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Abstract. The gold standard for a classifier is the condition of optimal-
ity attained by the Bayesian classifier. Within a Bayesian paradigm, if we
are allowed to compare the testing sample with only a single point in the
feature space from each class, the optimal Bayesian strategy would be to
achieve this based on the (Mahalanobis) distance from the correspond-
ing means. The reader should observe that, in this context, the mean,
in one sense, is the most central point in the respective distribution. In
this paper, we shall show that we can obtain optimal results by oper-
ating in a diametrically opposite way, i.e., a so-called “anti-Bayesian”
manner. Indeed, we shall show the completely counter-intuitive result
that by working with a very few (sometimes as small as two) points
distant from the mean, one can obtain remarkable classification accu-
racies. Further, if these points are determined by the Order Statistics
of the distributions, the accuracy of our method, referred to as Classi-
fication by Moments of Order Statistics (CMOS), attains the optimal
Bayes’ bound! This claim, which is totally counter-intuitive, has been
proven for many uni-dimensional, and some multi-dimensional distribu-
tions within the exponential family, and the theoretical results have been
verified by rigorous experimental testing. Apart from the fact that these
results are quite fascinating and pioneering in their own right, they also
give a theoretical foundation for the families of Border Identification (BI)
algorithms reported in the literature.

Keywords: Classification using Order Statistics (OS), Moments of OS.

1 Introduction

Pattern classification is the process by which unknown feature vectors are cat-
egorized into groups or classes based on their features [I]. The age-old strategy
for doing this is based on a Bayesian principle which aims to maximize the a
posteriori probability. It is well known that when expressions for the latter are
simplified, the classification criterion which attains the Bayesian optimal lower
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bound often reduces to testing the sample point using the corresponding dis-
tances/norms to the means or the “central points” of the distributions.

In this paper, we shall demonstrate that we can obtain optimal results by op-
erating in a diametrically opposite way, i.e., a so-called “anti-Bayesian” manner.
Indeed, we shall show the completely counter-intuitive result that by working
with a few points distant from the mean, one can obtain remarkable classifi-
cation accuracies. The number of points referred to can be as small as two in
the uni-dimensional case. Further, if these points are determined by the Order
Statistics of the distributions, the accuracy attains the optimal Bayes’ bound!
Thus, put in a nut-shell, we introduce here the theory of optimal pattern clas-
sification using Order Statistics of the features rather than the distributions of
the features themselves. Thus, we propose a novel methodology referred to as
Classification by Moments of Order Statistics (CMOS). It turns out, though,
that this process is computationally not any more complex than working with
the latter distributions.

1.1 Contributions of This Paper

The novel contributions of this paper are the following:

— We propose an “anti-Bayesian” paradigm for the classification of patterns
within the parametric mode of computation, where the distance computa-
tions are not with regard to the “mean” but with regard to some samples
“distant” from the mean. These points, which are sometimes as few as two,
are the moments of OS of the distributions;

— We provide a theoretical framework for adequately responding to the ques-
tion of why the border points are more informative for the task of classifica-
tion;

— To justify these claims, we submit a formal analysis and the results of various
experiments which have been performed for many distributions within the
exponential family, and the results are clearly conclusive.

We conclude by mentioning that our results probably represent the state-of-the-
art in BI!

2 Relevant Background Areas

2.1 Prototype Reduction Schemes and Border Identification
Algorithms

If we fast-forward the clock by five decades since the initial formulation of Pattern
Recognition (PR) as a research field, the informed reader will also be aware of
the development of efficient classification methods in which the schemes achieve
their task based on a subset of the training patterns. These are commonly re-
ferred to as “Prototype Reduction Schemes” (PRS)[2I3]. A PRS will be consid-
ered to be a generic method for reducing the number of training vectors, while
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simultaneously attempting to guarantee that the classifier built on the reduced
design set performs as well, or nearly as well, as the classifier built on the origi-
nal design set [4]. Thus, instead of considering all the training patterns for the
classification, a subset of the whole set is selected based on certain criteria. The
learning (or training) is then performed on this reduced training set, which is
also called the “Reference” set. This Reference set not only contains the pat-
terns which are closer to the true discriminant’s boundary, but also the patterns
from the other regions of the space that can adequately represent the entire
training set. Zillions of PRS [5] techniques have developed over the years, and
it is clearly impossible to survey all of these here. These include the Condensed
Nearest Neighbor (CNN) rule [6], the Reduced Nearest Neighbor (RNN) rule [7],
the Prototypes for Nearest Neighbor (PNN) classifiers [§], the Selective Nearest
Neighbor (SNN) rule [9], the Edited Nearest Neighbor (ENN) rule [10], Vector
Quantization (VQ) etc. Comprehensive survey of the state-of-the-art in PRSs
can be found in [2JTTU3]. The formal algorithms are also found in [I2].

Border Identification (BI) algorithms, which form a distinct subset of PRSs,
work with a Reference set which only contains “border” points. A PRS would
attempt to determine the relevant samples in both the classes which are capable
of achieving near-optimal classification. As opposed to this, a BI algorithm uses
only those samples which lie close to the boundaries of the two classes. Important
developments in this area were proposed by Duch [I3], Foody [I4] and Li [15].
Duch developed algorithms to obtain the reference set based on a border analysis
of every training pattern, and those algorithms attempt to add patterns which
are closer to the class boundary, to the reference set. According to Foody’s
approach, the training set is divided into two sets - the first comprising of the
set of border patterns, and the second being the set of non-border patterns. A
border training set should contain patterns from different classes, but which are
close together in the feature space and which are thus in the proximity of the
true classification boundary. According to Li, the border patterns obtained by
the traditional approaches are considered to be the “Near” borders, and using
the latter, the “Far” borders are identified from the remaining data points. It
turns out that the final border points computed in this manner are more accurate
than the initially identified “Near” borders. The “Near” and the “Far” borders
collectively constitute the so-called “Full” border set for the training data. A
detailed survey of these methods can be found in [I2J16].

2.2 Order Statistics

Let x1, X2, ...., X, be a univariate random sample of size n that follows a con-
tinuous distribution function @, where the probability density function (pdf) is
©(+). Let X115, X211, -+, Xn.n be the corresponding Order Statistics (OS). The rt"
OS, X, n, of the set is the r*" smallest value among the given random variables.
The pdf of y = x5, is given by:

n!

KW= (o)} {1 -2(y)}" " y),
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where 7 = 1,2, ...,n. The reasoning for the above expression is straightforward.
If the r*" OS appears at a location given by y = x,.,, it implies that the
r — 1 smaller elements of the set are drawn independently from a Binomial
distribution with a probability @(y), and the other n — r samples are drawn
using the probability 1 — @(y). The factorial terms result from the fact that the
(r — 1) elements can be independently chosen from the set of n elements.

Although the distribution fy (y) contains all the information resident in y, the
literature characterizes the OS in terms of quantities which are of paramount
importance, namely its moments [I7]. To better appreciate the results presented
later in this paper, an understanding of the moments of the OS is necessary.
This is briefly presented below.

Using the distribution fy(y), one can see that the k** moment of x,.,, can be
formulated as:

B = [ e w0 - et ety
P (=1 -1)! J_ ’
provided that both sides of the equality exist [I8II9].

The fundamental theorem concerning the OS that we invoke is found in many
papers [20/T917]. The result is merely cited below inasmuch as the details of
the proof are irrelevant and outside the scope of this study. The theorem can be
summarized as follows.

Let n > r > k+1 > 2 be integers. Then, since @ is a nondecreasing and
right-continuous function from R — R, &(x, ) is uniform in [0,1]. If we now
take the k' moment of &(x,.,), it has the form [20]:

B(r+kn—r+1) n! (r+k—1)!
E[d" (x,.)] = ’ = , 1
[P )l = g k) T (k) (= 1) (1)

(a—1)1(b—1)!

(atb—1)! since its

where B(a,b) denotes the Beta function, and B(a,b) =
parameters are integers.

The above fundamental result can also be used for characterization purposes
as follows [20]. Let n > r > k + 1 > 2 be integers, with ¢ being nondecreasing
and right-continuous. Let G be any nondecreasing and right-continuous function

from R — R on the same support as @. The relation

n! (r+k—1)!
(n+k)! (r—1)! @

holds if and only if Vz, #(z) = G(z). In other words, @(+) is the unique function
that satisfies Eq. (@), implying that every distribution is characterized by the
moments of its OS.

The implications of the above are the following:

E[Gk (Xr,n)] =

1. If n = 1, implying that only a single sample is drawn from x, from Eq. (),

E[@! (x1,)] = ; = Exp) =7 (;) . (3)
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Informally speaking, the first moment of the 1-order OS would be the value
where the cumulative distribution @ equals %, which is the Median(x).

2. If n = 2, implying that only two samples are drawn from x, we can deduce
from Eq. () that:

B[ (x1,2)] = ; = Elxi10]=9"" (;) ,and (4)
E[@I(XQ’Q)] = 3, B E[Xg’z] =¢! (3) . (5)

Thus, from a computational perspective, the first moment of the first and
second 2-order OS would be the values where the cumulative distribution @
equal :1,) and g respectively.

Although the analogous expressions can be derived for the higher order OS, for
the rest of this paper we shall merely focus on the 2-order OS, and derive the
consequences of using them in classification!

3 Optimal Bayesian Classification Using Two Order
Statistics

3.1 The Generic Classifier

Having characterized the moments of the OS of arbitrary distributions, we shall
now consider how they can be used to design a classifier.

Let us assume that we are dealing with the 2-class problem with classes w;
and wg, where their class-conditional densities are fi(z) and fo(x) respectively
(i.e, their corresponding distributions are Fj(z) and Fs(x) respectively)l. Let 14
and v, be the corresponding medians of the distributions. Then, classification
based on 17 and v; would be the strategy that classifies samples based on a
single OS. We shall show the fairly straightforward result that for all symmet-
ric distributions, the classification accuracy of this classifier attains the Bayes’
accuracy.

This result is not too astonishing because the median is centrally located close
to (if not exactly) on the mean. The result for higher order OS is actually far
more intriguing because the higher order OS are not located centrally (close to
the means), but rather distant from the means. Consequently, we shall show
that for a large number of distributions, mostly from the exponential family, the
classification based on these OS again attains the Bayes’ bound.

We shall initiate this discussion by examining the Uniform distribution. The
reason for this is that even though the distribution itself is rather trivial, the
analysis will provide the reader with an insight into the mechanism by which
the problem can be tackled, which can then be extended for other distributions.

! Throughout this section, we will assume that the a priori probabilities are equal. If
they are unequal, the above densities must be weighted with the respective a prior:
probabilities.
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3.2 The Uniform Distribution

The continuous Uniform distribution is characterized by a constant function
U(a,b), where a and b are the minimum and the maximum values that the
random variable x can take. If the class conditional densities of w; and wy are
uniformly distributed,

L ifay <o < by

_ bi—a 1Iay ST 015
hi(@) {101ifx<a10rx>b1, and

L if gy < < bo;

— bs—a 1 2 > = Y2,
fg(m)_{zOzifx<a20rx>b2.

The reader should observe the following:

— If ag > b1, the two distributions are non-overlapping, rendering the classifi-
cation problem trivial.

— If as < by, but by — a; # by — ag, the optimal Bayesian classification is
again dependent only on the heights of the distributions. In other words, if
ba —as < by — aq, the testing sample will be assigned to ws whenever z > as.
This criterion again is not related to the mean of the distributions at all,
and is thus un-interesting to our current investigations.

— The meaningful scenario is when b; — ap is exactly equal to by — as,
and if as < by. In this case, the heights of the two distributions are equal and
the distributions are overlapping. This is really the interesting case, and cor-
responds to the scenario when the two distributions are identical. We shall
analyze this in greater detail and demonstrate that the optimal Bayesian
classification is also attained by using the OS.

Theoretical Analysis: Uniform Distribution - 2-OS. We shall now de-
rive the formal properties of the classifier that utilizes the OS for the Uniform
distribution.

Theorem 1. For the 2-class problem in which the two class conditional distribu-
tions are Uniform and identical, CMOS, the classification using two OS, attains
the optimal Bayes’ bound.

Proof. The proof of the result is done in two steps. We shall first show that when
the two class conditional distributions are Uniform and identical, the optimal
Bayesian classification is achieved by a comparison to the corresponding means.
The equivalence of this to a comparison to the corresponding OS leads to the
final result.

Without loss of generality let the class conditional distributions for wy and we
be U(0,1) and U(h, 1+ h), with means p1 = 5 and ps = h+ 3, respectively. In
this case, the optimal Bayes’ classifier assigns x to wi whenever z < h, x to ws
whenever > 1, and z to w; and to wy with equal probability when h < z < 1.
Since:
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1 1
D (z, 1) < D (z, p2) <= T =, <h+27x

— 2x<1+4+h

— z< ; h ()
we see that the optimal Bayesian classifier assigns the sample based on the
proximity to the corresponding mean, proving the first assertion.

We now consider the moments of the OS of the distributions. If x;, X2, ....,
X, are n independent univariate random variables that follow the Uniform dis-
tribution U(0, 1), by virtue of Eq.(), the expected values of the first moment of
the k-order OS can be seen to be E[xy ]| = n_’f_l. Thus, for U(0,1), E[x12] = ;
and E[xg 2] = g Similarly, for the distribution U(h, 1+ h), the expected values
are E[x12] = h+ 3 and E[x2] = h+ 3.

The OS-based classification is thus as follows: Whenever a testing sample
comes from these distributions, the CMOS will compare the testing sample with
El[x2,5] of the first distribution, i.e., 7, and with E[x1 2] of the second distribu-
tion, i.e., h + :1,), and the sample will be labeled with respect to the class which
minimizes the corresponding quantity. Observe that for the above rule to work,
we must enforce the ordering of the OS of the two distributions, and this requires
that 3 <h+ 5 = h> ..

In order to prove that for h > :1,) the OS-based classification is identical to
the mean-based classification, we have to prove that D(z,u1) < D(x, p2) =
D(z,01) < D(x,02), where O; is E[x22] of the first distribution and Oj is
E[x1,2] of the second distribution. By virtue of Eq. (@),

h+1
D(x,p11) < D(z,p2) <= z < 5 - (7)

Similarly,
2 1
D(z,01) < D(z,02) <~ D(;U, 3) < D(;U, h+3)

2 b 1
— X 3 < + 3 x
—az < " s L (8)
The result follows by observing that (@) and () are identical comparisons.

For the analogous result for the case when h < é, the CMOS will compare
the testing sample with E[x; o] of the first distribution, i.e., ;}, and with F[xs o]
of the second distribution, i.e., h + g Again, the sample will be labeled with
respect to the class which minimizes the corresponding quantity. The proofs of
the equivalence of this to the Bayesian decision follows along the same lines as
the case when h > :1,), and is omitted to avoid repetition.

Hence the theorem! a
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Experimental Results: Uniform Distribution - 2-OS. The CMOS method
explained in Section has been rigorously tested for various uniform distri-
butions with 2-OS. In the interest of brevity, a few typical results are given
below.

For each of the experiments, we generated 1,000 points for the classes w; and
wo characterized by U(0,1) and U(h,1 + h) respectively. We then invoked a
classification procedure by utilizing the Bayesian and the CMOS strategies. In
every case, CMOS was compared with the Bayesian classifier for different values
of h, as tabulated in Table[Il The results in Table [l were obtained by executing
each algorithm 50 times using a 10-fold cross-validation scheme.

Table 1. Classification of Uniformly distributed classes by the CMOS 2-OS method
for different values of h

h 0.95 0.90 0.85 0.80 0.75 0.70
Bayesian 97.58 95.1 92.42 90.23 87.82 854
CMOS 9758 95.1 92.42 90.23 87.82 85.4

Observe that in every case, the accuracy of CMOS attained the Bayes’ bound.
By way of example, we see that CMOS should obtain the Bayesian bound for
the distributions U(0,1) and U(0.8,1.8) whenever n < [10-% = 9. In this case,
the expected values of the moments are 110 and 190 respectively. These results

justify the claim of Theorem [l

Theoretical Analysis: Uniform Distribution - k-OS. We have seen from
Theorem [ that the moments of the 2-OS are sufficient for the classification to
attain a Bayes’ bound. We shall now consider the scenario when we utilize other
k-OS. The formal result pertaining to this is given in Theorem

Theorem 2. For the 2-class problem in which the two class conditional distri-
butions are Uniform and identical as U(0,1) and U(h, 1+h), optimal Bayesian
classification can be achieved by using symmetric pairs of the n-0S, i.e., the
n —k OS for wi and the k OS for wo if and only if k > ("H)Q(l*h).

Proof. We know that for the uniform distribution U(0, 1), the expected values
of the first moment of the k-order OS have the form E[xy ] = nf_l. Our claim
is based on the classification in which we can choose any of the symmetric pairs
of the n-0S, i.e., the n—k OS for w; and the k OS for wy, whose expected values
are ”;ﬁ'l and h + nil respectively.

Consider the case when h > 1 — f_{fl, the relevance of which will be argued
presently. Whenever a testing sample comes, it will be compared with the cor-
responding k-OS symmetric pairs of the expected values of the n-OS, and the

sample will be labeled with respect to the class that minimizes the distance.
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Observe that for the above rule to work, we must again enforce the ordering of
the OS of the two distributions, and this requires that:

n—k+l_ .k Lo (D —h)

— 9
nt1 ST 2 )

Eq.(@) can be seen to be:

(n+D)(1—h) _ . 2 10)

k>
2 n+1’

which justifies the case under consideration. As we have already proved that the
Bayesian bound can be achieved by a comparison to the corresponding means
(in Eq.(@)), which in turn simplifies to 2 ~ w; <= 2z < h'g"l, we need to
show that to obtain optimal accuracy using these symmetric n — k and k& OS,

D(z,01) < D(z,02) <= 2z < h'gl. Indeed, the OS-based classification also

attains the Bayesian bound because:

—k+1 k
D(z,0:1) < D(z,02) <~ D(x, " + ) < D(x, h+n+1>

n+1
n—k+1 k
<— T — < h+ —x
n—+1 n—+1
h+1
= 7 < ; . (11)

For the symmetric argument when h < 1 — nzfl, the CMOS will compare the
testing sample with E[xy ] of the first distribution and E[x,_ »] of the second
distribution and the classification is obtained based on the class that minimizes
this distance. The details of the proof are analogous and omitted. Hence the

theorem! 0O

An alternate methodology to visualize the theorem and its consequences is given
in [I2/T6], and is omitted here in the interest of space.

Experimental Results: Uniform Distribution - k-OS. The CMOS method
has also been tested for the Uniform distribution for other & OS. In the interest
of brevity, we merely cite one example where the distributions for w; and wo were
characterized by U (0, 1) and U (0.8, 1.8) respectively. For each of the experiments,
we generated 1,000 points for each class, and the testing samples were classified
based on the selected symmetric pairs for values k and n — k respectively. The
results are displayed in Table

To clarify the table, consider the row given by Trial No. 6 in which the 7-
OS were invoked for the classification. Observe that the k-OS are now given
by ”;ﬁl and nil respectively. In this case, the possible symmetric OS pairs
could be (1,6), (2,5), and (3,4) respectively. In every single case, the accuracy
attained the Bayes’ bound, as indicated by the results in the table.

The consequence of violating the condition imposed by Theorem [2] can be seen
from the results given in the row denoted by Trial No. 9. In this case, the testing
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Table 2. Results of the classification obtained by using the symmetric pairs of the OS
for different values of n. The value of h was set to be 0.8. Note that in every case, the
accuracy attained the Bayes’ value whenever the conditions stated in Theorem [2] were
satisfied.
Trail No. Order(n) Moments 0S:1 0S; CMOS Pass/Fail
1 Two {i1<i<2}
Three  {} |1 <i<3}

h+ 13 9023  Passed
h+; 90.23  Passed
Four {i1<i<4} h+ ! 9023  Passed
h+7 90.23  Passed

90.23 Passed

h+2
h+3 9023  Passed

Five {¢ 1 <i<s5}
Six {i1<i<e6}

2
3

4

5 7
6 Seven {i[1<i<T}

7

8

9

OO WUl Ik Ok Uk BRWw W

Eight  {} [1<i<8}
Nine {; [1<i<9}

Ten {;, [1<i<10} 19 A+, 977  Failed

11

h+3 9023  Passed

=1

h+ 2 9023  Passed

-
o

10 Ten {/[1<i<10} 7 h+ 2 9023  Passed
11 Ten {/[1<i<10} [ h+ % 9023 Passed
12 Ten {/[1<i<10} 5 h+ 7 9023  Passed

attained the Bayes accuracy for the symmetric OS pairs (2,9), (3,8), (4,7) and
(5, 6) respectively. However, the classifier “failed” for the specific 10-OS, when
the OS used were %(1) and h + 111, as these values did not satisfy the condition
h>1-— n2+k1. Observe that if h < 1— n2+kl’ the symmetric pairs should be reversed,
ie., nf_l for the first distribution, and h + ”;f_‘fl for the second distribution, to
obtain the optimal Bayesian bound. The astonishing facet of this result is that
one obtains the Bayes accuracy even though the classification requires only two
points distant from the mean, justifying the rationale for BI schemes, and yet

operating in an anti-Bayesian manner!

Remark: We believe that the CMOS, the classification by the moments of Order
Statistics, is also true for multi-dimensional distributions. For a prima facie case,
we consider two (overlapping) 2-dimensional uniform distributions Uy and Us in
which both the features are in [0, 1] and [h, 1 + h]? respectively. Consequently,
we can see that the overlapping region of the distributions forms a square. In
this case, it is easy to verify that the Bayesian classifier is the diagonal that
passes through the intersection points of the distributions. For the classification
based on the moments of the 2-OS, because the features are independent for both
dimensions, we can show that this is equivalent to utilizing the OS at position
g of the first distribution for both dimensions, and the OS at the position h + é
of the second distribution for both dimensions.
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Table 3. Classification of Uniformly distributed 2-dimensional classes by the CMOS
2-OS method for different values of h. In the last two cases, the OS points of interest
are reversed as explained in Section

h 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60
Bayesian 99.845 99.505 98.875 98.045 97.15 95.555 94.14 91.82
CMOS 99.845 99.505 98.875 98.045 97.15 95.555 94.14  91.82

The CMOS method for 2-dimensional uniform distributions U; (in [0,1] in
both dimensions) and U (in [k, 1 + h] in both dimensions) has been rigorously
tested, and the results are given in Table[8l A formal proof for the case when the
second class is distributed in [h1, 1 + h1] X [ha, 1 + ho], and for multi-dimensional
features is currently being devised. It will appear in a forthcoming paper.

3.3 The Laplace (or Doubly-Exponential) Distribution

The Laplace distribution is a continuous uni-dimensional pdf named after Pierre-
Simon Laplace. It is sometimes called the doubly exponential distribution, be-
cause it can be perceived as being a combination of two exponential distributions,
with an additional location parameter, spliced together back-to-back.

If the class conditional densities of w; and wy are doubly exponentially
distributed,

A
filz) = 21 e~Mlzmal oo < 1 < 00,and
Az —X2|z—ca|
fg(x)=26 F=el oo < < 00,

where ¢; and co are the respective means of the distributions. By elementary
integration and straightforward algebraic simplifications, the variances of the
distributions can be seen to be )\2% and /\23 respectively.

If A1 # A2, the samples can be classified based on the heights of the distribu-
tions and their point of intersection. The formal results for the general case are
a little more complex. However, to prove the analogous results of Theorem [l for
the Uniform distribution, we shall first consider the case when Ay = A2. In this
scenario, the reader should observe the following:

— Because the distributions have the equal height, i.e. Ay = Ao, the testing
sample x will obviously be assigned to wy if it is less than ¢; and be assigned
to wo if it is greater than cs.

— Further, the crucial case is when ¢; < x < ¢o. In this regard, we shall analyze
the CMOS classifier and prove that it attains the Bayes’ bound even when
one uses as few as only 2 OSs.



12 A. Thomas and B.J. Oommen

Theoretical Analysis: Doubly-Exponential Distribution. By virtue of
Eq. @) and (@), the expected values of the first moments of the two OS can be
obtained by determining the points where the cumulative distribution function
attains the values ! and g Let u; be the point for the percentile g of the first

3
distribution, and us be the point for the percentile § of the second distribution.

These points can be obtained as u; = ¢; — )\11 log (3) and us = ¢ + )\12 log (g)
With these points at hand, we can demonstrate that, for doubly exponential
distributions, the classification based on the expected values of the moments of
the 2-0S, CMOS, attains the Bayesian bound, and the proof can be seen in [21].

A similar argument can be raised for the classification based on the k-OS. For
the 2-class problem in which the two class conditional distributions are Doubly
Exponential and identical, the optimal Bayesian classification can be achieved
by using symmetric pairs of the n-OS, i.e., the n — k OS for w; and the k OS

for wy if and only if log (nzfl) > “5° and this claim is also proved in [T2/16].
Analogous results for the uni-dimensional Gaussian distribution are also avail-
able, but omitted here, in the interest of brevity. They can be found in [T2/16].

4 Conclusions

In this paper, we have shown that the optimal Bayes’ bound can be obtained by
an “anti-Bayesian” approach named CMOS, Classification by Moments of Order
Statistics. We have proved that the classification can be attained by working with
a very few (sometimes as small as two) points distant from the mean. Further,
if these points are determined by the Order Statistics of the distributions, the
optimal Bayes’ bound can be attained. The claim has been proved for many
uni-dimensional distributions within the exponential family. The corresponding
results for some multi-dimensional distributions have been alluded to, and the
theoretical results have been verified by rigorous experimental testing. Apart
from the fact that these results are quite fascinating and pioneering in their
own right, they also give a theoretical foundation for the families of Border
Identification (BI) algorithms reported in the literature.
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