Evaluation of Standardized Password-Based Key
Derivation against Parallel Processing Platforms

Markus Diirmuth, Tim Giineysu, Markus Kasper,
Christof Paar, Tolga Yalcin, and Ralf Zimmermann

Horst Gortz Institute for IT-Security, Ruhr-University Bochum

Abstract. Passwords are still the preferred method of user authentica-
tion for a large number of applications. In order to derive cryptographic
keys from (human-entered) passwords, key-derivation functions are used.
One of the most well-known key-derivation functions is the standardized
PBKDF2 (RFC2898), which is used in TrueCrypt, CCMP of WPA2, and
many more. In this work, we evaluate the security of PBKDF2 against
password guessing attacks using state-of-the-art parallel computing
architectures, with the goal to find parameters for the PBKDF2 that
protect against today’s attacks. In particular we developed fast imple-
mentations of the PBKDF2 on FPGA-clusters and GPU-clusters. These
two families of platforms both have a better price-performance ratio than
PC-clusters and pose, thus, a great threat when running large scale guess-
ing attacks. To the best of our knowledge, we demonstrate the fastest
attacks against PBKDF2, and show that we can guess more than 65%
of typical passwords in about one week.

1 Introduction

Password-based user authentication is the most widely used form of user au-
thentication, and it will be in the foreseeable future. Alternative technologies
such as security-tokens and biometric identification exist but have a number of
drawbacks that prevent their wide-spread use outside of specific realms: Secu-
rity tokens, for example, need to be managed, which is a complicated task for
Internet-wide services with millions of users, they can be lost, and there needs
to be some standardized interface to connect them to every possible computing
device (including desktop computers, mobile phones, tablet PCs, and others).
Biometric identification systems require extra hardware to read the biometrics,
false-rejects cause user annoyance, and many biometrics are no secret (e.g., we
leave fingerprints on many surfaces we touch). Passwords, on the other hand,
are highly portable, easy to understand by users, and relatively easy to manage
for the administrators. Still, there are a number of problems with passwords.
Arguably the central theme is the trade-off between choosing a strong password
versus one that is human-rememberable. Various studies and recommendations
have been published presenting the imminent threat of insufficiently strong pass-
words chosen for security systems by humans (see, e.g., [1H3]).

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 716 2012.
© Springer-Verlag Berlin Heidelberg 2012

Evaluation of Standardized Password-Based Key Derivation 717

Passwords are usually not stored in clear in computer systems but the hash
of the password is stored instead. Consequently, guessing attacks are the most
efficient method of attacking passwords, and studies indicate that a substantial
number of passwords can be guessed with moderately fast hardware [4]. One
measure to mitigate guessing attacks on passwords is to increase the time re-
quired to compute the key derivation function from the human-entered password.
The most common approach nowadays is to run the password through a large
number of hash function evaluations.

With the release of PKCS #5 v2.0 and RFC 2898 |[5], a standard for pass-
word key derivation schemes based on a pseudo-random function (PRF) with
variable output key size has been established. The specified Password-Based
Key Derivation Function #2 (PBKDF2) has been widely employed in many
security-related systems, such as TrueCrypt [6], OpenDocument Encryption of
OpenOffice [7], and CCMP of WPA2 [§], to name only a few. The PRF typically
involves an HMAC construction based on a cryptographic hash function that can
be freely chosen by the designer. Besides the password, the PBKDF2 requires
a salt S, a parameter for the desired output key length ki .,, and an iteration
counter value ¢ that specifies the number of repeated invocations of the PRF.
While security aspects of salt and key length are quite well understood [9], it re-
mains an open question how large ¢ should be for practical use — especially with
respect to adversaries who have access to very powerful computing resources,
which have become more widely available in recent years. In particular, an im-
pressive number of parallel computations, and thus password guessing attacks,
can be performed with (clusters of) the latest many-core CPUs, highly thread-
optimized graphics cards (GPUs), or modern Field-Programmable Gate Arrays
(FPGASs). These latest platforms need to be considered when fixing ¢ in practical
systems. Note that recent security applications specify ¢ typically to be in the
range of 103 to 10? iterations (e. g., TrueCrypt performs between 1000 and 4000
iterations depending on the hash function applied). Referring to Paragraph 4.2
of RFC 2898, a minimum iteration count of 1000 is recommended in the original
release of the standard. We argue that this number should be regularly updated
to reflect the performance gains of the most recent high-performance computing
platforms. In this work, more than 10 years after the initial release of RFC 2898,
we will re-evaluate the security margin provided by PBKDF2 with respect to
the password cracking performance of modern computing hardware.

Contribution: In this work we analyze the choice of security parameters for
PBKDEF?2 for real-world systems against state-of-the-art attacks. More precisely,
we consider different attack implementations on PBKDF2 using a range of dif-
ferent cluster systems employing recent CPU, GPU, and FPGA devices. As a
practical case study, we take the recent security parameters used by TrueCrypt
to implement attacks on PBKDF2. We compare the performance of our imple-
mentations to identify the most promising computing platform for the attack.
To the best of our knowledge, we demonstrate the fastest known attack against
PBKDF2. We combine these results with password guessing attacks based on
Markov models |2, [L0] to show that we can guess more than 65% of typical

718 M. Diirmuth et al.

passwords in about one week. Finally, we derive recommendations how parame-
ters for PBKDF2 should be chosen adequately.

Outline: In Section] we introduce some background on password-based key
derivation, the PBKDF2 standard, and the state-of-the-art platforms for crack-
ing passwords, followed by an introduction to password security and efficient
password guessing in Section [Bl In Section]l we describe the relevant program-
ming techniques of modern GPUs and our GPU implementation of PBKDF2.
Likewise, in Section bl we describe the FPGA cluster RIVYERA, and our imple-
mentation on this cluster. We compare the performance of the two implementa-
tions in Section [6, and discuss the implications of these results in Section [7

2 Background and Related Work

With many keyboard-enabled computing systems, passwords are still state-of-
the-art for user authentication. The standardized PBKDF2 maps passwords to
secret keys that can be used for cryptographic operations. We review the basic
operation of PBKDF2 and relevant previous work in the following.

2.1 Password-Based Key Derivation

The Password-Based Key Derivation Function #2 (PBKDF2) takes a user-
defined PRF and requires four inputs to generate the output key ko with

kout = PBKDFQPRF(PWd, S, C, kLen)a

where Pwd is the password, S the salt, ¢ the iteration counter, and ke, the
desired key output length. By variation of the number of performed iterations c,
it is possible to adjust the time needed for computation and thus, by selecting
an adequately high number, key strengthening can be achieved rendering pass-
word related brute-force attacks less effective. In practice, common values for
the applications mentioned above range between the recommended minimum of
1000 |5, 4.2] and 4000 iterations.

Figure[llshows a simplified block diagram of the PBKDF2 scheme (specifically
when using the SHA-512). An HMAC algorithm is repeatedly chained such that
the outputs of all HMAC runs are added to the derived key. If the desired output
key length is larger than the output of the hash function, the scheme is iterated
multiple times, each time with a different counter value CNT. Depending on
the input and output length two cases need to be distinguished: If the input
length of the hash function is smaller than a padded hash-value, then the HMAC
requires at least 6 executions of the compression function. Otherwise, an HMAC
value can be computed by means of four executions of the compression function
(e.g., RipeMD-160 and SHA-512).

As the password in each chain of the HMAC computations is the same, the
outputs of the leftmost compression functions corresponding to the hashing of

Evaluation of Standardized Password-Based Key Derivation 719

PASSWD SALT,

A 0x36 KEY #
INIT SHA SHA SHA
512 512 512
PASSWD Key
A 0x5C 0D key iteration 1 iteration
> 1000
INIT SHA (DKEY)
HASH HASH

Fig. 1. SHA-512 based PBKDF2 scheme

the password xor 0x36. .36 or 0x5C. . 5C, will not change. Thus they can be com-
puted exactly once per password and then be reused for all subsequent HMAC
computations using the same password. Furthermore, the salt value will never
change during our brute-force attack, so the hash value corresponding to the
hashed salt can be reused when performing the HMAC chain for different counter
values. These two measures reduce the required number of computations for a
password evaluation to one half and one third for an HMAC with 4 and 6 invo-
cations of the compression function, respectively.

In our evaluation, we have targeted TrueCrypt [6], a free open-source disc
encryption software, where the password and salt sizes are fixed to 512 bits. For
consistency, we consider TrueCrypt starting with Version 5.0 (released February
5, 2008). Since then, TrueCrypt uses AES-256, Serpent, and Twofish in XTS
mode as block ciphers and generates the keys using either RIPEMD-160, SHA-
512, or Whirlpool as supported hash functions. The number of HMAC iterations
they require are 2000, 1000, and 1000, respectively and the corresponding number
of hash runs are 4003, 2002, and 4002. The variation in the number of hash
executions is due to the input block sizes of each hash function. TrueCrypt
supports combinations of the block cipher algorithms. In the best case, when
only one encryption algorithm is used, 512 key bits are required, and 1536 key
bits in the worst case.

2.2 Processing Platforms for Password Cracking

Implementing password cracking on general purpose CPUs is straightforward,
however, due to the versatility of their architecture, CPUs usually do not achieve
an optimal cost-performance ratio for a specific application. As an example, there
exist a number of cracking tools for TrueCrypt compiled for x86 CPUs, but few
tools are available that go beyond re-using TrueCrypt-code, most notably True-
Crack |11, which reports 15 passwords/sec on an Intel Core-i7 920, 2.67GHz. In
the last years, other processing platforms have shown to exceed the performance
(and cost-performance ratio) of conventional CPUs, for specific applications.
Modern graphics cards (GPUs) have recently evolved into computation
platforms for universal computations. GPUs combine a large number of
parallel processor cores (as of today up to 512 atomic cores and more)
which allow highly parallel applications using programming models such as
OpenCL or CUDA. Their usefulness for password cracking was demonstrated in

720 M. Diirmuth et al.

particular by the Lightning Hash Cracker developed by ElcomSoft, which
achieves, for simple MDb5-hashed password lists, a throughput rate of up to
680 million passwords per second using an NVIDIA 9800GTX2 [12]. Further
work [13, [14] reports similarly impressive numbers with about 230 million SHA-
1 (pure) hash operations per second on an NVIDIA 260GTX GPU. TrueCrack
reports 330 passwords/sec on an NVIDIA GeForce GTX470, a press release |15
reports 2500 passwords/sec for Passware Kit 10.1, and a presentation |16] states
that ElcomSoft software cracks 52400 passwords/sec on a Tesla S1070 with 4
GPUs for WPA-PSK, which essentially is PBKDF2 using only SHA-1.

Another way to tackle the large number of computations for password cracking
efficiently is the deployment of special-purpose hardware. Moving applications
into hardware usually provides significant savings in terms of costs and provides
a boost in performance at the same time, since operations can be specifically
tailored for the target application and potentially be highly parallelized. While
Application Specific Integrated Circuits (ASIC) are expensive to develop due to
their high non-recurring engineering costs, reconfigurable Field-Programmable
Gate Arrays, or FPGAs, have been intensively studied by the crypto engineer-
ing community over the last 15 years. With today’s powerful FPGA devices
providing a configurable fabric consisting of millions of gate equivalences, it has
become possible to create very fast implementations for specific computational
problems. Given that password guessing is amenable to special-purpose hard-
ware architectures and highly parallelizable, FPGAs are a promising platform
for password cracking.

A third cost-effective platform for processing parallel applications is Sony’s
PlayStation 3 (PS3). Bevand |17], for example, presented a Unix crypt password
cracker based on the IBM Cell Broadband Engine. However, the Cell proces-
sor is slightly outdated when comparing it to recent GPU and FPGA devices.
Therefore, we do not expect the Cell processors to achieve a competitive cost-
performance ratio, and we don’t expect the PowerXCell 8i to become available
at comparable prices in subsidized commodity game consoles. Thus, we did not
include the Cell processor in our comparison.

3 Password Security

Accepted best practice mandates not to store the password pwd on the server
in plain, but store the hash h := H(pwd) of the password instead. In an offline
attack on passwords, an attacker is given access to the value h and tries to
recover the password pwd. (As opposed to online guessing attacks, where the
attacker is only given access to a login prompt or similar.)

User-generated passwords usually have a rich structure, e.g., many are simple
compositions of words from (English) language and numbers or special charac-
ters. Consequently, guessing attacks, where the attacker guesses a possible pass-
word, hashes it, and compares the hash to the stored value, are usually quite
efficient. This has been realized early, and password guessing has been deployed
for a long time (see, e.g, |1, [18420]).

Evaluation of Standardized Password-Based Key Derivation 721

In a dictionary attack, the attacker has a list of words that are likely to appear
in passwords. He computes the hashes of all these words and compares them with
the stored hash. He can use additional mangling rules, e.g., appending special
characters and numbers. Tools such as John the Ripper implement dictionary
attacks and come with large dictionaries of common passwords, often grouped
for different languages to better meet a specific site’s needs. More recent work by
Weir et al. [3] can be seen as generalization of this idea. Here, patterns that con-
stitute extended mangling rules are extracted from real-world passwords using
probabilistic grammars (context-free grammars with probabilities associated to
production rules). These structures are then used to generate passwords, based
on these structures and a dictionary as before.

3.1 Attacks Based on Markov Models

Another efficient way to guess passwords, first proposed in [2], is based on Markov
models. These base on the observation that in human-generated passwords (as
well as natural language), adjacent letters are not independently chosen, but
follow certain regularities (e.g., the 2-gram th is much more likely than tm, in
other words, the letter following a t is more likely an h than an m). In an n-gram
Markov model, one models the probability of the next character in a string based
on a prefix of length n — 1. Hence, for a given string cy,..., ¢y, we can write
P(ci,....em) = P(ery .. yenet) - [T, Plcilcing, - oo s ci1)-

In the training phase, the attacker learns the conditional probabilities from
lists of leaked plaintext passwords (e. g., the RockYou password list), from avail-
able password dictionaries, or from plain English text. In the attack phase, the
attacker generates passwords that are likely according to the Markov model. Ad-
ditionally, one filters for certain patterns that typically occur for passwords; one
defines finite automata for these patterns, and the algorithm ensures that only
passwords that are accepted by one of the automata are tested. (An example for
such a pattern is that in alpha-numeric passwords, the numerals are very likely
at the end of the password (e.g., passwordl).

We use an implementation of Markov-based password guessers from [10] to
feed our implementation with passwords. This algorithm additionally enumerates
passwords in (approximately) decreasing order of likelihood, which substantially
speeds up the guessing of frequent passwords, and does not use the hand-crafted
patterns from [2]. We train the algorithm with the RockYou dataset, a dataset
of 32 Million passwords that was leaked in an SQL injection attack in 2009 in
clear. This dataset is publicly available and regularly used for password research.
In this work we publish no information about specific passwords from the list,
so we do not see ethical problems in using this list.

3.2 Further Related Work

Using precomputations, rainbow-tables can be used to speed up the guessing
step |21,122]. An implementation of rainbow-tables in hardware is studied in [23].
A problem closely related to password guessing is that of estimating the strength

722 M. Diirmuth et al.

of a password, which is of central importance for the operator of a site to ensure
a certain level of security. In the beginning, password cracking was used to find
weak passwords [24]. Since then, much more refined methods have been devel-
oped. Later, one used so-called pro-active password checkers to exclude weak
passwords |1, 25-28|. However, most pro-active password checkers use relatively
simple rule-sets to determine password strength, which have been shown to be
a rather bad indicator of real-world password strength [29-31]. More recently,
Schechter et al. |32] classified password strength by counting the number of
times a certain password is present in the password database, and Markov mod-
els have been shown to be a very good predictor of password strength and can
be implemented in a secure way [31].

4 GPU-Based Attack

Next, we describe our implementation on GPUs as well as the required technical
background on GPU programming.

4.1 Introduction to GPU Programming

Within the last decade, the roles of GPUs changed from mere graphic processors
to general purpose processing units. Today, there are programming interfaces
from all major graphic processor manufacturers, providing easy access to the
processors of the graphic hardware, e.g., CUDA [33] developed by NVIDIA or
Stream [34] for AMD GPUs. For heterogeneous processor platforms, supporting
both CPUs and GPUs, OpenCL [35] has established combining the computa-
tional power of recent computer systems. In this section we will focus on NVIDIA
GPU devices using the CUDA programming interface.

CUDA Terminology and Code Ezecution Basics: GPUs execute code in so called
kernels, which are functions that are executed by many threads in parallel.
Each thread is member of a block of threads. All threads within a block have
access to the same shared memory, which is a kind of user-managed cache
area, and can thus interact with each other. Furthermore, threads within a
block can be synchronized with each other. Blocks define up to 3 dimensions to
index individual threads by x, y, and z coordinates within the kernel code. The
dimension of the blocks are provided as a parameter when calling a kernel from
host (i.e. CPU) code. The blocks themselves are organized within a grid. During
execution, blocks are assigned to Streaming Multiprocessors (SMs). An SM then
schedules its pending blocks in chunks of 32 threads (a warp) to its hardware,
where each thread within a warp executes the same instruction. When threads
are scheduled for high-latency memory instructions, the scheduler will execute
additional warps while waiting for the memory access to finish. This mechanism
of latency hiding is one of the main reasons for the superior performance of
GPUs: Whenever there are enough independent instructions on an SM that do
not depend on previous results the hardware can completely hide the latency of

Evaluation of Standardized Password-Based Key Derivation 723

memory accesses, by meanwhile using the idle computing cores to process the
instructions of other warps.

NVIDIA’S Tesla C2070 GPU: For our experiments, we use a machine equipped
with four Tesla C2070 GPUs by NVIDIA [36]. A single Tesla C2070 GPU consists
of 14 SMs. Each SM has its own set of 32 computing cores, i. e., the architecture
provides 448 cores within a single GPU. It provides a high memory bandwidth
of 144 GB/s and a low computational overhead to initiate and manage parallel
computations. The cores are running at 1.15GHz and can reach a single-precision
floating point performance (Peak) of up to 1.03 TFLOPS (NVIDIA [36]). (For
comparison: Intel’s recent Core i7 980 CPUs running at 3.6GHz are listed at
86 GFLOPS (Intel |37]). We refer to NVIDIA’S website [33] for more detailed
information about CUDA and the Tesla GPUs.

4.2 Implementing the KDF

In the following we describe the implementation aspects of our GPU implemen-
tation of the PBKDF2 scheme, following the specification of the PBKDF2 as
employed by TrueCrypt. To implement the PBKDF2, we decided to aim at an
implementation that avoids high-latency accesses to the main memory of the
GPU by using only fast registers and shared memory. The other major strategy
was to avoid redundant computation as detailed in Section [Z1] In the follow-
ing we provide an overview of the algorithm specific aspects of the three hash
functions RipeMD-160, SHA-512, and Whirlpool.

RipeMD-160: The state of the RipeMD hash function has a size of 320 bit, which
is divided into a left and a right part, each consisting of five 32 bit values. Both
parts can be processed independently. For this reason, we decided to let two
threads team up to process the hashing of one key candidate. Here one thread
processes the left part of the RipeMD algorithm and the other one the right
part. The state, the intermediate keys, and the two hashes of the passwords are
kept in registers. Shared memory is used to synchronize each thread pair and
to provide input values (i.e., previous hash and message) to the compression
function. The algorithm has been manually unrolled replacing all known inputs
by constants residing within the kernel code. The kernel uses an overall of 40
registers and 5376 bytes of shared memory (64 passwords * (16 registers for
inputs + 5 registers for outputs) * 4 bytes per 32 bit value) and runs with 128
threads per block. This allows 6 blocks in parallel per SM and an equivalent of
5376 passwords that can be processed in parallel on each GPU.

SHA-512: The state of SHA-512 consists of eight 64 bit values. Compared to
the RipeMD-160 state, this complicates the computation of the compression
function in two ways: On the one hand, the GPU hardware is a native 32
bit architecture (with some 64 bit extensions), slowing down most computa-
tions. On the other hand, many registers and a lot of shared memory is needed to

724 M. Diirmuth et al.

store the state, the two hash values of the password, and the intermediate keys.
For this reason our SHA-512 implementation uses only 64 threads per block and
compiles to 63 registers per thread and 4096 bytes of shared memory per block.
Here 63 registers per thread are the upper bound the hardware can handle. This
results in a spill of used variables into the slow device memory. Nevertheless, as
the number of spilled variables is small, the device memory should be able to
permanently keep them within the still reasonably fast devices memory cache.
This kernel again allows 5376 passwords to be processed in parallel.

Whirlpool: The state of Whirlpool has the same size as for SHA-512, which again
leads to high register pressure. We implemented the Whirlpool hash function
with a table lookup implementation using eight 256 x 32 bit lookup tables stored
in shared memory. We employ 128 threads per block, each using the maximum
of 63 registers. The shared memory usage of each block is 16384 bytes per block
and only 4 blocks will run in parallel on each SM. Each block processes 128
passwords, such that we achieve 7168 passwords that are processed in parallel.

4.3 Wrapper Implementation

We use a host system powered by two Intel Xeon X5660 six-core CPUs at 2.8GHz
with enabled Hyperthreading and AES-NI instruction support. It is equipped
with four Tesla C2070 GPUs connected by full PCle 2.0 16x lanes. We use
CUDA Version 4.1 and the CUDA developer driver 286.19 for Windows 7 (x64).
The host system generates the passwords in a single threat, writing them to
a memory buffer. We schedule passwords in chunks of 21504 passwords, i.e,
14 -6 - 4 = 336 blocks for RipeMD-160 and SHA-512 and 14 - 6 - 2 = 168 blocks
for Whirlpool. This number of blocks has been selected to be a small multiple of
the maximum number of concurrent blocks on the GPU for all implemented ker-
nels. This way the GPU hardware should always be fully occupied with respect
to the number of scheduled blocks for maximum performance. The derived key
material is copied back to the host memory to test for the correct decryption of
the TrueCrypt header. As the host system is idle during the GPU computations,
the password verification (which is much less computationally expensive) can
be hidden within the kernel execution time of the GPU computations. For our
experiments the implementation on the host system re-uses large parts of the
cryptographic primitives from the original TrueCrypt implementation sources.
To overlap memory copies between host and GPU with computations, we em-
ployed four streams per GPU. Furthermore each stream alternately uses four
sets of password and result buffers. This way the GPU can process the next
password chunk without having to wait for the host to finish checking the lat-
est generated key material. The implementation is capable of generating both
1536 bits and 512 bits of key material for a password and an HMAC candidate
function, according to the worst case in the TrueCrypt specification.

Evaluation of Standardized Password-Based Key Derivation 725

External
Data

Host PC Ring Bus

Fig.2. The RIVYERA cluster architecture

5 FPGA-Based Attack

FPGAs combine the performance of a gate-level hardware implementation with
flexibility, simple development, and reconfigurability of a software-based ap-
proach. Furthermore, FPGA implementations are truly parallel in nature. Each
independent processing task is assigned to a dedicated section of the chip, and
can function autonomously. This has made them an ideal choice for cryptana-
lytic applications, where several instances of the algorithm under test has to be
evaluated in parallel with different parameters.

5.1 RIVYERA — An FPGA-Based Cluster System

The RIVYERA FPGA cluster @], with its 128 Spartan-3 XC3S5000 FPGAs
and an optional 32MB memory per FPGA, is a powerful and cost-optimized
cryptanalytical machine. All FPGAs are connected with two opposite directed,
systolic ring networks that directly interface with the Intel Core i7 based PC
(which is integrated in the same housing) via a PCI Express communication
controller, as shown in Figure

In our FPGA-based attack on TrueCrypt, we implemented the PBKDF2
scheme on the RIVYERA cluster, balancing the different parts of the algorithm
in terms of area and speed. In accordance with the goal of the PBKDF2 algo-
rithm to derive a key using a hash function and perform encryption/decryption
afterwards, sufficient key material has to be generated by running the hash func-
tion n times. An optimal strategy is to connect several copies of a hash function
in a pipelined design in order to get the highest possible throughput. However,
the high number of iterations n (1000 to 4000) makes this approach impossible.

The three hash functions used by TrueCrypt need a different amount of clock
cycles to complete processing and also have different critical paths, resulting in
different processing times. Partitioning parts of an FPGA between these three
hash functions would result in a slower and more complex design. Therefore, we
chose to implement individual systems for each hash function used and distribute
them among multiple FPGAs. This also adds flexibility to implement higher
percentage of a favored algorithm, e. g., in case the used algorithm is known or
has a higher probability.

726 M. Diirmuth et al.

— ./~ | PBKD2 | e o e | PBKD2
64 A A
‘_
v v
64 32, -Serpent
< 4 | PBKD2 | e e e | PBKD2

Fig. 3. Top-Level view of the FPGA Design

5.2 Implementing the KDF

Password-based Key Derivation Function #2 relies on repeated executions of a
hash function in HMAC construction, where the result of each HMAC is accu-
mulated starting with an initial all-zero key, until the final key is derived at the
end of all HMAC runs.

We designed three independent single iteration cores, one for each of the three
target hash functions, optimized for time-area product. The other important
parameter is the number of key bits that can be generated by each PBKDF
module. It is equal to the predefined message digest size of the incorporated
hash function, which is 512 bits for both SHA-512 and Whirlpool, but only 160-
bits for RipeMD-160. This means that while three instances of either SHA-512 or
Whirlpool cores are sufficient to supply the worst case of 1536-bits key (required
for Twofish, AES, and Serpent combination), the same can be accomplish with
ten instances of the RipeMD-160-based PBKDF core, making it the most critical
part of the whole design.

Implementing for FPGAs, the predefined topology of resources is the most
limiting and hence the most important factor. It is imperative to come up with a
balanced design that uses both registers and block RAMs to the highest possible
ratio while losing minimum cycles for additional RAM access. For this purpose,
the initial values, constants and hash results are stored in the block RAMs, while
registers are utilized for storage of internal iteration variables within each hash
function in all our hash cores. As mentioned above, we have developed three
different FPGA designs — each targeting one hash function as shown in Figure [3]
— and distributed them among the 128 FPGAs on the RIVYERA cluster.

The design uses a 64-to-32 bit input FIFO to split the data from the RIVY-
ERA bus to the local bus architecture and switch between the system clock do-
main and the computation clock domain. All PBKDF?2 units are initialized using
the salt from the TrueCrypt header and the passwords are distributed among
free units. After receiving a password, each unit immediately starts processing.
As soon as a unit finishes its execution, its result is written into a dedicated
memory, where the optional cipher blocks can access it and perform the on-chip
test phase. An additional 64-bit register stores all information on the current
FPGA operations, which the host application can access at any time. Since the
additional area taken by the on-chip test is not suitable for all hash functions,

Evaluation of Standardized Password-Based Key Derivation 727

the option to read the derived keys read back to the host PC for offline key tests
is also supported in order to save resources for more on-chip key derivation units.

The password list, generated by a password derivation program, is transmitted
by a host program (running on the Core i7 in the RIVYERA) to the FPGAs
using the PCI Express architecture. Each of the three PBKDF units implements
the scheme in Figure [l with minor differences. The basic idea is to first hash
the password XORed with IPAD and then with OPAD and store the two results
as they will be repeatedly used during further iterations as initial values of
the hash function. The next step is to hash the combination of SALT and key
number (which is between 1-3 for SHA-512 and Whirlpool, and between 1-10
for RipeMD-160) in order to obtain the input value for the next run of the
hash core. In all the following runs, the output of the previous run is the input
data, and one of the two stored password hash results (in alternating order)
is the initial value. The output of every second hash run (chaining variable) is
accumulated (starting with all zero value) to get the final derived key. In the
following paragraphs, we present the specific details for each different algorithm.

RipeMD-160: The RipeMD-160 based PBKDF core uses a 512-bit input message
and hashes it by mixing with a 160-bit chaining variable which is updated in 80
rounds. At the end of all rounds, the chaining variable is added to the previous
hash value. The internal round function is similar to that of SHA-1. However,
the RipeMD round function has two parallel paths, whose results are stored
in two 160-bit parallel registers, while the final hash result is stored in block
RAMSs. At the end of each round, the previous hash result, read from the RAM
in 32-bit words, is added to the corresponding word of the update value from
the current hash run, and then written back to the RAM. While this causes
additional cycles, it saves more than 160-bit of registers and 128-bit of adders,
resulting in further time-area product optimization. The total cycle count for
each hash run is 95 cycles, in comparison to the ideal case of 80 cycles.

The RipeMD-160 core is run twice for the SALT and key number due to its
512-bits input block size. Since the total number of key iterations is defined as
2000 for RipeMD-160, this results in a total of (54 1999 - 2) - 95 = 380285 cycles
for key derivation per core, each of which occupies 1032 slices (461 FF, 1764
LUTSs) on a Xilinx Spartan-3 FPGA.

SHA-512: Each SHA-512 PBKDF core operates on 1024-bit message blocks
and generates a 512-bit message digest. The intermediate hash values and the
internal chaining variables are processed on a 32-bit datapath, which is not only
compatible with the existing 32-bit block RAMs, but also minimizes delay paths.
The only drawback is the number of cycles per hashing, which is 200 instead of
the ideal case of 80. However, this time-area product optimization is well justified
with increase in frequency and reduction in area.

Each SHA-512 based key derivation requires 1000 PBKDF iterations, which
correspond to a total number of (4 + 999 - 2) - 200 = 400400 cycles for key
derivation per SHA-512 PBKDF core, each of which occupies 1001 slices (897
FFs, 1500 LUTs) on a Xilinx Spartan-3 FPGA.

728 M. Diirmuth et al.

Table 1. Implementation Results of PBKDF2 on 4 Tesla C2070 GPUs

Hash RIPEMD SHA-512 Whirlpool RIPEMD RIPEMD SHA-512 Whirlpool RIPEMD
SHA-512 SHA-512
Whirlpool Whirlpool

Derived Key 512 bits 1536 bits

Length

Passwords/sec 72786 105351 50686 23366 29330 35246 16980 8268

Passwords/sec

51661 54874 36103 19627 27591 29892 12153 6858
(demo tool)

Whirlpool: The structure of Whirlpool [39] significantly differs from the struc-
tures of the other two cores. It not only generates a 512-bit message digest,
but also processes 512-bit message blocks. The internal structure of Whirlpool
resembles a block cipher with two identical datapaths in parallel; one as key
expansion module, the other as message processing module. The internal struc-
tures of each path are identical. However, the key expansion module uses hash
input to generate round keys, while the message processing module uses message
inputs together with round keys to generate the next state of the hash.
Whirlpool hashing needs to be executed four times during each iteration due
to the equal input and output sizes. However, only 10 iterations allow a word-
serial implementation, where the message and the hash (key) are processed in
64-bit chunks, considerably reducing the overall area. The total number of cycles
per round becomes 9 and the total number of rounds becomes 11 (including the
initial whitening), which results in 99 cycles per round. With a total number of
(6+999-4)-99 = 396198 cycles for key derivation, each Whirlpool PBKDF core
occupies 6013 slices (1131 FFs, 10878 LUTs) on a Xilinx Spartan-3 FPGA.

6 Results

In the following we present performance numbers for our experiments.

6.1 Performance Numbers

GPU Implementation: Table [l gives the performance results for each hash al-
gorithm for the worst case (i.e., 1526 bit of key material) and the fastest case
(i.e., 512 bit of key material) of TrueCrypt’s password derivation. The latter case
corresponds, e. g., to AES-256 in XTS mode, while the first one corresponds to
a cascade of all three TrueCrypt ciphers. These numbers clearly show that the
implementations scale linearly: The performance boost for the smaller key sizes
corresponds to the difference in the number of blocks that need to be hashed to
derive the desired output lengths, i.e., 4 vs. 10 rounds for RipeMD and 1 vs. 3
rounds for SHA-512 and Whirlpool.

When deriving 1536 bit of key material per password for each of the three hash
algorithms RipeMD-160, Whirlpool, and SHA-512, our fastest implementation

Evaluation of Standardized Password-Based Key Derivation 729

Table 2. Implementation results and performance numbers of PBKDF2 on the RIVY-
ERA cluster (Place & Route) without on-chip verification. Please note that the current
version is not optimized for speed and uses the lowest clock frequency valid for all
designs.

Hash RIPE-MD SHA-512 ‘Whirlpool
Clock cycles per PBKDF2 380,285 400,400 396,198
Derived Key Length 1536 bit 512 bit 1536 bit 512 bit 1536 bit 512 bit
PBKDF2 Units 4 9 11 32 3 15
Hash Cores per PBKDF2 10 4 3 1 3 1
FPGA Resources (Slices) 29753 28227 31773 31943 18370 29528
FPGA Resources (%) 89% 84% 95% 95% 55% 88%
Passwords per sec per FPGA 368 828 957 2784 265 1325
Passwords per sec 47104 105984 122496 356 352 33920 169600

using a hardcoded salt was able to derive the key material at 8,268 passwords
per second, i. e., about 714 million passwords per day and 21.4 billion passwords
per month. Using only the TrueCrypt default settings of RipeMD-160 and AES-
256 in XTS mode, i.e., 512 bit of key material are generated, the performance
boosts to 72,786 passwords per second, 6.29 billion passwords per day and 188
billion passwords per month.

Our fully implemented TrueCrypt cracker tool consists of the password gener-
ator, the PBKDF2 and the decryption of the header data to verify the material.
We observe a maximum speed limit of around 55,000 passwords per second,
which is the speed of the used password generator. This limitation can be lev-
eled by further optimizations. For the sake of completeness, we also provide the
performance figures of the full tool. We want to mention that our numbers, as all
specific implementations, can only provide a lower bound: implementations using
other GPU architectures or further optimized code may improve the results.

FPGA Implementation: In case of the FPGA based key password search, we use
different FPGA configurations for the best case (single block cipher) and the
worst case (cascade of all three block ciphers).

Figure [Z shows the place and route results. With respect to a single instance,
the RIPE-MD design can derive 368 passwords per second for 1536 bit output and
up to 828 for 512 bit output on a single FPGA, respectively. This scales to 47,104
and 105,984 passwords per second on RIVYERA, taking only this hash algorithm
into account. The SHA-2 implementation is faster and computes 957 and 2,784
passwords per second per FPGA, respectively, and a throughput of 122,496 and
356,352 for the 512 and 1536 bit case on RIVYERA, correspondingly.

Even though the current Whirlpool implementation does not utilize the com-
plete FPGA logic optimally due to the PBKDF2 block size, it is more than
50% faster than the RIPE-MD scheme for 512 bit. In order to test all three
hash functions for TrueCrypt, we utilize the full RIVYERA sequentially, as the
reprogramming time is negligible. The bottleneck on FPGAs is the host-based
password generation and the throughput drops a bit due to offline verification.
Hence, with the remaining logic on the FPGA, we built an on-chip verification

730 M. Diirmuth et al.

0.7

T
passwords guessed

0.65

0.6

0.55

0.5

0.45 | 1

04 Il Il Il Il
0 2e+09 4e+09 6e+09 8e+09 1e+10

Fig. 4. Fraction of passwords guessed correctly (y-axis) vs. total number of guesses
(z-axis)

as the amount of clock cycles necessary to perform a key derivation is large com-
pared to the number of cycles required to compute the ciphers. Hence, all cores
of the host CPU can now produce passwords to minimize this bottleneck.

Comparing a single GPU and FPGA device, it turns out that GPUs are
significantly better in hashing than FPGAs (e.g., 18,000 vs. 828 RIPE-MD pass-
words per second). We attribute this result to the high clock frequency and the
underlying 32-bit micro-architecture of GPUs that finally provides the distinct
advantage with 32-bit-based hash functions. It is difficult to compare the indi-
vidual device costs, since both platforms cannot be used as a stand-alone device
without significant overhead. However, in case we relate the overall financial
system costs of our GPU system and the RIVYERA cluster, we yield a scaling
factor of 3.3 in favor for the GPU cluster.

6.2 Search Space and Success Rate of an Attack

In order to determine the actual influence of the number of guessed passwords
from the last section, we determine the percentage of passwords one can break
(on average) with that number of guesses. To this end, we use an implemen-
tation of a Markov model based password guesser from |L0] (see Section [for
more details). As training set used to derive the Markov model we used a ran-
dom selection of 90% of the RockYou password list, the test set consists of the
remaining 10% of the RockYou list (still more than 3 million passwords).

Figure [shows the fraction of passwords guessed correctly (y-axis) for a cer-
tain number of guesses made (x-axis). These results were obtained by running
the password generator independently of the hashing engine. The reason is that,
in order to incorporate the hashing engine, we would need to generate True-
Crypt containers for each password in the test set, which is prohibitively time-
consuming. From the numbers in the previous section we can estimate that, in
the absolutely worst case, we can guess more than 65% of the passwords from
the RockYou list in a week and more than 67% in a month.

Evaluation of Standardized Password-Based Key Derivation 731

7 Conclusions and Recommendations

Carefully chosen passwords are essential to protect systems using passwords (for
recommendations on choosing good passwords, see, e. g., Appendix A of NIST SP
800-63). But even though PBKDF2 was specifically designed to prevent simple
brute-force attacks, we showed that parallel hardware platforms are capable to
comb through a significant amount of passwords per second (356,352 passwords
per second for SHA-2/512 bit case). Our results indicate that GPU clusters have
a better cost/performance ratio than FPGAs, mainly due to the low prices of
the wide-spread use of GPUs.

The main parameter of PBKDF2 specifying the level of protection is the it-
eration counter ¢. Due to the progress in technology (outlined by Moore’s law),
we do not consider it sufficient for a secure system to run a constant (minimum)
amount of 1000 hash iterations in the lifetime of an application or a system, as
defined by RFC 2898 for PBKDF2. We therefore recommend to replace this con-
stant iteration count ¢ with a dynamic variable that is stored in each respective
application instance and which is adjusted over time according to technological
scaling effects. The iteration count ¢ should be lower-bounded by the compu-
tational resources of the least-capable target platform of the application. Note,
however, that even recent “low-end” processing device (e.g., smart phones) often
provide powerful ARM processors with 1GHz or more so that running 4000-
10000 hash iterations is certainly feasible even on these devices[] Note that an
update of this dynamic iteration count is simple and can take place frequently
right after unlocking the application instance with the correct password.

Finally, we like to point out the structural limits of password-based key deriva-
tion. Even if we assume a much stronger key derivation function than PBKDF?2
being availabldd so that much less passwords can be searched per second, we
still achieve with our approach a significant coverage of the password space due
to limited selection criteria of human-chosen passwords (see Fig.). Although
certainly no real news, we need to emphasize the importance of choosing strong
passwords, possibly combined with additional security credentials such as cryp-
tographic hardware tokens or biometrics.

References

1. Bishop, M., Klein, D.V.: Improving system security via proactive password check-
ing. Computers & Security 14(3), 233-249 (1995)

2. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: Proc. 12th ACM Conference on Computer and Communications
Security, pp. 364-372. ACM, New York (2005)

3. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: IEEE Symposium on Security and Privacy,
pp. 391-405. IEEE Computer Society (2009)

! For recent performance figures of hash functions on a wide range of low-cost and
high-performance CPUs, see http://bench.cr.yp.to/primitives-hash.html|
2 For alternative proposals on password-based key derivation, see for example [40].

http://bench.cr.yp.to/primitives-hash.html

732

4.

5.

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. Diirmuth et al.

Openwall Community Wiki.: John the Ripper benchmarks (April 2012),
http://openwall.info/wiki/john/benchmarks

Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898 (September 2000), http://tools.ietf.org/html/rfc2898

TrueCrypt - Free Open-Source On-The-Fly Encryption (November 2011),
http://www.truecrypt.org/

OASIS: Open Document Format for Office Applications (OpenDocument) Version
1.2 (April 2012), http://docs.oasis-open.org/office/v1.2/
OpenDocument-v1.2-part3.html

IEEE Computer Society: IEEE Standard for Information technology 802.11
- Telecommunications and information exchange between systems - Lo-
cal and metropolitan area networks - Specific requirements (Jun 2007),
http://standards.ieee.org/getieee802/download/802.11-2007.pdf

Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. Journal of Cryp-
tology 14(4), 255-293 (2001)

Castelluccia, C., Diirmuth, M., Perito, D.: Personal communication (2012)
Truecrack, http://code.google.com/p/truecrack/

ElcomSoft: Lightning Hash Cracker (November 2011), http://www.elcomsoft.
com/lhc.html

Golubev, 1. IGHASHGPU (November 2011), http://www.golubev.com/
hashgpu.htm

Schober, M.: Efficient password and key recovery using graphics cards. Master’s
thesis, Ruhr-Universitédt Bochum (2010)

Passware Kit 10.1 — Press Release, http://www.prnewswire.com/news-
releases/passware-kit-101-cracks-rar-and-truecrypt-encryption-
in-record-time-99539629.html

Elcomsoft: GPU assisted password cracking, http://www.slideshare.net/
andrey.belenko/gpuassisted-password-cracking

Bevand, M.: Breaking UNIX crypt() on the PlayStation 3 (Presentation, ToorCon
10) (September 2008)

Wu, T.: A real-world analysis of kerberos password security. In: Network and Dis-
tributed System Security Symposium (1999)

Zviran, M., Haga, W.J.: Password security: an empirical study. J. Mgt. Info.
Sys. 15(4), 161-185 (1999)

Kedem, G., Ishihara, Y.: Brute force attack on UNIX passwords with SIMD com-
puter. In: Proceedings of the 3rd USENIX Windows NT Symposium (1999)
Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory 26(4), 401-406 (1980)

Oechslin, P.: Making a Faster Cryptanalytic Time-Memory Trade-Off. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617-630. Springer, Heidelberg (2003)
Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Time-Memory Trade-Off
Attack on FPGA Platforms: UNIX Password Cracking. In: Bertels, K., Cardoso,
J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 323-334. Springer,
Heidelberg (2006)

Morris, R., Thompson, K.: Password security: a case history. Communications.
ACM 22(11), 594-597 (1979)

Spafford, E.H.: Observing reusable password choices. In: Proceedings of the 3rd
Security Symposium, pp. 299-312. USENIX (1992)

Klein, D.V.: Foiling the cracker: A survey of, and improvements to, password se-
curity. In: Proc. USENIX UNIX Security Workshop (1990)

http://openwall.info/wiki/john/benchmarks
http://tools.ietf.org/html/rfc2898
http://www.truecrypt.org/
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2-part3.html
http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2-part3.html
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://code.google.com/p/truecrack/
http://www.elcomsoft.com/lhc.html
http://www.elcomsoft.com/lhc.html
http://www.golubev.com/hashgpu.htm
http://www.golubev.com/hashgpu.htm
http://www.prnewswire.com/news-releases/passware-kit-101-cracks-rar-and-truecrypt-encryption-in-record-time-99539629.html
http://www.prnewswire.com/news-releases/passware-kit-101-cracks-rar-and-truecrypt-encryption-in-record-time-99539629.html
http://www.prnewswire.com/news-releases/passware-kit-101-cracks-rar-and-truecrypt-encryption-in-record-time-99539629.html
http://www.slideshare.net/andrey.belenko/gpuassisted-password-cracking
http://www.slideshare.net/andrey.belenko/gpuassisted-password-cracking

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Evaluation of Standardized Password-Based Key Derivation 733

The password meter, http://www.passwordmeter.com/

Burr, W.E., Dodson, D.F., Polk, W.T.: Electronic authentication guideline: NIST
special publication 800-63 (2006)

Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password creation
policies by attacking large sets of revealed passwords. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS 2010), pp.
162-175. ACM (2010)

Komanduri, S., Shay, R., Kelley, P.G., Mazurek, M.L., Bauer, L., Christin, N.,
Cranor, L.F., Egelman, S.: Of passwords and people: Measuring the effect of
password-composition policies. In: CHI 2011: Conference on Human Factors in
Computing Systems (2011)

Castelluccia, C., Diirmuth, M., Perito, D.: Adaptive password-strength meters from
Markov models. In: Proc. Network and Distributed Systems Security Symposium
(NDSS). The Internet Society (2012)

Schechter, S., Herley, C., Mitzenmacher, M.: Popularity is everything: a new ap-
proach to protecting passwords from statistical-guessing attacks. In: Proceedings
of the 5th USENIX Conference on Hot topics in Security, pp. 1-8. USENIX Asso-
ciation (2010)

Nvidia: CUDA Developer Zone (Website) (2011), http://developer.nvidia.com/
category/zone/cuda-zone

AMD: ATT Stream Technology (Website) (2011), http://www.amd.com/US/
PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-

technology.aspx

Khronos Group: OpenCL - The open standard for heterogeneous systems (Website)
(2011), http://www.khronos.org/opencl/

Nvidia: TESLA C2050/C2070 GPU Computing Processor (2010), http://www.
nvidia.com/docs/I0/43395/NV_DS_Tesla_C2050_C2070_jull0_lores.pdf

Intel: Intel® Core i7-900 Desktop Processor Series (2011), http://download.
intel.com/support/processors/corei7/sb/core_i7-900_d.pdf

SciEngines GmbH: RIVYERA S3-5000 (2010), http://www.sciengines.
com/joomla/index.php?7option=com_content&view=article&

1d=60&Itemid=74

Barreto, P., Rijmen, V.: The Whirlpool hashing function. In: First open NESSIE
Workshop, Leuven, Belgium, vol. 13, p. 14 (2000)

Percival, C.: Stronger key derivation via sequential memory-hard functions. In:
BSDCan (2009)

http://www.passwordmeter.com/
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
http://www.khronos.org/opencl/
http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
http://download.intel.com/support/processors/corei7/sb/core_i7-900_d.pdf
http://download.intel.com/support/processors/corei7/sb/core_i7-900_d.pdf
http://www.sciengines.com/joomla/index.php?option=com_content&view=article&id=60&Itemid=74
http://www.sciengines.com/joomla/index.php?option=com_content&view=article&id=60&Itemid=74
http://www.sciengines.com/joomla/index.php?option=com_content&view=article&id=60&Itemid=74

	Evaluation of Standardized Password-Based Key Derivation against Parallel Processing Platforms
	Introduction
	Background and Related Work
	Password-Based Key Derivation
	Processing Platforms for Password Cracking

	Password Security
	Attacks Based on Markov Models
	Further Related Work

	GPU-Based Attack
	Introduction to GPU Programming
	Implementing the KDF
	Wrapper Implementation

	FPGA-Based Attack
	RIVYERA – An FPGA-Based Cluster System
	Implementing the KDF

	Results
	Performance Numbers
	Search Space and Success Rate of an Attack

	Conclusions and Recommendations
	References

