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Abstract. Common classifier models are designed to achieve high accu-
racies, while often neglecting the question of interpretability. In particu-
lar, most classifiers do not allow for drawing conclusions on the structure
and quality of the underlying training data. By keeping the classifier
model simple, an intuitive interpretation of the model and the corre-
sponding training data is possible. A lack of accuracy of such simple
models can be compensated by accumulating the decisions of several
classifiers. We propose an approach that is particularly suitable for high-
dimensional data sets of low cardinality, such as data gained from high-
throughput biomolecular experiments. Here, simple base classifiers are
obtained by choosing one data point of each class as a prototype for
nearest neighbour classification. By enumerating all such classifiers for
a specific data set, one can obtain a systematic description of the data
structure in terms of class coherence. We also investigate the performance
of the classifiers in cross-validation experiments by applying stand-alone
prototype classifiers as well as ensembles of selected prototype classifiers.

1 Introduction

The rapid development of molecular high-throughput technologies has driven
the need for computational approaches to mine and analyze the resulting data.
These data sets usually comprise only a small set of probes, while being ex-
tremely high-dimensional. An intuitive understanding of such data is usually
impossible. Classifiers can provide decision support to life scientists when judg-
ing new probes. However, researchers are often interested in the basic character-
istics that distinguish probes of different types. Feature selection techniques try
to identify those features (e.g. genes) that are relevant for the classification.

Instead of selecting relevant features, we propose an approach which identi-
fies probes that characterize certain classes well. This method is based on simple
prototype set classifiers that comprise one sample from each class. Due to their
simple structure and their data dependency, it is possible to enumerate all such
classifiers for low-cardinality data sets, such as microarray data. This allows
for a systematic characterization of the data set. For instance, the classification
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performance of such simple base classifiers can give insight into the distribution
and coherence of the classes. We describe several ways of extracting and visu-
alizing information obtained from the universe of basic prototype set classifiers
on a data set. Although single prototype set classifiers may be too simple to
achieve a competitive classification accuracy, ensembles of such base classifiers
that complement each other well can achieve a performance similar to state-of-
the-art classifiers. We propose an ensemble method and evaluate it on several
microarray data sets.

Prototype-based classification is used in many state-of-the-art classifiers, such
as k-Nearest Neighbour (k-NN) classification [1], Learning Vector Quantization
(LVQ) [2,3], Nearest Centroid classification, Nearest Medioid classification, or
Nearest Shrunken Centroid classification [4]. With the exception of k-NN, these
approaches generate prototypes based on the training set instead of directly
drawing data points from the training set. Kuncheva and Bezdek [5] analyze
whether prototypes should be selected or generated from the training set. They
conclude that prototype selection should be preferred over prototype generation,
as determining clusters in the data does not guarantee a good classification
performance.

Our concept is related to approaches aiming at a reduction of the training
set for the k-NN classifier. E.g., the Condensed k-NN approach tries to reduce
the training subset in such a way that it maintains the performance of the full
training set [6]. Many approaches make use of search heuristics, such as Genetic
Algorithms (e.g. [7,8]). An overview of training subset selection for k-NN is given
in [9] and [10].

Our approach differs from such neighbourhood condensation methods in sev-
eral ways: Firstly, we focus on a very simple prototype representation using only
a single prototype per class, while k-NN neighbourhood condensation can yield
reduced training sets of arbitrary size. In this way, all possible classifiers can
be examined, without the need of search heuristics to identify optimal sample
subsets. Secondly, we consider these classifiers as base learners, i.e. they are not
meant to achieve a high prediction accuracy on their own. Instead, they serve
as data set descriptors and members of ensemble classifiers.

The structure of the paper is as follows: Section 2 describes the basic Rep-
resentative Prototype Set (RPS) classifiers, their use for the characterization of
data sets, and ensembles of RPS classifiers. In Section 3, the results of an appli-
cation of the new methods to six well-known microarray data sets are presented.
Section 4 discusses the results and concludes the paper.

2 Representative Prototype Set Classification

2.1 Basic Prototype Classifiers and Their Properties

We define a basic Representative Prototype Set (RPS) classifier as a set of proto-
types, one for each class. The prototypes P are chosen from the training set. The
labels of unseen data points are predicted according to the label of the nearest
prototype in the set.
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Let T =
⋃

i=1,...,k Ti denote a labeled training set comprising k classes. A
Representative Prototype Classifier consists of a set of prototypes

P = {pi ∈ Ti | i = 1, . . . , k} ,

where each pi = (xi, i) is a feature vector xi ∈ Rn labeled with class label i.
The classifier predicts an unseen data point v by choosing the prototype pi

with the smallest distance d(v,xi), i.e.

RPSP(v) = argmini=1,...,k d(v,xi).

In the following, we use the Euclidean distance.
The RPS classifier is a special case of general prototype classifiers PC which

rely on a set of prototypes
Q ⊆ T ,

i.e, Q is not necessarily restricted to a single prototype per class.
The general prototype concept described above is data-dependent: A classi-

fier c is called data-dependent if it can be determined entirely according to a
relatively small set of training samples T ′ ⊆ T . That is, the training on both
sets will result in the same classification model,

cT ′ = cT . (1)

The set of samples T ′ is called the compression set of the data-dependent classi-
fier. For the above concept, the compression set is equal toQ. If the prototype set
corresponds to the complete training set (Q = T ), the data-dependent prototype
classifier corresponds to the well-known 1-Nearest Neighbour classifier [1].

Data-dependent classifiers allow for the specification of sample compression
bounds [11]. These bounds can be used to give an upper limit of the true classifi-
cation error probability R of a data-dependent classifier c. The main component
of a sample compression bound is an empirical error rate R calculated on the
remaining set of samples T \ Q.

Theorem 1 (e.g. [12]). For a random sample T of iid examples drawn from
an arbitrary, but fixed distribution D and for all δ ∈ (0, 1],

Pr
T ∼D|T |

(
∀Q ⊆ T with c = PC (x,Q): RD(c) ≤ Bin

(
R(c, T \ Q),

δ

|T |
( |T |
|T \Q|

)
))

≥ 1−δ

Here, Bin denotes the binomial tail inversion.

Proof. The sample compression bound given in Theorem 1 is a direct application
of the sample compression bound in [12]. ��
If there is a set of data-dependent prototype-based classifiers that all achieve
the same empirical error rate, it follows from Theorem 1 that the classifier with
the smallest compression set is most reliable. This means that in case of sev-
eral classifiers with different numbers of prototypes, but equal performance, the
extreme case of choosing the smallest possible reference set P as in RPS is the
most favorable option.
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2.2 Analyzing Data Set Characteristics

The total number of possible RPS classifiers for a training set T is
∏

i=1,...,k |Ti|.
Consequently, it is often feasible to enumerate the complete set of RPS classi-
fiers for a given data set, in particular regarding biomolecular data sets of low
cardinality. This complete set can be used to characterize a data set according to
the coherence of classes and representativeness of single training data points. For
the following visualization and summarization approaches, we focus on two-class
data sets.

For each RPS classifier c based on a prototype set P , we can measure its
empirical accuracy on the remaining training samples that are not included in
the classifier:

A(c, T \ P) = 1− R(c, T \ P) =
| {(v, l) ∈ T \ P | c(v) = l} |

|T \ P|

For a two-class data set, this can be visualized in a heat map: the samples of
the first class are plotted on the x axis, and the samples of the second class
are plotted on the y axis. The greyscale color indicates the empirical accuracy
of a combination, with a light color denoting a high accuracy and a dark color
denoting a low accuracy. By applying complete-linkage hierarchical clustering,
samples that exhibit a similar accuracy in combination with samples from the
other class are grouped.

To get an impression of how well the data can be described by small sets of
representative prototypes, we plot the distribution of the empirical accuracies
A for all possible RPS classifiers c in form of a histogram. If many classifiers
achieve high empirical accuracies, the histogram shows a right-skewed distribu-
tion, whereas data sets that are hard to separate by small prototype sets show
a left-skewed distribution.

The empirical error rate of the classifiers is not the only performance measure
that can be used to characterize a dataset. It is also of interest to know if all
classifiers misclassify more or less the same set samples. A possible measure of
this similarity of two classifiers ca and cb is Yule’s Q statistic [13]:

Qi,j =
M11M00 −M01M10

M11M00 +M01M10
(2)

Here, M ij denotes the number of co-occurences of correct predictions (1) or
incorrect predictions (0) of ca and cb. E.g, M

11 is the number of samples that
are predicted correctly by both ca and cb, whereas M

10 is the number of samples
that are predicted correctly by ca, but misclassified by cb.

The range of Q is [−1, 1]. It is equal to 1 if both classifiers correctly predict
exactly the same set of samples. It is equal to -1 if all samples correctly clas-
sified by ca are misclassified by cb and vice versa. If ca and cb are statistically
independent, E [Q] = 0.

Calculating Q for all pairs of possible RPS classifiers provides further infor-
mation on a data set: If many pairs yield a Q close to 1, the data set is probably
very coherent, and classes consist of a single cluster. By contrast, if many pairs
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achieve a Q close to -1, a prototypic description of the data set is not easily
available, and classes probably consist of several disjoint clusters. A histogram
of the distribution of Yule’s Q on a data set can reveal such information.

2.3 Ensemble RPS Classification

A single RPS classifier can be seen as a simple base learner, but may not achieve
good accuracies if any of the classes is distributed over two or more separate
clusters due to the fact that each class is represented by only one prototype.
To achieve a higher robustness and accuracy, several basic RPS classifiers can
be combined to an ensemble classifier (denoted as eRPS). In the following, the
ensemble set of m base learners is written as

Em = {c1, . . . , cm}

To train an eRPS ensemble on a training data set T , we determine all possible
base RPS classifiers cj and order them by their empirical accuracies A(cj , T ).
Em then consists of the m RPS classifiers with the highest empirical accuracies.

An unseen sample v is classified according to a majority vote of the base
learners, i.e.

eRPSEm(v) = argmax1,...,k | {cj ∈ Em | cj(v) = i} |

3 Experiments

We applied our data set characterization as well as the ensemble classifier to
several well-known microarray data sets:

The Bittner data set [14] contains expression profiles of 31 melanomas and 7
controls in 8067 features. The initial analysis of this data showed a stable cluster
of 19 of the melanomas. In this analysis, the samples from this cluster (ML1)
and the 19 remaining samples (melanomas and controls, ML2) were treated as
distinct classes.

The Golub data set [15] contains data from a microarray experiment of acute
Leukemia. The data set contains examples for two disease subtypes: ALL (acute
lymphoblastic leukemia) and AML (acute myeloid leukemia). The 47 ALL and
25 AML examples consist of 3571 expression measurements. The probes were
selected and normalized according to a procedure proposed by Dudoit et al. [16].

The Notterman data set [17] contains 18 paired samples of colon adeno-
carcenomas (CA) and normal tissues (N). The expression profiles comprise 7457
features.

The Pomeroy data set [18] data set contains examples of two different kinds
of embryonal tumors of the central nervous system, 25 classic medulloblastomas
(CMD) and 9 desmoplastic medulloblastomas (DMD). The dataset contains 7129
unspecific genes.

The Shipp data set [19] consists of 77 samples of single B-cell lineage. 58 of
these samples are classified as diffuse large B-cell lymphoma (DLBCL); the other
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19 samples are follicular lymphoma (FL). The expression profiles of 7129 genes
were collected using an Affymetrix HU6800 chip.

The West data set [20] comprises different breast cancer types. It contains 49
samples, which can be distinguished according to their estrogen receptor status
(25 ER+ and 24 ER-). The expression profiles of 7129 features were measured
using the HuGeneFL Chip.

For these six data sets, we include the heatmaps and accuracy histograms for
single RPS classifiers as well as the histograms of Yule’s Q statistic on pairs of
RPS classifiers in Figures 1 and 2. The left columns of the figures show heatmaps
of the accuracies of possible prototype sets in the data set. The greyscale color
indicates the empirical accuracy of a combination, with a light color denoting a
high accuracy and a dark color denoting a low accuracy. By applying a hierarchi-
cal clustering algorithm, samples that exhibit a similar accuracy in combination
with samples from the other class are grouped. The columns in the middle show
histograms of the same accuracies. The right columns depict histograms of the
distribution of Yule’s Q statistic for all pairs of prototype sets. This statistic
measures how similarly these prototype sets predict the labels of samples.

To assess the classification performance of the RPS classifier, we conducted
stratified cross-validation experiments, splitting the data into 10 random subsets,
each of which was once used as a test set to measure the error, while the remain-
ing samples were used for training. The cross-validation error was summed up
over the 10 subsets, and the whole procedure was repeated 10 times. This yields
a mean cross-validation error over the 10 runs.

Table 1 lists the mean cross-validation error percentage of the eRPS classifier,
the k-Nearest Neighbour classifier, and the SVM with linear and RBF kernel for
different configurations:

For the eRPS classifier, the number of prototype sets m in the ensemble was
varied from 1 to 15. For k-NN, the number of neighbours k was varied, and for
the linear SVM, different values of the cost parameter were applied. For the SVM
with RBF kernel, we set the cost parameter to 100 (which appeared to yield the
best results) and varied the γ parameter.

On the Bittner data set, eRPS clearly outperforms all other classifiers with
only a single prototype set. The performance decreases when adding more sets
to the majority vote, but remains clearly better than the results of the other
classifiers. The accuracy histogram in Figure 1 can give a possible explanation for
the good performance with few prototype sets: Most such base classifiers achieve
a bad accuracy of 0.5 or less. However, there is a small number of prototype
sets with an accuracy of more than 90%. As their performance is drastically
better than nearly all other prototype sets, these good prototype sets are likely
to be the top-ranked sets even in resampling settings, so that they are also
included in the ensembles derived from the cross-validation subsets.This can also
be seen in the heatmap: Many of the samples seem to be completely unsuitable
as prototypes, as they yield a bad performance in any combination. Only a small
set of configurations achieves a considerably higher performance.
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Fig. 1. Visualization of data set properties for the Bittner data set, the Golub data set
and the Notterman data set
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Fig. 2. Visualization of data set properties for the Pomeroy data set, the Shipp data
set and the West data set
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Table 1. Mean cross-validation prediction error percentage of Representative Proto-
type Set ensembles, k-Nearest Neighbour, and Support Vector Machines on six mi-
croarray data sets

Bittner Golub Notterman Pomeroy Shipp West

eRPS, m = 1 7.63 10.69 4.72 27.06 19.48 34.69

eRPS, m = 3 7.89 4.58 3.61 19.12 12.08 25.71

eRPS, m = 5 8.16 3.33 3.06 17.35 8.70 21.02

eRPS, m = 7 10.00 2.50 3.33 19.41 6.49 18.57

eRPS, m = 9 10.00 1.67 2.78 22.94 5.84 18.16

eRPS, m = 11 10.00 1.94 2.78 24.12 5.71 18.16

eRPS, m = 13 10.53 2.36 2.78 23.53 5.71 18.16

eRPS, m = 15 10.79 2.92 2.78 25.29 5.71 18.78

k-NN, k = 1 27.89 2.92 2.78 21.18 13.12 10.41

k-NN, k = 3 22.89 1.94 3.33 21.76 12.47 23.47

k-NN, k = 5 19.21 3.33 3.06 19.41 11.43 25.10

k-NN, k = 7 32.11 3.06 5.83 24.41 10.13 26.94

k-NN, k = 9 37.63 2.50 5.83 25.00 7.66 27.96

k-NN, k = 11 41.05 3.33 6.67 26.47 7.40 27.14

linear SVM, cost = 0.001 22.89 1.39 2.78 18.53 3.77 8.98

linear SVM, cost = 0.01 22.89 1.94 2.78 18.53 3.77 8.98

linear SVM, cost = 0.1 22.89 1.94 2.78 18.53 3.77 8.98

linear SVM, cost = 1 22.89 1.94 2.78 18.53 3.77 8.98

linear SVM, cost = 10 22.89 1.94 2.78 18.53 3.77 8.98

RBF SVM, cost = 100, γ = 10−07 32.89 34.72 24.72 26.47 24.68 57.14

RBF SVM, cost = 100, γ = 10−06 22.89 25.97 2.78 20.88 3.77 11.63

RBF SVM, cost = 100, γ = 10−05 21.32 1.53 5.56 16.47 5.32 12.65

RBF SVM, cost = 100, γ = 10−04 28.16 2.78 12.50 17.65 7.92 16.94

RBF SVM, cost = 100, γ = 10−03 46.58 10.42 46.67 26.47 24.68 40.61

On the Golub data set, one configuration of the linear SVM achieves a slightly
smaller error than the best eRPS classifiers, but both achieve an error of less
than 2%. Here, more than one RPS classifier is required in the ensemble, with
the best performance achieved for 9 base classifiers. This is also visible in the
plots in Figure 1: The accuracy histogram shows that many RPS classifiers
achieve good accuracies of 80% or more, while the distribution of the Q statistic
indicates that there are many prototype sets that predict the samples differently.
Hence, combining several good prototype sets that complement each other well
can increase the performance. The heatmap indicates that the last three ALL
samples are unsuitable as prototypes, while some other samples (e.g. AML 12,
AML 13, AML 18, ALL 16, ALL 19, ALL 26) achieve good accuracies in almost
any combination.

On the Notterman data set, the performance of all classifiers is similar, with
the best error of 2.8% achieved by many configurations. The distribution of Yule’s
Q in Figure 1 reveals a possible reason: Most of the prototype classifiers seem to
predict the same labels, while a small fraction of prototype sets behaves entirely
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different. Thus, ensembles comprising prototype classifiers of both categories will
be able to improve the accuracy compared to single prototype classifiers, but the
predictions of such ensembles will all be similar.

On the Pomeroy data set, the classification error is mostly similar for all
three classifiers. The best accuracy is achieved by a configuration of the SVM
with RBF kernel, followed by a configuration of 5 prototype sets of eRPS. The
data set shows a broad variety of possible prototype sets whose classifications
partly overlap, but are different for other samples (see the Q statistic histogram
in Figure 2). Four samples in class CMD seem to be unsuitable prototypes (see
heatmap), which indicates that this class is possibly incoherent.

On the Shipp data set, the SVM shows the best performance with an error of
3.8%. Some configurations of eRPS still achieve a very low error of 5.7%. Here,
many basic prototype classifiers yield the same performance, but few achieve an
accuracy of more than 90% (see Figure 2). Many of the classifiers predict similar
labels. Interestingly, the heatmap shows that sample FL 6 yields a high accuracy
in combination with any data point from the DLBCL class, which means that
it is an excellent representative for his class.

On the West data set, eRPS is clearly outperformed by 1-NN and the SVM.
Figure 2 shows that most prototype set classifiers achieve accuracies of 0.6 or
less, such that this data set is probably unsuitable for prototype-based classifi-
cation. At the same time, many of the base classifiers behave similarly, i.e. they
misclassify the same samples. As a consequence, ensembles cannot benefit from
a diverse set of base learners.

4 Discussion and Conclusion

The high dimensionality of current biomolecular data sets often makes an in-
tuitive understanding impossible. Data mining approaches can provide decision
support for such data. However, such models are usually not designed for easy
interpretation.

We describe very simple base classifiers that predict the labels of unseen data
points according to a set of single prototypes. Due to the simple nature and
the data dependency of the Representative Prototype Set classifier, it is possible
to describe data sets systematically by enumerating all possible classifiers. Fur-
thermore, ensembles of such basic classifiers yield a prediction accuracy similar
to state-of-the-art approaches. We have shown how the two key components of
this paper, data set analysis and ensemble classification, complement each other
well and can give insights into the data structure. In principle, the proposed
methods work for any other type of concept class that allows for enumerating
all classifiers.

As for any other classification approach, there is “no free lunch” [21]: the RPS
approach is particularly suitable for certain data distributions, but inappropriate
for others. The data set analysis also provides a way of judging the ensemble
classifier’s suitability for a specific type of data. For example, both the Bittner
data set – where eRPS performs excellently – and the West data set – where
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eRPS is inferior to other approaches – show characteristic profiles in the data
set analysis.

Future work will include different distance and correlation measures as well
as other ways of aggregating the votes of the base classifiers in the ensembles.
Furthermore, the selection of ensembles could be modified in such a way that
the correct and incorrect predictions of the base classifiers on the training set
complement each other.
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