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Abstract. In this work, we present an improved multi-class spectral clustering
(MCSC) that represents an alternative to the standard k-way normalized clus-
tering, avoiding the use of an iterative algorithm for tuning the orthogonal matrix
rotation. The performance of proposed method is compared with the conventional
MCSC and k-means in terms of different clustering quality indicators. Results are
accomplished on commonly used toy data sets with hardly separable classes, as
well as on an image segmentation database. In addition, as a clustering indica-
tor, a novel unsupervised measure is introduced to quantify the performance of
the proposed method. The proposed method spends lower processing time than
conventional spectral clustering approaches.

1 Introduction

Spectral clustering has taken an important place within the context of pattern recog-
nition, mainly, because this technique represents a very suitable alternative to solve
problems when data are not labeled and classes are hardly separable. Derived from
the normalized cuts-based clustering, described in detail in [1], many enhancing ap-
proaches have been proposed. For instance, kernel-based methods employing support
vector machines (SVM) are discussed in [2H4]], and methods with improved affinity
or similarity matrices, proposed in [3]]. Spectral clustering technique has been success-
fully applied in several applications such as image segmentation [[6,7] and has shown
to be a powerful tool to determine information about initial data, namely, estimation of
the group number [5,I8] and local scaling [9]. Commonly, the application of spectral
clustering methods involves the determination of a new representation space, whose
resultant dimension is lower than that from original data, and then a dimensionality re-
duction procedure should be accomplished. In that way, the relation among elements
are conserved as well as possible. Thus, eigenvectors and eigenvalues based analysis
takes place. This is because the information given by eigen-space (i.e, space generated
by eigenvectors) is directly associated with the clustering quality. The computation of
such eigen-space is usually a high time consuming computational procedure. There-
fore, a computation of spectral clustering method with reasonable computational load,
but keeping high clustering performance still remains an open issue.

In this work, an improved alternative to conventional k-way normalized cuts-based
clustering is presented, which improves the computational cost avoiding the iterative
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search for tuning. Improved method also provides a better estimation of the initial pa-
rameter from the information given by the proposed solution. We solve the classical
problem of spectral clustering without using any heuristical searching approach, in-
stead, we accomplish a deterministic solution by means of solving an equation matrix
of the form ARB = C, as discussed in [[10]. This equation allows to determine the
rotation matrix R, which generates an infinite number of solutions and is then chosen
as that shows better convergence. Solving such equation matrix yields a solution that
satisfies the condition given by the objective function but not the orthogonality con-
dition. Therefore, we introduce a regularized form in order to obtain an orthonormal
feasible solution. For assessing the performance of proposed method, we carry out ex-
periments on toy data sets as well as the Berkeley Segmentation Dataset [[11] to evaluate
our method in terms of segmentation. As a clustering performance measure, we apply
the total clustering performance taking advantage of the labels and segmented reference
images and introduce an unsupervised measure that takes into consideration the quality
clustering in terms of spectral information. Also, we include stages for estimating the
number of groups and computing the affinity matrix as described in [5]. We compared
our method with a conventional K-means and a K-way normalized-based clustering, as
explained in [I1]].

2  Clustering Method

2.1 Multi-Class Spectral Clustering (MCSC)

A weighted graph can be represented as G = (V,E, W), where V is the set of either
nodes or vertices, E is the edge set, and W represents the relationship among nodes,
named, affinity matrix. Given that, each affinity matrix entry w;; of W € RY¥*¥ rep-
resents the weight of the edge between ¢-th and j-th element, it must be a non-negative
value. Value N is the number of considered nodes. In addition, for a non-directed
graph, it holds that w;; = wj;. Therefore, affinity matrix must be chosen as sym-
metric and positive semi-definite. After clustering procedure, a binary indicator matrix
M = [my] ...|mk] is accomplished, where each vector set m, is a column vector
formed by data point membership regarding cluster k = 1,..., K and K is the num-
ber of groups. Each entry ik from the N x K dimensional matrix M is defined as
mg = [t € V|, i€V, k=1,...,K, where notation |-| stands for a binary
indicator - it equals to 1 if its argument is true and, otherwise, 0. Also, because each
node can only belong into one partition, the condition M1 = 1, must be satisfied,
where 1, is a d-dimensional ones vector.

Then, the well-known k-way normalized cuts-based clustering, described in [[1], can
be written as:

1 t(MTWM
max (M) = K tr((MTDM)) (la)
s.toM e {0, 13V*E - Ml =1y (1b)

where D = Diag(W'1y) is the degree matrix related to weights or affinity matrix. No-
tation Diag(-) denotes a diagonal matrix formed by its argument vector. Expressions (Ld)
and (IB) are the formulation of normalized cuts optimization problem, named (NCPM).
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In order to guarantee that M becomes binary it is needed that ||[M][%2 =
tr(M"M) = tw(E) = n, where E = Diag(> i, m1,--+ , >+, mix). Therefore,
the NCPM optimization problem can be expressed as:

max e(M) = t(M'WM) s.t: (M DM) =const, Mlg =15 (2)

2.2 Proposed NCPM Solution Based on an One Iteration Tuning

The NCPM optimization problem can be relaxed as follows. Let P = D~ /2W D~1/2
be a normalized affinity matrix. Then, a relaxed NCPM version can be expressed as:

max tr(L"PL), s.t. L'L=1Ig (3)

where L = D~1/2M.

A feasible solution to this problem is L* = VxR, where Vi is any orthonormal
basis of the K-dimensional principal subspace of P, and R is an arbitrary rotation
matrix. At the end, a binarization process must be applied, e.g., by employing the sign
function. Thus, there exists an infinite number of solutions. To overcome this issue
with the aim to reach a deterministic solution without using an iterative algorithm, the
following mathematical development is done.

According to the constraint given in (IB), we have:

M1yg = D'?L1x = DV?VixR1x = 1n 4)

Therefore, a possible rotation matrix R can be chosen as R = 1/k*V,] D=/21517..
Yet, the previous solution do not satisfy the orthonormal condition given by (@), since
it holds that R" R = II\([D’1 # I, and thus, RT # R~!. So, as a way to avoid this
drawback, a constrained optimization problem is introduced:
min [|VxRlx — D7'?1y|[%, st.RTR=1Ix 5)
where || - || . stands for Frobenius norm.
For the sake of simplicity, let us define A = Vg, B = 1, C = D~1/2. Also,
we introduce a regularized orthonormal matrix R = R + alk to be determined that
guarantees the orthogonality condition. Then, the optimization problem is rewritten as:

min||ARB — C|]?>, s.t. RTR=1Ix . ||[RTR-Ix|?> =0 (6)

By only considering the objective function to be minimized, the two following solutions
are possible [10]: vec(R) = [BT ® A]'vec(C) where BT represents the pseudo-
inverse matrix of B, and a real non-negative definite solution.

The latter solution, in its easiest form, is givenby R = A" CB~+Y—-A-AY BB~
requiring that the Ben-Israel and Geville condition be satisfied [[12], where the K x K
dimensional matrix Y is arbitrary and A~ denotes the inner inverse of A, such that
AA~ A = A. Moreover, both solutions turn out to be no orthogonal and cannot be
directly applied. Then, the Gram-Schmidt orthogonalization procedure is, perhaps, the
most intuitive solution. But, despite the orthogonal condition be satisfied, however, the
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original problem remains unsolved, i.e, there is no a solution that satisfies the relaxed
problem. Instead, we propose a solution based on Lagrange multipliers, as follows.
The Lagrangian corresponding to the problem (6) is written as follows:

K
‘C()‘v R) = f(Oé, R) + Z )‘kgk'(av R) (7)
k=1
where
fla,R) = tr ((AﬁB —C)T(ARB - C))
K
3 Mige(@,R) = tr ((RTR ~Ix)"(R"R— IK)A)
Then, by solving 27, = 0 and 0% 15\;%%(& B — 91, we obtain:
R=20ATCB' — Iy (8a)
N 1 0f
A= diag ((R+ (@ — 1)) aR) (8b)

where A = Diag(), BT denotes the pseudo-inverse matrix of B and A is the vector of
Lagrange multipliers. At the end, a continuous estimation of matrix M can be written
as M = DY2L = DV 2VKR which is further binarized to determine the initial
clustering problem solution M. Parameter « is chosen at the minimal point of L, i.e.,
where both f and ¢ are minimum.

3 Experimental Setup

Experiments are carried out on two well-known database collections: Firstly, a toy data
comprising the following several data sets (Swiss-roll,weird roll, fishbowl,
and S-3D) shown in upper row of Fig.[)). Secondly, an image collection extracted from
the free access Berkeley Segmentation Dataset [[11]]. In this work, we considered the first
100 train images from 2092 until 66039 (in ascendant order). In bottom row of Fig.[I]
some samples from image database are shown. All considered images are size scaled
at 20% and characterized per pixel by means of standard and normalized RGB color
space, and XY position. Estimation of the number of groups, k, is based on calculation
of the eigenvector set of the affinity matrix. In particular, the scaled exponential affinity
matrix W = {w;;} is employed that holds elements defined as follows [5]]:

dz(m“mj) . .
€ - )
wiy = Xp(=" 50,0 ) 1F ©)
0, 1=
where X € RV*P = (x],...,2])T is the data matrix to be clustered, z; € R? is its

corresponding i-th data point, o; = d(«;, x,), &, denotes the n-th nearest neighbor,
and d(-, -) stands for Euclidean distance. The value of n is experimentally set to be 7.
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(a) Swiss-roll (b) Weird roll

(e) 2092 (f) 8049 (g) 8143 (h) 12003

Fig. 1. Employed database collections for testing of discussed approach of multi-class spectral
clustering. In upper row, exemplary of toy data comprising data sets (Swiss-roll, weird
roll, fishbowl, and S-3D). In the bottom row, some numbered samples of image database.

Performance of discussed method is assessed by means of three considered cluster-
ing indicators: clustering performance, estimated number of groups, and the introduced
cluster coherence as an unsupervised measure. The last measure is inferred from the
optimization problem given in (I&), and its maximal value is 1, due to its normalization
with respect to the affinity matrix degree. Then, after selecting a proper affinity matrix,
cluster coherence measure indicates an adequate clustering whenever its value is close
to 1. In addition, because of its descent monotonicity property, this measure automati-
cally penalizes the group number. Table [Tl shows the clustering performance measures
with their description.

Table 1. Applied performance measures

Measure Description
Clustering performance Complement of standard error (e).
cpr CP =100—e
Cluster coherence It is near to 1 when clustering is properly done.
s ar — 1 ij MW M,
k = M]DM,
Estimated number of groups (IAC) Eigenvectors-based estimation [3]]

Lastly, testing within experimental framework is carried out by employing MATLAB
Version 7.10.0.499 (R2010a) in a standard PC Intel(R) Core 2 Quad 2.8 GHz and 4 Gb
RAM memory.
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4 Results and Discussion

Table 2l shows the numerical results obtained for both toy data sets and image database.
In general, we can note that the MCSC works significantly better than the conventional
partitional clustering, showing the benefit of the spectral methods when clusters are not
linearly separable. This fact can be appreciated in Fig. 2l

Table 2. Results for toy data sets

Toy data sets Image database
Method CP em k CP em k
(p—o0) (w—0) (u—0) (u—0) (m—0) (u—o0)
K-means 63.25-9.07 0.58-0.13 59.25 -10.55 0.54-0.09
MCSC 89.50-4.21 0.86-0.05 5-0.47 68.62—-6.51 0.76-0.02 8-0.75
Improved MCSC 89.50 —3.67 0.90 —0.02 70.37-8.09 0.78 - 0.04

Introduced Spectral Clustering

K-means

Fig. 2. Clustering results after testing of considered databases

Then, for some applications it might be of benefit to increase the computational bur-
den to improve significatively the performance. Nonetheless, to overcome this issue, we
introduce a free iterative algorithm approach, in which instead of applying a complex or
time-consuming procedures, we only need to determine parameter « for calculating the
indicator binary matrix. Therefore, required time for estimating o becomes consider-
ably lower than that one needed to binarize the clustering solution iteratively, as shown
in Fig. Bl Computational time reduces since tuning of parameter « is, mostly, carried
out by means of an heuristical search having inexpensive computational burden. In con-
trast, the conventional MCSC involves calculation of eigenvalues and eigenvector per
iteration; both procedures being high time consuming.
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Fig. 3. Box plots of time employed for clustering methods. Improved MCSC at left hand and
classical MCSC at right hand.

For the Swiss-roll toy data set, Fig. [ shows the penalization effect of measure ep
when varying the group number. Testing is carried out computing the value € ps for 10
iterations of the whole clustering procedure. As seen, the error bar corresponding to
conventional is higher that the error achieved for the proposed MCSC method.
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Fig. 4. Error bar comparing ¢ s with the group number

5 Conclusions

This work introduces an improved multi-class spectral clustering method that is based
on normalized cuts. Performance of discussed method is assessed by means of three
considered clustering indicators: clustering performance, estimated number of groups,
and the introduced cluster coherence. In terms of considered clustering indicators, the
improved multi-class spectral clustering method exhibits a similar performance for
tested databases including not linearly separable classes, because it employs the spec-
tral information given by data and their transformations. Nonetheless, discussed method
overperforms the conventional spectral methods, in terms of computational burden,
since tuning of parameter « is, mostly, carried out by means of an heuristical search
having inexpensive computational burden. In contrast, the conventional MCSC involves
calculation of eigenvalues and eigenvector per iteration; both procedures being high
time consuming.

Also, we introduced a non-supervised measure, associated with cluster coherence,
that is inferred from a partition criterion, which showed to be a proper performance
index. The cluster coherence measure, automatically, penalizes the number of groups
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and generates a value close to 1, whenever the grouping is rightly performed and the
affinity matrix is properly chosen.

As a future work, another properties of spectral clustering algorithms should be ex-
plored to develop a method less sensitive to initialization, which enhances the trade-off
between performance and computational cost. Such method should include proper ini-
tialization, estimation of number of groups, feature selection and grouping stages based
on spectral analysis.
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