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Abstract. We treat the problem of secure outsourcing of sequence com-
parisons by a client to remote servers, which given two strings A and p of
respective lengths n and m, consists of finding a minimum-cost sequence
of insertions, deletions, and substitutions (also called an edit script) that
transform A into p. In our setting a client owns A and p and outsources
the computation to two servers without revealing to them information
about either the input strings or the output sequence. Our solution is
non-interactive for the client (who only sends information about the in-
puts and receives the output) and the client’s work is linear in its in-
put/output. The servers’ performance is O(omn) computation (which is
optimal) and communication, where ¢ is the alphabet size, and the solu-
tion is designed to work when the servers have only O(o(m+n)) memory.
By utilizing garbled circuit evaluation in a novel way, we completely avoid
public-key cryptography, which makes our solution particularly efficient.

1 Introduction

Design and development of secure outsourcing techniques of various function-
alities to untrusted servers are getting growing attention in the research com-
munity. The rapid growth in availability of cloud services makes such services
attractive for clients with limited computing or storage resources who are un-
able to procure and maintain their own computing infrastructure. Security and
privacy considerations, however, stand on the way of harnessing the full benefits
of cloud computing and prevent clients from placing their sensitive data on the
cloud. This is the problem that secure outsourcing techniques aim to address.
This work develops efficient techniques for secure outsourcing of a specific
type of computation, namely sequence comparisons. Secure computation and
outsourcing of sequence comparisons, in particular for genomic sequences, has
been a subject of prior research. The results include |IH10], which securely im-
plement computation of the edit distance, finite automata evaluation, the Smith-
Waterman and other algorithms. Because individual DNA and protein sequences

* Portions of this work were supported by NSF Grants CNS-0915436, CNS-0913875,
CNS-0915843, and CCF-0939370; an NPRP grant from the Qatar National Research
Fund; AFOSR Grant FA9550-09-1-0223; and sponsors of the CERIAS center.

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 505-p22] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



506 M. Blanton et al.

commonly used in such comparisons are highly sensitive and vulnerable to re-
identification even when anonymized, the need for techniques that allow such
sequences to be privately processed has been recognized and is reflected by the
list of available publications above. Furthermore, given the large lengths of such
sequences, it is not surprising that there is an increasing need for such computa-
tion to be outsourced by resource limited clients. These outsourcing techniques
should enable the desired computation without revealing any information about
the sequences to the parties performing the computation.

Techniques for securely computing the edit distance based on dynamic pro-
gramming have been studied in [1, 16, |9]. The work [2, 3] is the only one we are
aware of that treats the problem of secure outsourcing of the edit distance and
[3] is the only work that treats the computation of the edit script (defined as a
minimum-cost sequence of insertions, deletions, and substitutions that transform
one input string A into the other input string p). An edit script contains impor-
tant information about the types of differences that cannot always be deduced
from the edit distance alone. For that reason, we revisit the problem of secure
outsourcing of the edit distance and the corresponding edit script computation
and improve the performance of known results.

It is well known that computing the edit distance (or the edit script) of two
strings A and p of size n and m, respectively, requires O(mn) work. Because n
and m are often large in genomic computations, the need to reduce the memory
footprint of secure sequence comparisons was recognized in prior literature. This
applies to our setting of securely outsourcing a task to resourceful servers as
well, as the memory requirement of O(mn), or more generally O(ocmn), where
o is the alphabet size, will prevent them from processing strings longer than
a few thousand characters. The edit distance can be computed one row or one
column of the m x n matrix at a time, which uses only O(m + n) memory.
This is the approach taken in [3] based on homomorphic encryption, and the
publications that use garbled circuit evaluation [6, |9] also partition the circuit
into sub-circuits, so that the memory requirement of O(m +n) can be achieved.

The above partitioning approach does not work when the computation con-
sists of producing an edit script (rather than just the edit distance) while keeping
the memory requirement at O(m + n). Furthermore, the only known result for
securely computing an edit script with the linear memory requirement for the
servers carrying out the computation requires them to perform O(mn min(m,n))
work with the same amount of communication [3]. We substantially improve the
performance of the existing secure edit script outsourcing techniques to require
the servers to perform only O(mn) work with the same O(m + n) memory re-
quirement for the servers. This also implies that when the servers have O(m—+n)
memory, the round complexity of the solution improves from O((min(m,n)?)
in 3] to O(min(m,n)) in this work (we note that the number of rounds in this
work is primarily bounded by the ratio of the overall amount of communication
and the amount of available memory, while it is fixed at O((min(m,n)?) in [3]).

Besides the obvious complexity improvements, our solution has additional ad-
vantages. Similar to [3], we assume that a client outsources its computation to
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two non-colluding computation servers, but unlike [3], no homomorphic encryp-
tion is used. In fact, our solution completely avoids public-key cryptography by
utilizing garbled circuit techniques in a novel way. To the best of our knowledge,
this is the first time secure two-party computation or outsourcing techniques
are realized without reliance on any public-key operations (e.g., the solutions
in |6, 9] have to invoke Oblivious Transfer (OT) protocols). This gives us fast
general secure outsourcing techniques, which are of independent interest.

Our solution is non-interactive for the client, who only sends information
about its inputs to the servers and receives the computation outcome from which
it reconstructs the output. Its communication and computation is thus O(m+n).

Lastly, our solution works for any alphabet X of size o, from which A\ and p are
drawn. Because o may not be treated as constant, we include it in our analysis.
In particular, the servers’ space requirements are O(o(m+n)), their computation
and communication are O(omn), and the client’s work and communication are
O(o(m + n)) (prior results have the same factor ¢ in their complexities).

As noted above, we make the same assumption of non-colluding servers as
the prior work that improve upon. A natural question that one might ask is
how viable such an assumption is. The practical viability of using non-colluding
servers has been well demonstrated, for instance, by the Sharemind system [11]
and the company that develops it, where three non-colluding servers are used
(we only use two). One possible instantiation of our solution would be to use two
servers, each from a different service provider. Collusion of both servers would
require corruption of both service providers, which is unlikely in practice.

2 Preliminaries

Problem Statement. We treat the problem of secure outsourcing of the edit
distance and the corresponding edit script computation by a client C' for any
strings A = Ay... A, and g = pq.. .1y, over alphabet X' = {1,...,0} to two com-
putational servers S; and S3. In its general form considered here, the sequence
comparisons problem requires quadratic work [12].

In our outsourcing context, C' must perform only work linear in the size of
its inputs, with the super-linear work done by the remote servers. Furthermore,
the security requirement is such that neither S; nor S learns anything about
the client’s inputs or output other than the lengths of the input strings and the
alphabet size (i.e., the servers learn only the problem size).

More formally, we assume that S; and S2 do not collude and if they are semi-
honest, they follow the computation as prescribed but might attempt to learn
additional information from the messages that they observe. Security in this case
is guaranteed if both S;’s and Sy’s views can be simulated by a simulator with
no access to either C’s inputs or output other than the parameters n, m, and o
and such simulation is indistinguishable from the real protocol execution. This
is a standard definition that can be found, e.g., in |13].

Generic techniques for modifying the garbled circuit techniques to enable se-
curity against covert or fully malicious participants are known (see, e.g., [14-16]).
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Furthermore, the standard garbled circuit techniques, as used in this work, al-
ready offer protection against one party, namely, malicious circuit evaluator. The
specifics of our setting, however, enable us to design an effective mechanism for
detecting and eliminating malicious behavior at low cost. Because the techniques
we use are resilient to misbehavior of one of the parties, we can run the solution
twice, with the roles of S; and Ss swapped on the second run. When the client
obtains two results that disagree, it will know that one of the servers did not
comply with its prescribed behavior. As in our protocols neither server learns
any outputs, creation and evaluation of an incorrect circuit does not pose secu-
rity risks to the client. This means that the cost of the solution in the malicious
model is twice the cost of the solution in the semi-honest model.

Review of Edit Distance via Dynamic Programming. We briefly review
the standard dynamic programming algorithm for the edit distance, using the
same notation and terminology as in [3]. Let M(4,j), for 0 < i < m and 0 <
Jj < mn, be the minimum cost of transforming the prefix of A of length j into the
prefix of p of length 4, i.e., the cost of transforming A; ... \; into u; ... p;. Then
M(0,0) =0, M(0,5) = >, D(\) for 1 < j < nand M(3,0) = > ;1 I(ux)
for 1 < i < m. Furthermore, for all 1 <7 < m and 1 < j < n we have that

M(Z -1,j- 1) +S(>\j’ﬂi)

M(i,j — 1)+ D(X;)
where S(\;, pi) is the cost of substituting character \; with character p;, D(\;)
is the cost of deleting A;, and I(u;) is the cost of inserting ;. Hence M(i, 5)
can be evaluated row-by-row or column-by-column in @(mn) time [17]. Observe
that, of all entries of the M-matrix, only three M (i — 1,57 — 1), M(i—1,7), and
M(i,j — 1) are involved in the computation of the final value of M (i, j).

Our solution works even when S : X x X = N, I : Y - N and D: Y — N

are arbitrary functions that are implemented using table lookups.

Grid Graph View of the Problem. The interdependencies among the entries
of the M-matrix induce an (m 4+ 1) x (n+ 1) grid directed acyclic graph (DAG)
associated with the string editing problem. It is easy to see (and well-known)
that the string editing problem can be viewed as a shortest-path problem on a
grid DAG, which is implicitly described by the two input strings and the cost
tables (otherwise there is no hope of achieving the linear-space performance we
seek). We say that an ¢; x £3 grid DAG is a directed acyclic graph whose vertices
are the ¢1f points of an ¢; x ¢ grid, and such that the only edges from grid
point (¢, j) are to grid points (¢,j+1), (i+1,7), and (i+1,j+1). Figure [l shows
an example of a grid DAG and our convention of drawing the points such that
point (¢, j) is at the ith row from the top and the jth column from the left. Note
that the top-left point is (0,0) and has no edge entering it (i.e., is a source), and
that the bottom-right point is (m,n) and has no edge leaving it (i.e., is a sink).

An (m+1) x (n+1) grid DAG G is associated with the string editing problem
in the natural way: The vertices of G are in one-to-one correspondence with the
entries of the M-matrix, and the cost of an edge from vertex (k,¢) to (i,j) is
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Fig. 1. Example of a 2 x 4 grid DAG

equal to D(\j) if k =dand ¢ = j—1, to I(y;) if k =4—1 and ¢ = j, and
to S(Aj,p;) if k=17 —1 and ¢ = j — 1. We restrict our attention to edit paths
which do no obviously inefficient moves (such as inserting then deleting the same
symbol) and thus only consider edit scripts that apply at most one edit operation
to a given symbol. Such edit scripts that transform X into p or vice versa are
in one-to-one correspondence to the weighted paths of G that originate at the
source (i.e., M(0,0)) and end at the sink (i.e., M(m,n)).

Garbled Circuit Evaluation. Our solution uses techniques based on Yao’s
two-party garbled circuit evaluation originated in [18]. Garbled circuit evaluation
allows two parties to securely evaluate any function represented as a Boolean
circuit. The basic idea is that, given a circuit composed of gates, one party P;
creates a garbled circuit by assigning to each wire ¢ two randomly chosen labels
or keys Eél) and 651), where él(f) encodes bit b. P; also encodes gate information
in a way that given keys corresponding to the input wires (encoding specific
inputs), the key corresponding to the output of the gate on those inputs can be
recovered. This is often achieved by representing each gate as a table of encrypted
values, where, e.g., for a binary gate g with input wires 4, j and output wire k,
the table consists of four values of the form Enc,o) ,i» (Z(k)v 3)-
b; by g(bi,b;)

The second party, P,, evaluates the circuit using keys corresponding to in-
puts of both P, and P, (without learning anything in the process). That is, P
directly obtains keys corresponding to P;’s input bits from P; and engages in
the OT protocol to obtain keys corresponding to P’s input bits. Garbled circuit
evaluation consists of processing the gates in topological order, during which
one entry of each gate’s table is decrypted allowing P> to learn the output wire’s
key. Security relies on the fact that P, does not have a correspondence between
the labels it decrypts and the bits that they represent. At the end, the result of
the computation can be recovered by linking the output labels to the bits which
they encode (e.g., by having P; send all output wire labels and their meaning
to P»). Recent literature [19-21] provides optimizations that significantly reduce
computation and communication overhead associated with garbled circuits.

Prior Results. Using the fact that computing a row of the matrix depends only
on entries from its current and previous rows, computing the edit distance (not
path) is done with Sy and Sz in |2,13] using O(o(m+n)) space and O(omn) time
in O(min(m,n)) rounds. Similarly, securely computing the edit distance in the
two-party setting using garbled circuit evaluation is done in [6, 9] by partitioning
the overall computation into multiple sub-circuits or rounds to achieve the same
result. Computing the path itself took in [3] an extra factor of min(m,n) work
and rounds. One of our main goals is therefore removing that extra factor for
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the path (as opposed to the distance) computation. Our solution is also more
flexible in terms of its round complexity even for the distance computation. In
addition to asymptotic complexity savings, the fact that our solution does not use
expensive public-key operation makes it significantly more efficient (even for the
distance computation) than [2,|3] which made an extensive use of homomorphic
encryption. Furthermore, our technique for removing the need for public-key
operations is of independent interest for secure computation outsourcing.

Lastly, [9] that implements the idea of partitioning a circuit into sub-circuits
(which we use as well) and provides circuit optimizations for a special case
of edit distance computation is complementary to our work. Because a distance
protocol is used as a subroutine in our solution, some of these circuit optimization
techniques can be applied to and integrated in our solution.

3 Overview of the Solution

Before describing our solution in detail, we provide an intuition behind it. First,
notice that if the amount of available memory is O(mn), it is easy to compute the
edit script. That is, first compute all elements of the matrix M. Then, starting
from M (m,n), follow the link to either M(i—1,5), M(i—1,j—1),or M(i,j—1)
that produced the current value of M (i,j) (breaking ties arbitrarily), until the
process terminates at M (0,0). The produced path corresponds to the desired
edit script that the client would like to learn. This approach, however, does not
work if the amount of available memory is o(mn) because the value stored at
any given M (i, j) might be necessary for reconstructing the path.

To address this problem without increasing the cost of the overall computa-
tion beyond O(omn), we can use a recursive solution, which works as follows: in
the first round, instead of computing all elements of M as described earlier, we
compute the elements in the “top half” of the matrix as before and also compute
the elements of the “bottom half” of the matrix in the reverse direction start-
ing from M (m,n) (see section Ml for detail). Then for each element M (m/2,j)
of the middle row we add the distances computed from the top and from the
bottom and determine the position of the element with the minimum sum. In
section Ml we denote this element by M(m/2,0(m/2)). Because we know that
the computed element has to lie on a path that results in the minimum edit
distance, to determine other parts of this path, we can safely disregard all cells
from the top half that lie to the right of M (m/2,6(m/2)) and all cells from the
bottom half that lie to the left of M (m/2,60(m/2)). We then recursively apply
this algorithm to the remaining portions of the matrix (which together contain
only a half of the elements of M) which allows us to reconstruct all points of the
path. While this approach doubles the amount of computation (i.e., the work is
< 2mn compared to the original mn), it is suitable for our situation when the
amount of available space is only linear in m and n.

Now notice that this solution works in a traditional setting, but in our case
revealing the position of the minimum element M (m/2,60(m/2)) (which is nec-
essary for determining what parts of the matrix should be discarded for the next
round), leaks important information about the edit path to the computational
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servers and violates security requirements. Our solution is to recurse on sub-
problems of slightly larger size without revealing information about the value
of §(m/2). In particular, we form two sub-problems of size 1/2 and 1/4 of the
original, where the 1/2 sub-problem consists of the top (resp. bottom) half and
the 1/4 sub-problem consists of the right bottom (resp. top left) quadrant when
0(m/2) > n/2 (resp. 6(m/2) < n/2). This ensures that the asymptotic com-
plexity of the solution does not change (the work is < 4mmn), while hiding infor-
mation about the path. This process, however, requires care because the strings
that form the sub-problems of fixed size must be padded based on the value
of 8(m/2). That is, we need to ensure that the way the strings are padded (as
a prefix or suffix of an existing string) should not affect the overall result. We
achieve this by extending the alphabet with a new character with carefully cho-
sen insertion, substitution, and deletion costs so as to take a certain path within
the matrix and not alter the edit distance.

The last remaining bit that we want the computational servers to prevent from
learning is whether the subtask of size 1/2 corresponds to the top or bottom
portion of the problem (which, once again, leaks information about the edit
path). This is achieved by always having the sub-tasks of different sizes in a
fixed order and obliviously assigning the correct portion of the grid to a sub-
task. This allows us to obtain a solution that can be safely outsourced to the
computational servers and meets their space requirements.

Having arrived at the oblivious algorithm for computing an edit script with
O(o(m 4+ n)) memory and O(mn) overall work, we now need to see how this
computation can be securely outsourced. Recall that our solution relies on gar-
bled circuit evaluation which we use in a new way. The first idea that we employ
is for the client to produce garbled circuit’s random labels corresponding to the
wires of its inputs only (two labels per input bit). The client sends the labels for
all wires to Sy, who forms the rest of the circuit for the computation. The client
also sends to Ss one label per wire that corresponds to its input value. Once the
circuit is formed, S5 will be able to evaluate it using the labels. In this case, no
OT protocols (or any other public-key operations) are necessary.

Note that this approach is general and by itself would be sufficient to result
in a secure outsourcing solution for most types of functions with no public-key
cryptography involved at any point in the protocol. For our problem, however,
it does not lead to a non-interactive (for the client) solution because after the
first round of the computation, the servers will need to contact the client again
to obtain the labels for the next round of the computation (since they are not
allowed to know what input values or labels are to be reused in the consecutive
round). Because the depth of the recursion in our algorithm is O(log(min(m, n))),
the client has to participate in O(log(min(m,n))) interactions with the servers.
This forms our preliminary solution in section Bl

To eliminate the client’s involvement, we employ the second idea, which con-
sists of the servers using the output wire labels from the current round of the
computation as the input wire labels for the sub-problems in the next round.
This solution requires a great care to ensure that all input labels for the next
round are formed correctly and computed obliviously (inside a garbled circuit)
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and is described in section [fl We thus obtain our target result in which the solu-
tion is non-interactive for the client, the client’s work is O(o(n+m)), the servers’
work is O(omn), the entire computation can be carried out within O(o(m + n))
space, and no public-key operations are used at any point.

4 Enabling the Computation to be Performed Obliviously

As a first step toward building our result, we design an algorithm that allows
the computation to be performed in O(omn) time using O(o(m + n)) space.
To be suitable for secure outsourcing, the algorithm must be oblivious or data-
independent (i.e., it always performs the same sequence of steps regardless of
the inputs). This will ensure that no information about the inputs is leaked
based on the algorithm itself. We therefore first describe a procedure for such
computation and later refine and instantiate it with secure building blocks to
obtain the overall solution with the desired performance.

To build our solution, we first need to extend the distance-computation to the
computation of an optimal edit path (i.e., a minimum-cost sequence of operations
on A that turn it into ). We adapt the approach of [3] that combines the distance
computation algorithm with a backward version of it which we review next.

The Backward Version of the Distance Computation. The algorithm
mentioned in section Pl is a distance rather than path algorithm. It computes
the length of a shortest path from vertex (0,0) to any vertex (i,j) in the grid
graph G. We call this the forward algorithm and denote its M matrix as Mp
where F' is a mnemonic for “forward.” Let G® denote the reverse of G, i.e.,
the graph obtained from G by reversing the direction of every edge. Clearly,
in Gf vertex (m,n) is the source and vertex (0,0) is the sink, and every v-to-
w shortest path in G® corresponds to a similar shortest path in G but in the
backwards direction (i.e., w-to-v). We thus use Mp to denote the matrix that
is to G what matrix Mp was to graph G (B is a mnemonic for “backward”).
Then Mp(i, j) denotes the length of a shortest path in GF from the source of G
(vertex (m,n)) to vertex (4, j), which is equal to the length of a shortest path in
G from (i,7) to (m,n). The edit distance we seek is therefore Mp(0,0) (which
is the same as Mp(m,n)). Defined in terms of the two input strings, Mp(i,7) is
the edit distance from the suffix of A of length n — j, to the suffix of p of length
m — i. Therefore computing Mp in an analogous manner to the computation of
M involves filling in its entries by decreasing (rather than increasing) row and
column order. An algorithm for Mp follows from any algorithm for Mg, which
we thus assume and use in the subsequent description.

Note that Mg(i,j) + Mp(i, j) is the length of a shortest source-to-sink path
constrained to go through vertez (i, 7) and hence might not be the shortest possi-
ble source-to-sink path. However, if the shortest source-to-sink path goes though
vertex (i, 7), then Mp(i,5)+ Mp(i, ) is equal to the length of the shortest path.
We use M¢ to denote Mp + Mp (where C stands for “constrained”).

Oblivious Edit Path Computation. We can now describe our oblivious edit
path algorithm with the desired bounds. Similar to the structure of computation
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in 3], we find for each row i of M¢ the column 6(i) of the minimum entry of that
row, with ties broken in favor of the rightmost such entry. Note that M (i, 0(4))
is the edit distance Mp(m,n). Computing the 6 function provides an implicit
description of the edit path because:

— If 0(i + 1) = 0(z) = j, then the edit path “leaves” row i through the vertical
edge from vertex (i,j) to vertex (i + 1,7). The cost of that edge is that of
inserting ftiy1.

— If 0(i +1) = 0(i) + 9, where § > 0, then the client can “fill in” the portion
of the edit path from vertex (¢,6(7)) to vertex (i + 1,0(z) + J) in O() time
(such a “thin” problem on a 2 x ¢ subgrid is trivially solvable in O(J) time).
The cumulative cost of all such “thin problem solutions” is O(n) because
the sum of all such §’s is < n.

Without loss of generality, let m < n. For reasons that will become apparent,
similar to |3] we introduce a new symbol € that does not occur in X' and denote
Y = XY Ue. We assign to € an insertion cost of 0, a deletion cost of co, and an
oo cost for any substitution in which it is involved. In practice, co can be set to
be (m + n) times the largest cost appearing in the cost tables for X' (whether it
is insertion, deletion, or substitution).

Because given 0(0), ..., 0(m), C can compute the edit path in linear additional
time, we give an algorithm for computing the 6 function. It proceeds in logm
rounds, the kth of which consists of 2¥~! grid graphs (each described implicitly
by two substrings of 4 and \) of respective dimensions (m/2F71) x ny, ...,
(m/2F71) X ngk-1, where Zf;l ne = (3/4)*1n as explained below. The first
round proceeds as follows:

1. Run the forward edit distance algorithm to compute row m/2 of Mp.

2. Run the backward edit distance algorithm to compute row m/2 of Mp.
3. Compute 0(m/2) as the minimum of M¢c(m/2,7) across all 0 < j < n.

The two subproblems of round 2 could, if one were not concerned about informa-
tion leakage, be defined by the following two sub-grids: (i) the (m/2)x6(m/2) one
that lies to the left and above vertex (m/2,60(m/2)) and is described implicitly
by the strings p1, ..., /2 and A1, ..., Ag(m/2); and (ii) the m/2 x (n —0(m/2))
one that lies to the right and below vertex (m/2,0(m/2)) and is described im-
plicitly by the strings fi(;m/2)41, - - - » bm and Ag(m/2)41; - - - » An. The area of those
two subgrids is half the original, but their size would leak the value 6(m/2) dur-
ing outsourced computation. We fix this by using, for round 2, subgrids whose
size does not depend on §(m/2) and yet their combined area is 3/4 of the orig-
inal, as described below. In what follows, we assume without loss of generality
that 6(m/2) > n/2. While in this description it appears that the fact that
O(m/2) > n/2 is leaked, in our actual protocol described later this information
is not revealed and the execution is fully oblivious.
— The first subgrid is of size (m/2) xn and is defined by the strings pi1, . . ., fiy, /2
and A1, ..., Ag(m/2), € - - -, €. The appending of the n—6(m /2) symbols of type
e at the end of the second string hides 6(m/2) without changing the answer
because the edit path for that subproblem has to use the n — 6(m/2) hori-
zontal edges of 0 cost that link vertex (m/2,6(m/2)) to the vertex (m/2,n).
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Table 1. Matrices for edit distance between strings AACG and AGAC
(a) Mp (b) Mg (c) Mc (d) 0
01234 23454 24688 0(0)=0
10123 32343 42466 (1) =1
21232 21232 42464 0(2)=1
32123 32121 64244 0(3) =2
43212 43210 86422 0(4) =4

B 9(7n/?1)
7o) -

8(3m/4) T ]

Fig. 2. Illustration of 6 function computation

m

— The second subgrid is of size (m/2) x (n/2) and is defined by the strings
H(m/2)+1s -+ Mm and €,...,€, Ag(m/2)415 ---;An. The pre-pending of the
(n/2)—0(m/2) e symbols at the beginning of the second string hides §(m/2)
without changing the answer because the edit path for that subproblem
has to use the (n/2) — 6(m/2) horizontal edges of 0 cost that link vertex
(m/2,n/2) to the vertex (m/2,0(m/2)).

A pair of 3rd-round sub-problems is derived from each 2nd-round subgrid in
the same way as above, thus the third round consists of 4 subgrids whose total
(combined) number of columns is 9n/16 (namely, n/4, n/8, n/8, and n/16) and
the total number of rows is m (m/4 rows for each).

Because the total (combined) problem size decreases by a factor of 3/4 from
one round to the next, the overall work of the above algorithm is as claimed:
O(omn). More precisely, the recurrence is T'(m,n) = T("},n)+T ("}, § ) +aomn,
and by easy induction it can be shown that T'(m,n) < 4acmn. Space is linear
because each invocation of the edit-distance protocol uses linear space.

To clarify the above notions, we give a small example using strings AACG
and AGAC with insertion and deletion costs of 1, and substitution cost of 0 for
equal characters and 2 for non-equal characters. The 5 x 5 DAG for this example
is like the one in Figure [Il Table [ provides matrices Mg, Mg, M¢ and the
values for 6. Notice that Mp(0,0) = Mp(4,4) = 2 is the edit distance between
these strings. Also, the shortest path goes through M (i, 6(i)) for any row i.

Figure 2 also demonstrates our algorithm for edit path computation, where at
each iteration a given (sub-)grid is partitioned into two subgrids of 1/2 and 1/4
of its original size and the remaining 1/4 is removed. In the figure, shaded areas
correspond to string padding with character €. In the figure, because 6(m/2) <
n/2, the top subgrid has size 1/4 and the bottom subgrid has size 1/2. In the
second round, §(m/4) > n/4 and therefore the top subgrid is further partitioned
into subgrids of size 1/8 and 1/16, resp.; also, §(3m/4) > n/2 and therefore the
bottom grid is partitioned into subgrids of size 1/4 and 1/8, resp.
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5 Preliminary Protocol for Secure Edit Path Outsourcing

The above algorithm can be executed in the secure outsourcing setting using
the round complexity of O(logm) — or, more generally, O(log(min(m,n))) — if
the servers can afford O(omn) space. If, however, the servers have only lin-
ear space O(o(m + n)), their round complexity increases to O(min(m,n)) be-
cause the computation uses the total of O(omn) space. This does not affect
the client’s round complexity, which in our preliminary solution described next
is O(log(min(m, n))). We subsequently improve it in section [l to make it non-
interactive for the client at no extra (for the client) cost.

Having described the structure of the computation, we now proceed with the
description of the secure outsourcing protocol for the edit path. Recall that the
client’s work should be O(o(m + n)), while the servers perform O(omn) work.
The protocol consists of executing the same procedure for each sub-problem in
each round (starting with the problem of size m x n in round 1), at the end of
which the client learns the value of the 6 function at a single point. That is, for
a subgrid defined by strings fix+1, - . -, flk+q and 5\g+1, e 5\g+b, the client learns
0(k + a/2) and the servers learn nothing. Here i; and \; are from X, since after
the first round each subgrid is formed by prepending or appending a number of
€ characters to portions of the original strings.

In this protocol the client performs O(o(a+b)) work for a subgrid of size a x b,
and the servers perform O(cab) work. The client’s work is thus characterized by
recurrence T'(m,n) = T("y,n) +T("}, %) + Bo(m +n) and can be shown to be

272
< 4B0(m + n) using the total of O(logm) rounds. In what follows, we describe
a protocol for a subgrid defined by strings figt1, ..., fkt+a a0d A1, ...y Aegp, i

which the client learns the 6 value and prepares two subgrids for the next round.

For the sake of the current description, suppose that S has access to fig41, .- -,
[ik+a, but wants to keep the string private from Sy, and S5 has access to 5\g+1, e
5\g+b, but likewise wants to keep its string private from S;. S1 and S can engage
in secure two-party computation, where S; inputs each fi; and the corresponding
I(fi;), and Ss inputs each 5\]-, the corresponding D(S\j), and a vector S(S\j, -) that
defines the cost of substituting 5\]- with every character in .. Then to be able to
proceed with each step of the dynamic programming problem, they compute each
M (i, 7) as specified, where the computation proceeds in an oblivious way as follows:

1. fort=1too+1do
.7

¢ = (fis = 1t);
st =c-S(\j,1);
Cs =0 )
Here (z Z y) denotes an equality test that outputs a bit which is 1 iff z = y. The
procedure obliviously chooses the correct substitution cost from vector S(A;, )
and uses it to compute M (4, 7). The cost of computing M (i, j) is thus O(o).

To take this to the outsourcing context in which neither S; nor Sy have access
to the input strings or the output, we will now have the client C' provide all of the

o
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inputs that S and Sz will use without learning any information about them (other
than the lengths m, n, and o). In particular, one server, say S1, will be responsi-
ble for garbled circuit construction for a subgrid problem using oblivious execution
described above, while the second server, Sy, will evaluate it on the client’s inputs
without knowing the meaning of the random labels that it handles. In a traditional
implementation, we would have S; build a garbled circuit and send it to Sy, after
which the client and S; engage in OT so that the client learns the (random) la-
bels of the input wires corresponding to all of its inputs (namely7 /’(’k-‘rl? ooy Pktas
Nests o Aeyn, I(j15) for each k < i < k + a, and D();) and S(};, ) for each
¢ < j < £+b). The client then would send the labels it received from Sy to Sa,
S5 would evaluate the garbled circuit on the client-supplied input wire labels and
send the labels corresponding to the output wires to C'. S then would send to C'
the meaning of all output wire labels and C' learns the result. We, however, pro-
pose a more efficient solution in which the need for computationally-intensive OT's
is entirely eliminated. In detail, we have the client generate all input wire labels
that it consequently sends to S7. S7 uses these labels to produce a garbled circuit
that it sends to So. S7 also sends all output wires and their meaning to C'. C' then
sends the labels corresponding to its private input to S, who evaluates the circuit
as before and sends the labels corresponding to the output to C.

Input: C has private strings fig41, - - -, flk+q and 5\g+1, el 5\£+b and the corre-
sponding insertion, deletion, and substitution costs, namely, I(ji;) for k < i <
k+a and D()\ ) and S( ,-) for £ < j < £+b. 51 and Sz contribute no input.

Output: C obtains 6(k + a/2) and new pairs of strings [, 1, fijy 4405

Apgrse s Apy and [yl g, ﬂ;c/"+a/2v APrg1s e )\’5’,,+b/2 that define subgrids
for the next round. S7 and S5 learn nothing.
Protocol 1

1. C generates a(sx+sc)+b(sx+sc+sc|Xe|) pairs of random labels (@ét), égt)),
where sy = [log(|X])] = [log(c + 1)] is the size of binary representation
of an alphabet character, s¢ is the size of binary representation of costd] i
tables I(-), D(:), and S(-,-), and t € [1, sx(a + b) + sc(a + 2b+ ob)].

2. C sends all (éét),ﬁgt)) to S1 who uses them as the input wire labels in con-
structing a garbled Circuit

3. C sends a single label € for each t to S3, where b; is 0 or 1 depending on
the corresponding bit of s input.

4. S; sends the garbled circuit to S9 and all output wire labels to C', which we
denote by (é(()t), égt)) for t = [1, sp], where s, = [logb] is the size of the binary
representation of the output 6(k + a/2) which takes on b possible values.

5. S evaluates the garbled circuit using the input labels received from C and
sends labels él()i) that correspond to the computed output for ¢ € [1, sp] to C.

6. C recovers the meaning of the output (i.e., the bit b;) for each El(:i) using
previously received labels (28”,25”). Let b" denote the output 0(k + a/2).
! For simplicity of presentation we use fixed length sc for costs in all tables, but this

does not need to be the case. Also, because e character is not present in the original
strings, the values of sx and s¢ can be adjusted accordingly in the first round.
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7. C forms two new sub-problems based on the value of &'. If b/ > b/2, C sets:

~r ~r A N
T Mgy uk'+a/2 = Hk+15 - -5 Mkta/2s
< 3 T «
- )‘E'Jrl’ ceey )\ZIer = >\g+1, .. .,>\g+b/,€, .. .6y
N7, ~11 _r A
= Mg 'ap“k/q_a/g = HEk4+(a/2)+1s -+ Hk+as
N/ N 3 3
010 )‘E"+b/2 = €,...,€, )\g+b/+1, ce ey )\Z+b-
Otherwise, C sets:
~y ~y A o
T Mgy /Lk,+a/2 = Hk+(a/2)+1) - - -5 Hk+a,
< y < «
- )‘Z’—H’ ce ey )\Z’+b = €,...,€, )\g+b/+1, ce ey )\[_,_b,
N ~I _ &~ ~
= Hprgqs - '7/’[’k”+a/2 = Hk+1y -5 Hkta/2s
N NG _ 3 3
- )\Zu+1, ceey )\Z”+b/2 = >\g+1, ey )\(er/, €, ..., €

C, 57 and S can now engage in the next round of computation using two newly
determined subgrids. Note that the solution works even when the insertion,
deletion, and substitution cost tables are private and known only to C.

6 Reducing Client’s Involvement

While the solution above already significantly outperforms prior work, in this
section we further improve it by making the protocol non-interactive for the
client. Now the client initially sends data to S7 and S; and at the end of the
computation receives the result from S; and S and recovers the edit path.
Our idea in eliminating the client’s interaction such that no oblivious transfer for
garbled circuit evaluation has to be introduced consists of using output wires of a
garbled circuit as input wires for the garbled circuits used in the next round. To be
able to do so, the server needs to obliviously compute the input strings for the next
round of computation, the wires of which will then be reused in subsequent garbled
circuits. Let Sy and Sz compute #(m/2) in the first round of the computation, where
C provides inputs 1, .. ., thmy Ay .- An, L) fori = 1,...,m, and D(}\;) and

S(Aj,-)forj =1,..., ninthemanner described above. After determining the value
of #(m/2), S1 and S5 can proceed with obliviously computing strings pf, . . ., [L;n/z,
byeoo A and wfy .. [L;:L/Z, Y )\’7:/2 (with the corresponding insertion, dele-

tion, and substitution costs) which will become inputs for the next round as follows:

1. e = (0(m)2) < n/2);
2. fori=1tom/2 do
3. ,U,; = (1 - C):U'i + Cl(m/2)+i5
4o = cpi+ (1= ) pigmy2)+i;
5. for j =1 ton do
,
6. ¢j=(0(m/2) <j); // can always set ¢, =1
7. N=(1-cdcj)\+ (cdeje
8. for j=1ton/2do
9. Af = eleje+ (1 =¢j)Ag) + (1 = ) (emsayrjAm/a+i + (1 = ¢ny2)+5)6);

The computation of the pu!’s and p!’s above is rather straightforward. To com-
pute A}’s (for the larger 1/2 part), when c is set, the larger area corresponds to
the bottom rows and the beginning needs to be populated with e characters. So
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we keep \; if ¢; is set and replace it with € otherwise. When c is not set, the
larger area comes from the top rows and erasing happens at the end. In this case,
we keep J; if ¢; is not set and replace it with e otherwise. The expression for A’
above corresponds to this logic in a more compact form. To compute )\;-’ s (for
the 1/4 part), when c is set, the top left quadrant is used and padding happens
at the end. Thus, if ¢; is set, use €, and use A; otherwise. When ¢ is not set,
we are using the bottom right quadrant with padding in the beginning. So if
C(n/2)+j 18 set, use A(,/2)4; and use € otherwise.

Referring back to the example in Figure 2l the value of ¢ determines whether
the size of the top or bottom subgrid should be reduced and the values of c;
determine what portions of the strings should be replaced with €. As part of the
computation, the servers always process the 1/2-sized and 1/4-sized grids in the
same way, regardless of from what portion of the original grid they come. This
means that a subgrid processing purely depends on its size, while the origin
of a subgrid of any given size is protected (i.e., unlike this computation, the
positioning of subgrids in Figure 2]is not oblivious).

The above allows the servers to compute the strings themselves for the next
round of the computation, but we also want to ensure that they are able to
compute the rest of the input which consists of insertion, deletion, and substi-
tution costs. Here we demonstrate oblivious computation of such values on the
example of strings uf,.. .,p;n/z, A, .. AL, The costs for strings pf, .. "M;:L/Q’

T\ /o can be computed analogously. From the privacy point of view, we
distinguish between two cases: (i) the insertion, deletion, and substitution cost
tables are public (i.e., known to the servers) and (ii) the cost tables are private
(i.e., known only to the client). Whether the cost tables are public or not will
affect how a garbled circuit is constructed, but the computation built into the
circuit must proceed obliviously regardless of that fact. In particular, when the
cost tables are public, their values will be input into circuits as constants (in
which case two inputs wires — one encoding a 0 and another encoding a 1 — can
be used to encode all constants), while when they are private, the client will
need to additionally produce input wires for all constant values that comprise
the cost tables and communicate their values to S; and Ss in the same manner
as for all other private inputs. What follows describes oblivious computation of
I(p;), D(X;), and S(N},-) for the next round.

1. for i =1 to m/2 do

2. I(p) =0;

3. fort=1tooc+1do

4. c=(uf = t);

5. I(pi) = 1(pz) + ¢ - I(t);

6. for j =1ton do

7. D)) =0; S(A},-) =(0,...,0);
8. fort=1too+1do

9. e=( = 4);

10. D(X;) = D(X}) + ¢ D(t);
1L SOV.) = SO, +e-S(t, )
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For compactness of presentation, we define operations on vectors S(A,,-) and
S(t,-) in a single step, but it should be understood that all addition, multiplica-
tion, and assignment operations in this case are performed element-wise.

The above allows S; and S to produce all inputs for the next round of the
computation. Because the cost tables for insertion, deletion, and substitution are
needed for each subgrid computation, when their values are public, S; will as
before encode the constants into each circuit it forms. When, on the other hand,
such values are private and should not be revealed to Sy or S5, S; will use the
same wire labels for the constants as the ones provided by the client in the first
round, and S will also reuse the labels that it received from the client for these
constants in the first round of the computation. We note that while in general
reuse of garbled circuits or their parts is not safe from the privacy point of view,
in this case the servers can use the same wires in multiple circuits because the
labels (or inputs) on which Sy evaluates the circuits are always the same. This
means that the labels themselves do not change and do not allow Sy to learn
any information contained in the cost tables. All other labels in garbled circuits
are chosen anew and therefore Sy cannot deduce any information as a result of
gate evaluation. This allows us to obtain the overall protocol as follows:
Input: C has private strings p1, ..., by, and A1, ..., A,. The insertion, deletion,
and substitution cost tables can be C’s additional private input or known to all
parties. S1 and Sy do not contribute any input.

Output: C obtains the edit path. S; and S learn nothing.
Protocol 2

1. C generates two random labels (E(()t), égt)) for each bit of its input p1, .. ., tim,
M, An, I(pi) for each ¢ € [1,m], D(\;) and S(}Aj,-) for each j € [1,n],
I(-), D(-), and S(,-) resulting in ¢ € [1, s (m+n) + sc(m+n+ 30+ 0?))].

2. C sends all (eff),zg”) to S1, and it sends a single label 61()? for each t to Sa,
where b; is 0 or 1 depending on the corresponding bit of C’s input.

3. 51 uses the pairs of labels it received from C as the input wire labels in
constructing a garbled circuit that produces 6(m/2), strings uj,.. "/‘;n/zv
Al, .+ Ay, and the corresponding I(p;), D(X;), and S(X,-), as well as strings
[T/ ,u;’l/w T )‘Z/2 and the corresponding I(p;'), D(\}), and S(A7, ).
Let the pairs of the output wire labels that correspond to 6(m/2) be
denoted by (28”,25”), where t € [1, [log(n)]], the labels corresponding to
the output labels for the first sub-problem be denoted by (ﬂg(t), @ll(t)), where
te[l,se(m/2+n)+sc(m/2+n+on)], and the labels corresponding to the
output labels for the second sub-problem be denoted by (€g(t), élll(t)), where
te[l,se(m+n)/2+sc(m+n+on)/2.

4. S; sends its garbled circuit to Sy, which Sy evaluates using the input labels
received from C'. S; stores for later reference pairs of labels (@ét),égt)) and
So stores the labels for the same wires El(:i) that it computed.

5. S1 and S3 now engage in the second round of the computation, where for
the first circuit S; uses pairs (ég(t),é/l(t)) as the input wire labels as well as
the pairs of the input wire labels from C' that correspond to cost tables I(-),
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D(-), and S(-,-). After the circuit is formed Sy sends it to Sz who uses the
labels £, 10 i computed in the first round as well as the labels for the cost
tables supphed by C' in the first round to evaluate this circuit.

6. S7 forms and S5 evaluates the second circuit of the second round and all
circuits in consecutive rounds analogously. As before, for each circuit they
store the labels of the output wires that correspond to evaluation of 6(-) on a
specific point (i.e., Sy stores a pair of labels for each ouput bit and Ss stores
a label per output bit that it obtained as a result of circuit evaluation).

7. When S; and Ss reach the bottom of recursion, S; sends pairs (f (t) f (t) ) and
S sends values €( ) from each circuit to C. C uses the labels to reconstruct
the values of the 0 functlon on all evaluated points, from which it reconstructs
the edit path as described in section [l

We obtain the final result in which the servers’ communication and computa-
tion is O(omn) and the work is dominated by the same number of symmetric
key or hash function operations for garbled circuit generation and evaluation.
The solution works when the servers have only O(o(m + n)) space. The client’s
communication and computation is O(o(m + n)), where work is dominated by
generation of the same number of random labels. The round complexity for the
client is O(1) and for the servers it can be expressed as a function of their space:
when the space is O(omn), the round complexity is O(log(min(m,n))); when
the space is lower, the round complexity increases as below. Security analysis is
omitted due to space considerations and can be found in the full version.

Achieving Linear Space at the Servers. As previously mentioned, our so-
lution was designed to ensure that the servers can carry out the computation
using only O(o(m + n)) space as m and n can be large. Because the circuit
size starts from O(omn) (before it exponentially reduces in each round), S; will
generate and send to Sy a part of the overall circuit before the next portion can
be produced. Similarly, So will receive and evaluate a part of a circuit at a time.
Because the entries of the M-matrix can be computed row by row (or column by
column), when the servers’ space is constrained, the part of the circuit generated
and evaluated in each round will follow the same structure of the computation
(i-e., a circuit corresponding to the computation of one or more rows is produced
and evaluated at a time). This causes the number of times S7 and S5 interact to
increase from the minimum O(log min(m,n)). As the size of each circuit reduces
in consecutive rounds, S; and Sy will be able to process a larger portion of a
circuit and then multiple circuits per interaction. Thus, the number of interac-
tions for the servers is O(min(m,n)) when they only have O(o(m + n)) space
available. In other words, for servers with memory constraints of o(omn), there
is a tradeoff between their space capacity and the number of interactions. This
obviously does not affect the client who only sends and later receives its data.

Performance. To gain insights into performance of our solution, we compute
the size of garbled circuits as a function of parameters m, n, and o and approx-
imate the protocol’s runtime. For concreteness, we set the cost of insertion and
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Table 2. Servers’ combined computation and communication

Value of n = m Number of gates Computation Communication

250 50 x 108 8.3 min 1.4 GB
500 221 x 10° 36.6 min 6.2 GB
1000 966 x 10° 161 min 27.0 GB

deletion to be 1, and the cost of substitution with a different character to be 2
and with the same character to be 0.

In the circuit, we want to use the smallest possible number of bits to rep-
resent values and store intermediate results. This in particular means that the
size of representation of input characters, substitution costs, and intermediate
matrix values will differ. Also, with the free XOR gates technique of [19], we can
implement equality testing of two ¢-bit values using ¢ — 1 non-free gates (i.e.,
XOR the inputs and compute OR of the resulting bits), multiplication of an
£-bit value by a bit using £ AND gates, addition of k ¢-bit values from which
at most one is non-zero (as on line 4 of matrix cell computation in section [
using k¢ OR gates, and regular addition and minimum as in [21]. All constants
are encoded using the total of two input wires. For an m x n matrix with ¢ = 4,
this gives us < (n — 1)(m — 1)(7log(n + m) + 18) non-XOR gates for the first
round (without using €) and < (n —1)(m — 1)(25log(n + m) + 16) for all consec-
utive rounds. Thus, implementing the preliminary protocol in section [ involves
< (n—1)(m — 1)(82log(n + m) + 64) non-XOR gates. O(log(n + m)) bits are
used to represent matrix elements M (i, j). Removing client’s involvement in the
protocol introduces additional ~ 84m + 3n(54log(n + m) + logn + 29) non-
XOR gates. We note that the number of gates in our edit distance computation
is larger than, e.g., in [9] for computing the Levenshtein’s distance due to the
generality of the edit distance problem we are solving. Some of the circuit op-
timizations from [9] can be applied to special cases of our problem to result in
smaller circuits and faster performance.

TablePlprovides estimated number of gates and runtime of our solution assum-
ing processing 100 non-free gates per msec (based on evaluation results in [9, 22])
on single-threaded commodity hardware. Communication is computed using 25%
savings per gate |20]. The client’s work is only to generate 9n + m pairs of short
random labels and communicate them to the servers (180n + 20m bytes). This
is computed assuming that the costs of insertion and deletion are known and
fixed and the servers can add costs for € to the circuits. We conclude that our
techniques can be applied even to problems of large size.
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