, G., Sanfilippo, A.: The edge point detection problem in im-
age sequences: Definition and comparative evaluation of some 3D edge detecting
schemes. In: Proc. of the 7th Mediterranean Conference on Control and Automa-
tion (MED 1999), pp. 2161–2171 (1999)

[10] Mortensen, P.P., Bro, R.: Real time monitoring and chemical profiling of a culti-
vation process. Chem. and Intell. Lab. Syst. 84(1-2), 106–113 (2005)

[11] Busscher, N., Kahl, J., Andersen, J., Huber, M., Mergardt, G., Doesburg, P.,
Paulsen, M., Ploeger, A.: Standardization of the biocrystallization method for
carrot samples. Biological Agriculture and Horticulture 27, 1–23 (2010)


	Continuous Multi-way Shape Measure 
for Dissimilarity Representation
	Introduction
	Dissimilarity Representation for Multi-way Data
	Continuous Multi-way Shape Measure
	Gradient Kernels
	Gradient Polynomial-Based Kernel for the CMS Measure

	Experimental Setup and Discussion
	Conclusions
	References




