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Abstract. Cortier & Smyth have explored ballot copying in the Helios
e-voting platform as an attack against privacy. They also pointed out that
their approach to ballot copying could be detected by a modified Helios.
We revisit ballot copying from a different viewpoint: as a tool to prevent
vote diffusion (the division of votes among multiple weak candidates)
and to lessen the effect of established voting blocs. Our approach is
based on blinding the ballot casting protocol to create an undetectable
copy. A willing voter can cooperate with a prospective copier, helping the
copier produce a blinded copy of his ballot without revealing his vote. We
prove that Helios is unable to detect the copying. The possibility of such
cooperation between voters is manifested only in internet voting and as
such is a fundamental difference between internet and booth voting.

1 Introduction

Electronic voting, suggested by Chaum in [12] is one of the more important areas
of computer security. It is identified as such in the “Four Grand Challenges in
Trustworthy Computing” report [14]:

There are many new systems planned or currently under design that
have significant societal impact, and there is a high probability that we
will come to rely on these systems immediately upon their deployment.
Among these systems are electronic voting systems, ... A grand research
challenge is to ensure that these systems are highly trustworthy despite
being attractive targets for attackers.

The move towards electronic voting is justified by factors such as convenience,
accessibility and ease of use but more importantly by the existence of provable
security properties unavailable to conventional systems, for example universal
verifiability [39/17] which satisfies the need for transparent elections by enabling
election participants as well as outsiders to effectively audit an election. However,
even as internet voting systems have been deployed alongside paper ballots in
local as well as parliamentary elections [25[29]30], the security of electronic voting
systems in general has been often found lacking [4U34].
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Helios [1] is a state of the art web-based, universally verifiable Internet vot-
ing system. To facilitate universal verifiability, Helios ballots are encrypted and
public. Ballots are cast over the Internet via a web browser. Since users have full
control over the ballots they submit, Helios is susceptible to coercion, and is thus
best suited for use in low-coercion environments. This might appear to limit its
use to “low-stakes” elections but may not necessarily be the case. In Estonian
parliamentary elections [25] for example, the ability of overwriting a vote with
a later one is used in place of coercion resistance. As such, it is conceivable that
a system like Helios might be used in a high profile election.

Even though Helios has been based on 30 years of sound cryptographic prim-
itives, previous works have described attacks against Helios compromising both
secrecy [I5] and correctness [24]. The former, presented by Cortier & Smythe
in the 2011 Computer Security Foundations Symposium exploits the lax check-
ing of Helios against duplicate votes. In light of these attacks, security using an
add-on approach may be unavoidable even for systems designed with security
built-in. Our work has a different goal though: blinded ballot copying. A blinded
copy of a ballot is a copy that cannot be detected as such. Instead of a forced re-
lationship between coerced and coercer, this form of ballot copying relies on the
cooperation of both parties, and is based on trust rather than threats or bribes.
This demonstrates how an unspecified property of Helios (the ability to create
blinded copies of votes) can be expanded upon to build a secondary system on
top of it. The potential for this was also mentioned in [7], independently of [21].

Assume that Alice, Bob, Carol and Dianne are coworkers. Carol and Dianne
are candidates for the “employee of the year award”. Bob has recently returned
from a project abroad and is unsure about the candidates. He would like to ask
Alice whom he trusts. Alice does not want to reveal her choice so as not to upset
the other candidate. Our goal is to provide a system where Alice (the voter) can
assist Bob (the copier) in producing a copy of her ballot whilst ensuring that:

— Bob will not learn anything about Alice’s vote that is not also revealed by
the tally, but will know that the ballot produced by the copying system
contains the same vote as Alice’s.

— Alice cannot distinguish the ballot that is produced by the system from a
random valid ballot. Therefore, the copier is explicitly given the option of
backing out (by using his own choice instead of the copied one) undetected.

— Helios (or any observer) cannot recognise the ballot produced by the system
as a copy.

Such a system would allow groups of voters to organise around a trusted figure,
partly avoiding the spoiler effect [3] prevalent in plurality elections, thus increas-
ing the weight of their vote and the possibility of obtaining a desired result (to
the degree where trust in the original voter is well-deserved).

Using non-malleable encryption (instead of Elgamal) will only make our col-
laboration between a voter and copiers more complex, but cannot avoid it (due to
secure multi-party computation). In fact the only solution seems to necessitate
the use of private-key encryption (for example by using code voting) so that a po-
tential copier is able to decrypt a copied vote, making blinded copying impossible.
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Even with this caveat, this demonstrates internet voting introduces new features
not foreseen by 30 years of research.

2 Background

Our work is based on modifying the protocols used by Helios so that they involve
three parties (voter, copier, Helios) instead of just two. As such, we need to
explain the design and operation of Helios before describing the modifications.

Helios 3.0 [1J2] is a state of the art web-based voting system, based on decades
of cryptographic research. An important feature implemented by Helios is uni-
versal verifiability [39/17] : any party, even one uninvolved in the election can
opt to verify the integrity of an election that uses Helios. This is achieved by
making the ballots cast by each voter public, albeit encrypted with the ElGamal
[23] cryptosystem.

Each ballot also contains a proof of its validity which can be verified without
requiring specific knowledge or access and without revealing the contents of the
ballot. The proofs of validity are based on a disjunctive version of the Chaum-
Pedersen protocol [I6/II] previously used in [I7]. This ensures that no invalid
ballots have been accepted and that no ballot tampering has taken place. The
public list of ballots also guards against the election officials injecting votes from
unregistered voters if the registration list is public. As the encryption scheme
used is additively homomorphic, the product of all encrypted votes is an encryp-
tion of the sum of all votes. Since the encrypted ballots are all public, there is no
way for a corrupt server to tamper with the product in an undetected way. The
vote sum is obtained by the election trustees using threshold decryption. Each
trustee is able to provide a partial decryption factor along with a proof of cor-
rectness for his individual calculations. The partial decryption factors are then
combined to arrive at the decrypted result. Again, once the partial decryption
factors have been made public there is no opportunity for foul play.

In this section we will analyze the parts of Helios that are relevant to this
work. We will start by briefly mentioning the relevant parts of the Helios Imple-
mentation before moving to the cryptographic design. The design of Helios 3.0
is based on the ElGamal cryptosystem [23], used for encrypting votes and ho-
momorphic tallying. It also uses disjunctive zero-knowledge proofs of equality to
ensure ballot validity.

2.1 Current Helios Implementation

As mentioned in [33] Helios has 4 main components: an election builder, a vot-
ing booth, a ballot casting server and an audit server. From the perspective of
impelmenting ballot copying, we are mostly concerned with the inner workings
of the voting booth since we need to be able to extract data in order to capture
the encryption randomness and also inject it to allow the copied and blinded
ballot to be actually submitted. The ballot casting server concerns us only with
respect to the tests performed against incoming ballots, according to the Helios
specifications [33]. The workings of the other two components are not relevant.
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Voting Booth. The Helios voting booth is a web application that reads the
parameters of an election, presents the user with the questions he can vote on,
encrypts his choices and calculates the appropriate proofs to construct a valid
ballot and then allows the user to either audit or submit it. The randomness
used in the encryption is only revealed if the user chooses to audit his ballot in
which case he will need to create a new one before voting. This is implemented as
a weak form of coercion resistance, but is easily bypasse if the voter executes
a JavaScript command during the preparation of the ballot.

Ballot Casting Server. After the ballot is constructed and saved as a JSON
(JavaScript Object Notation) [I8] object, the voting booth submits it to the
ballot casting server using the HTTP POST method. The ballot casting server
then checks the ballot for validity and compares it against already cast ballots
and rejects is if it is identical to one.

2.2 Additive Homomorphic ElGamal

The ElGamal [23] cryptosystem is a public-key encryption system based on the
Diffie-Hellman [22] key exchange protocol. ElGamal is also homomorphic and
can be used with threshold decryption, both desirable properties for e-voting.
Helios relies on both of these properties. The operations of ElGamal are as
follows:

— Key Generation: Choose a large prime@ p = bg + 1 such that ¢ is also
prime and b > 2. Choose an element g of Z; with order ¢. Choose a secret
key < ¢ and let h = g® mod p. The public key is then (p,q, g, h) and the
private key (p,q, g, h, x).

— Encryption: Given a public key (p,q,g,h), encrypt a message m < ¢ as
such: Choose a random blind 0 < r < q. Let « = g" and § = m - h". The
ciphertext ¢ is then ¢ = (a, ).

— Decryption: Given a private key (p, g, g, h, z) and a ciphertext ¢ = (o, ),
the decrypted message is p=a~* - 3

Homomorphic Property. An important property of ElGamal is that it is
homomorphic: the product of two ciphertexts is a cipher text which corresponds
to the product of the messages in the original ciphertexts. Let two ciphertexts
¢1,c2 be the encryptions of m; with blind r; for ¢ = 1,2. Then ¢; - c2 = (ay -
as,B1 - B2) = (g™ 172, my - mg - K"1T72) ie. ¢; - ¢ is the encryption of my - ma
with blind rq + ro.

A special case of homomorphic operation is when ¢ corresponds to the mes-
sage mo = 1 in which case the resulting ciphertext is a re-encryption of m; with
a different blind.

! In fact, early versions of Helios included a “Coerce Me!” button which revealed the
encryption randomness without invalidating the ballot.
2 In the case of Helios b is fixed to 2.
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Votes. In the context of Helios, the homomorphic property is used in order to
calculate an encrypted sum of votes from individual encrypted ballots without
the need to decrypt them individualy. However, as described above, ElGamal is
multiplicatively homomorphic, whereas vote tallies are sums. In order to bridge
this gap, in Helios a variant of the encoding used in [I7]. Cramer et al. encode
votes of “no” as 1 and votes of “yes” as g. In this way, the product of n votes v;
of which m are “yes” will be [}, v; = g™ i.e. the log of the product will be the
sum of the votes i.e. the scheme is additively homomorphic. Most elections have
more options than “yes” and “no”, so Helios models them as a series of “yes-no”
questions about each option, with a limit on the number of “yes” answers equal
to the number of selections allowed in the original question. For example, given
a question with 3 choices, from which exactly one may be selected, a vote would
be of the form:

V = (ao, po), (a1, B1), (a2, fB2) (1)
= (9", 9™ -h"), (g™, g™ -h"), (9", g™ - h"?) (2)

In the above vote, r; represents the randomness used in the encryption and m;
the answers of the voter to each of the 3 options. We note that a vote of the
above form might be invalid, for example if m; > 1 for some 14, or if every m;
is 1, even though the election parameters only allow the voter to choose one
option. A particularly insidious voter might even have my = —100, making his
vote cancel out 100 honest votes for the first option. Helios guards against this
by requiring the voter to provide a zero-knowledge proof of his ballot’s validity.
Note: Helios supports a threshold variant of ElGamal, but this is not relevant
to this work.

2.3 Proofs of Knowledge

As seen in the above example, a voter must provide a proof that the value of
his vote falls into the range permitted by the election parameters. As such, he
must prove that the individual vote for each option is either a “yes” or a “no”
and furthermore that the total number of “yes” votes is within the range of the
allowed number of selections. In more concrete terms, the voter is asked to prove
that each m; is either 0 or 1 (an individual proof in Helios terminology), and
that the sum Z?:_Ol m; is inside the range of allowed selections as specified in
the election’s definition (a total proof).

The proofs of validity used by Helios are offline disjunctive zero knowledge
proofs of equality between discrete logs. In the rest of this section, we will offer
a brief overview of the underlying concepts as well as their use in Helios.

Proofs of Knowledge. Zero knowledge proofs of knowledge [26] are a concept
related to zero knowledge interactive proofs [32], the difference being that in
proofs of knowledge the prover is supplied with an auxiliary input called a witness
which enables it to convince the verifier. An algorithm called a witness extractor
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can then output that witness if given oracle access to the prover. Intuitively,
in a proof of knowledge we want three things to hold: first, an honest prover
given a correct witness almost always convinces the verifier. Second, if a witness
extractor is allowed to “interrogate” a successful prover, he will in most cases
be able to extract the witness. Third, even if the verifier behaves in a dishonest
way, he learns nothing useful.

Computational Assumptions. The prover and verifier in our setting are
polynomially bounded. Furthermore, we assume the the Decisional Diffie Hell-
man assumption [6/22] holds. This is also a requirement for the semantic security
of the ElGamal scheme.

Definition 1 (Decisional Diffie Helman assumption). Let G be a cyclic
group and g a generator with prime order q. Then, given a,b,c €r Z, the fol-
lowing tuples cannot be distinguished by a polynomially bounded turing machine:

(9%,9% 9%,(9% ¢°,9*). The bound is on |q| = [log, q].

Disjunctive Proofs of Equality between Discrete Logarithms. To prove
that an encrypted individual vote (o, 3) is valid one must prove that either the
corresponding plaintext is either g® = 1, in which case log, o = log;, 3, or g* in
which case log, o = log), 3/g. As the prover needs to prove the disjunction of
the two statements we have a disjunctive proof of knowledge.

Total proofs can be carried out in the same way, the difference being that
for individual proofs the range of exponents is always [0,1] whereas for total
votes it ranges from the minimum number of selections to the maximum. For
total proofs the ciphertext used is the homomorphic product of the individual
ciphertexts.

Therefore, the main component of the proofs of knowledge used in Helios is a
protocol to prove equality between discrete logs [I1] along with a construction
that enables the prover to prove the disjunction of many statements without
revealing which one is in fact true [16].

The Chaum-Pedersen protocol [II] for discrete log equality is essentially a
parallel version of the Schnorr protocol [4(]]. We note that the Chaum-Pedersen
protocol (as well as the underlying Schnorr protocol) is only provably zero knowl-
edge against adversaries who behave honestly. There is no known simulator for
dishonest adversaries [I1].

Cramer et al. provide a construction for disjunctive proofs [I627] where the
prover can prove one statement from a set and simulate proofs for the other
ones, without the verifier knowing which of the subproofs are simulated. In the
context of Helios, this allows the voter to indicate that the plaintext of his ballot
is one out of a number of allowed values without revealing which one.

We explain the details of the construction of Cramer et al. [16] as applied
to the Chaum-Pedersen protocol [11]. We take advantage of the fact that since
the Chaum-Pedersen protocol is honest-verifier zero knowledge, if the voter can
choose the challenge ¢, he can simulate the proofs as follows:
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Protocol 1. Simulated Chaum-Pedersen Protocol.

Step 1 Simulated Proof: Choose random challenge ¢ and response s. Let the
commitments be a = ¢g°/a® and b = h*/(5/g").
Step 2 Partial Verification: Check that ¢° = a- o and that h* =b-(8/g")°.

In order to force the voter to provide at least one honest proof, he is not given
complete choice of the challenges. The Verifier is allowed to specify the sum of
the challenges used in the subproofs. This allows the voter to simulate all but
one of the Chaum-Pedersen proofs and let the challenge of the real subproof be
as a balancing factor in the sum. Suppose the voter needs to prove that the value
v encoded by («, 5) = (¢",h"g") is in [min, max]. He will simulate the proofs for
i € [min, max] \ {v} and produce a real proof for i = v.

Protocol 2. Disjunctive Chaum-Pedersen Protocol.

Step 1 Prover (Voter): For ¢ € [min, max] \ {v}: Choose random challenge

¢; and response s;. Let the commitments be a; := ¢%/a% and b; =
h%i/(B/g")¢ . Choose commitment (a,,b,) such that (a,,b,) = (¢*,h")
for some w.

Step 2 Verifier (Helios): Choose T € Z,.
Step 3 Prover (Voter): Let ¢, :==T — Z#U ¢; and s, := re, +w.

Step 4 Verifier (Helios): Check if g% Z a-a® and that h% = b- (8/g%)¢i for
i € [min, max]. Check if T = 7% ¢,

i=min

Non-Interactive Proofs. For practical reasons, Helios implements the above
protocol offline rather than online. This requires less communication with the
Helios server and does not require the Helios server to hold the state of proof
protocols in progress. This is done by way of the Fiat-Shamir heuristic [2§]
which replaces the random challenge issued by the verifier with a hash of the
commitments. This also facilitates universal verifiability since the generation of
the challenge is beyond the control of the (potentially dishonest) Helios server.
The result of this modification is that the protocol can be performed entirely by
the voter with the final ballot submitted to Helios for verification.

The offline version of the protocol is zero knowledge in the random oracle
model. For zero knowledge proofs under the random oracle model, the hash
function used in the protocol is assumed to be an oracle under the control of
the simulator. As such, the simulator can choose the value returned by the hash
function on any input with the only limitation being consistency (i.e. after setting
H(z) = y, the simulator is not allowed to set H(xz) = 3’ # y. The random oracle
model has been criticised as [3TJ9] have shown that it is possible to construct
protocols that are secure under the random oracle model but provably insecure
in general. Nonetheless, these results have not led to a vulnerability being found
in a currently used protocol.

For example, suppose we have an election with 3 options of which exactly one
may be selected (as in the vote example). We follow the notation of protocol
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in that a;, b; represent the commitments of a proof, s; the solution and ¢; the
challenge. The individual proofs would then be of the form:

P; = ((ai,0,b4,0,ai,1,bi,1), (¢i0, 8,05, Ci,1,54,1)), for i €{0,1,2} (3)
And the total proof would be of the form:

Py =((ax1,b5,1), (cz1,85.1))

To check if one of the above proofs is valid, Helios would set T := H (@min, Dmin,
*, Gmax, bmax) and run the last step of protocol
Note: w.l.o.g. and in the interest of readability we will limit ourselves to ballots
consisting of a single encrypted “yes”’-“no” vote and it’s corresponding proof of
validity.

Blind Signatures and Diverted Proofs. Blind signatures [IO/I1], involve
signing a document through an intermediary (in our case, the copier) without
the original signer (the voter) being able to trace the end product. Blind sig-
natures have been suggested by Chaum [I0] for use with anonymous electronic
cash, where banks sign “coins” proving their authenticity but are unable to
trace their use, and voting where authorities can supply signed blank ballots to
authenticated voters but are then unable to track them once filled.

Divertible proofs [37/19] are a similar notion to blind signatures, but in an on-
line setting. An intermediate party is introduced between the prover and verifier,
playing the role of the verifier against the prover and that of the prover against
the verifier. The intermediate is called a warden in some cases (for example, if
he is introduced to enforce to ensure honest behaviour) or a man in the middle
in others.

2.4 Related Work

Even though we do not regard our work as an actual attack against Helios,
previous attacks highlight some of the techniques used as well as some of the
assumptions in Helios’ specification that enable data extraction and injection.

A Ballot Replay Attack. Cortier & Smyth [I5] attack a voter’s privacy by
means of a replay attack. In the base version of their attack, a ballot is recast
either verbatim or with minor differences in the representation of the signatures
by a number of parties under the control of the attackers. The existing checks
performed by the Hellios ballot casting server were somewhat lax. In some sce-
narios the additional votes for the original voter’s chosen party or candidate will
significantly bias the election result, thus violating privacy. The authors offer
the French legislative elections as an example of such a scenario. A more com-
plex version of their attack involves a permutation of the voter’s choices making
the malicious ballots slightly harder to detect. Our work is similar in that it
also involves effectively replaying a vote but different in that the original voter
consents to that. Also, the replayed vote cannot be detected as such.
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An Attack against the Voter’s Web-Browser. Esteghari & Desmedt [24]
describe an attack which essentially installs a rootkit in the user’s web-browser
by exploiting a vulnerability in Adobe Reader. The rootkit then secretly changes
the user’s vote to a different one, and also hides any evidence of foul play. Helios,
operating under the assumption that the user’s browser is trustworthy, accepts
the changed vote instead of the intended one.

While our work also affects the voting booth running at the user’s browser,
an important difference is that participation from both parties is consensual and
not based on deception or exploits.

3 A Ballot-Blinding Protocol

We will split the description of our ballot-blinding protocol in two parts. We
will first describe how a copier can re-encrypt an encrypted vote (making it
indistinguishable to a random one assuming the DDH problem is hard) along
with the appropriate modifications to keep the corresponding proof valid.

Note that since the randomness used in the ElGamal encryption is required to
construct the real subproof it is impossible to simply copy and blind a cast ballot
without extra information. On the other hand, if a voter were to publish the
randomness used in his ballot to enable blinded copying he would be sacrificing
his privacy! For that reason, we will describe an online protocol between a willing
voter (who has already cast a ballot) and a copier. The protocol allows the copier
to produce a “new” proof of knowledge for the encrypted vote.

The copier can combine the two parts: first he obtains a new (indistinguish-
able) proof of validity of the voter’s encrypted vote and then he re-encrypts the
encrypted vote making it indistinguishable as well. The result is a ballot that is
equivalent to the original in that it contains the same vote but indistinguishable
from it. Moreover, it does not leak the original vote.

3.1 Vote Blinding

We describe a transformation that a copier can perform to an already cast ballot
that is based on re-encrypting the vote contained in the ballot. Because of the
re-encryption, the proof contained in the ballot must also be modified to stay
valid.

Given a vote (o, 8) = (¢",h"g"),v € 0,1, a copier is able to re-encrypt it as
(o/,8) = (¢"T*,h"T*g"),v € 0,1. To do that, he does not need knowledge of r
as he can simply calculate (¢, 8) = (g%a, h*3).

Lemma 1. If z is chosen to be uniformly random in Zg then (¢, 8') is indistin-
guishable from a random vote by adversaries who cannot solve the DDH problem,
regardless of them knowing v or v.

Proof. Since z is uniformly random in Z, it follows that g*a is uniformly random
in (g). Since o is g° for some s, 8'/g" = h* and s,x = log, h are independently
chosen, then (h,g°,8'/g") is a DDH problem instance which the adversary could
solve if he was able to distinguish (¢, 5) from a random encrypted vote. O
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Furthermore, if the copier has access to a valid proof for (a, 8) he can transform
it to a valid proof for (¢/, 3).

Lemma 2. If (V,P) is a wvalid ballot, with V. = (a, ) as in ) and P =
((ao0, bo, a1, b1), (co, S0, c1,51)) as in Protocol [3, then ((g%a, h* ), (ag, bo, a1, b1),
(co, 80 + oz, c1,81 + ¢12)) is also a valid ballot and vice versa.

Proof. If a; = g% /a holds then a; = g% <% /(g*a) also holds. Similarly, if
b; = h%/(B/g")¢ holds then b; = h*it¢i% /(h*3/g%)% also holds. For the opposite
direction we note that re-applying the transformation for —z produces the original
ballot. O

The above transformation can be used as a variant of the attack described in
[15] since it provides another way of replaying ballots without copying them
verbatim. Nonetheless, the attack variant can be stopped in a similar way to the
one suggested by Cortier and Smyth. Since the commitments a;, b; and challenges
¢; of the proof are unchanged, a future version of Helios could defend against the
attack by modifying the ballot casting server to reject votes which reuse past
commitment values.

It is clear from the above discussion that blinding the entire ballot is necessary.
Towards that, we describe a protocol that blinds the proofs of a ballot. The proof
blinding protocol requires two assumptions: First, that original voter cooperates
with the the copier and second, that the voter has access to the randomness used
in encrypting his ballot. Fortunately, the second assumption can be fulfilled in
the current Helios implementation.

3.2 Proof Blinding

Blinding the proof of a ballot is more involved: on one hand, creating a valid
proof requires access to the randomness used in the encryption but on the other,
revealing that witness would compromise a voter’s privacy. Our solution is based
on the concepts of divertible protocols [3719] and blind signatures [TOJIT].

Suppose the voter has cast an encrypted vote («, 8) = (¢",h"g"),v € 0,1 with
an appropriate proof, and the copier is requesting a different proof in order to
copy it. Note that («, /3) is public but (r,v) is private to the voter. Since the hash
function H() is public, Helios does not take part in the protocol. The notation
used for the commitments is the same as in Protocol [2, but the roles of the
parties are different. The voter still takes the role of the prover, but the copier
takes the role of an intermediate verifier who ultimately submits the resulting
ballot to Helios.

Protocol 3. Proof Blinding Protocol

Step 1 Voter: Choose w €r Z; and let a, = ¢g,b, := h". Let A := 1 -
and choose ¢y, sy €g Zg and let ay 1= g /a> and by := h** /(B8/g)*.
Send (ag, b, a1,b1) as a commitment to the copier.
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Step 2 Copier: Choose Ay, Ay, ko, k1 €r Z4. Let A; = aighi /o, B; =
b;h¥i /(B/g")? for i = 0,1. Let ¢ := H(Ao, By, A1, B1) be the chal-
lenge that Helios would issue. Let C := ¢ — Ag — A1, send C' to voter
as a challenge.

Step 3 Voter: Let ¢, := C — ¢y and let s, := w + r¢,, send (co, S0, ¢1,81) to
copier as a reply.

Step 4 Copier: Check that C Lo+, a = g% /ac and b; < hei/(B/g")c
for ¢ = 0,1. If yes, accept and let C; := ¢; + A; and S; := s; + k;. Let
V = ((a, ), (Ao, Bo, A1, B1), (Co, So,C1,51)) and send V' to Helios.
Otherwise, reject.

We will now examine Protocol Bl with regard to correctness, indistinguishability
and security.

Correctness. We will first prove that our protocol satisfies completeness and
(special) soundness.

Lemma 3. The proof blinding protocol is complete and furthermore if an honest
copier accepts then the resulting ballot V' will be accepted by Helios.

Proof. Completeness holds trivially. Indeed, we have:

— C = cg + ¢y since the voter calculates ¢, := C — ¢y in Step 3.

— Fori =\, we have ay = g°* /a® and by = h**/(8/g™)* from Step 1.

— For i = v, we must check if a, ~ g% Jafr=gWTre [a which holds since
a, = g% (from Step 1) and o = ¢g". Similarly: b, L hev /(B/gY) =
hwtres [(8/gY)¢ holds since b, = h* and 8/g° = h".

For the second property, we need to show that Cy + Cy = H (Ao, Bo, A1, B1) and
that given that a; = g% /a% and b; = h* /(8/g%) hold (since the copier has
access to a valid vote) it also holds that: A; = g% /o and B; = h% /(8/g%)¢".
This is straightforward by substituting the blinded variables A;, B;, C;, S; with
their definitions. O

Lemma 4. Protocol[3 has the special soundness property.

Proof. Suppose a voter can (given the same commitments (ao, by, a1, b1)) provide
answers to two different challenges C,C’. This means that for the two answers
(co, S0, c1,81) and (¢}, s(, ¢}, 81), we must have ¢; # ¢, for at least one i € {0,1}.
We will now show that such a voter can calculate a witness for the vote’s validity
(i.e. the encryption randomness used in encrypting the vote).:

; vy
a; = g% /ai and a; = g° /o we have:

/
C

g fa% = g fa*

g .o
g% 7% = a7 thus:
ci— ¢
log, a = )
Si — S5
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Indistinguishability

Lemma 5. Given the view of the original voter, the blinded proof of knowl-
edge ((Ao, Bo, A1, B1), (Co, So, C1, 51)) is unconditionally indistinguishable from
a valid proof produced independently.

Proof. We observe that C; = ¢; + A; and S; = s; + k; with 4; and k; being
uniformly random in Z,. Thus, the challenges and responses are independent of
the ones used in the original proof. For the commitments, we note that given
(Co, So, C1, S1), the values of (Ao, Bo, A1, B1) are uniquely determined (because
for any valid proof: A; = g5 /a“i and B; = h/(3/9")¢ ), so if a voter is able to
distinguish (Ao, Bo, A1, B1), (Co, So, C1,S1) from an independent proof he would
also be able to distinguish (Cy, Sp, C1,S51). a

Security. Our goal is to ensure that the blinded protocol does not leak the value
of the voter’s vote to one of the other parties. The proof of knowledge protocol
used by Helios is based on applying the construction of Cramer et al. [16] to the
Chaum-Pedersen protocol [I1] for proving the equivalence of discrete logs.

Lemma 6. Under the random oracle model, the voter-copier interaction is zero-
knowledge for a copier who follows the protocol.

Proof. Under the random oracle model, and assuming that the DDH problem
is hard, we will describe a simulator for Voter-Copier interactions when the
voter is honest. We note that even an honest prover needs to simulate the proof
corresponding to i = X. The main difference is that the simulator will simulate
both proofs and rely on its control of the hash function via the random oracle
model to match the challenge. The simulator proceeds as follows:

1. Fori€0,1 choose c;,s; €r Z, and let a; :== g* /o and b; := h* /(B/g")%.

2. Choose Ay, Ay, ko, k1 €r Zy. Let A; = a;g®i /o, By = bih*i/(B/g")A
for i = 0,1. Set H(Aop,Bo,A1,B1) := ¢co+c1+ Ag + Ay. And let ¢ :=
H(A(),B(),Al,Bl) Let C:=c¢c— AO - Al

3. Cii=c;i+A; and S; := s; + k;.

The communication transcript between the simulated voter and copier is then
((ao,bo, a1,b1), ¢, (co, S0,c1,51)) and the simulated output of the copier to He-
lios is (e, B), (Ao, Bo, A1, B1), (Co, So, C1, 51)). Against adversaries who cannot
solve the DDH problem (and thus distinguish (a;,b;) = (g% /o, h% /(B/g")%)
from (a;,b;) = (g%, h™)) the output of the simulator is indistinguishable to gen-
wine transcripts and outputs, since after the commitments are issued the simu-
lator follows the same steps as the ones taken by the copier. a

We can also use the above simulator to prove that the protocol is also zero-
knowledge with respect to the copier “interacting” with Helios. Since the Fiat-
Shamir heuristic [28] is used to replace the verifier’s challenge with a hash of the
the prover’s commitments, Helios is unable to deviate from honest behaviour.
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We also note that the simulator’s control of the output of the hash function is
explicitly allowed under the random oracle model (see [Bl Sect. 5.1]).

The copier however has the option to ignore the protocol and issue arbitrary
challenges to the voter. On the other hand, achieving indistinguishability re-
quires that the copier keeps his coin rolls private. As such, it is conceivable that
a dishonest voter can craft challenges in a way that compromises the voter’s
privacy. Given any limited-size subset of the challenge space (the limit being
polynomial in the bit-length of ¢) we can achieve zero-knowledge even against
cheating copiers (we explore this option in the next section). As such, we follow
[11] in conjecturing that even in the unrestricted case, a cheating copier gains
no useful information. This conjecture is also supported by the fact that the
copier’s control is weakened compared to the Chaum-Pedersen protocol, since
he cannot control the individual challenged but only dictate their sum.

Note: The disjunctive proof construction in [16] can provide witness indistin-
guishability [27], but in the case of the Helios disjunctive proofs there is a unique
valid witness w = (r, v) for every encrypted vote (a, ) = (g", h"g"). As such the
witness indistinguishability property is inconsequential.

3.3 A Combined Protocol for Blinded Copying

The vote blinding transformation of Sect. Bl and the proof blinding protocol
(Protocol B]) can each partially blind a ballot (the vote and the proof respec-
tively). They can be easily combined to completely blind a ballot as follows: The
copier executes the proof blinding protocol with the cooperation of the voter but
does not submit the resulting ballot V. Instead, he proceeds to apply the vote
blinding transformation to V', producing V’ which he then submits to Helios.

Theorem 1. The combined ballot copying protocol is complete, sound and zero-
knowledge for honest-verifiers under the random oracle model. Furthermore, as-
suming the DDH assumption holds, the ballots produced are accepted by Helios
and indistinguishable from random wvalid ballots, even for the voter.

Proof. Completeness, soundness and honest-verifier zero-knowledge under the
random oracle model are satisfied by the proof copying protocol and are not im-
pacted by the transformation (Lemma [@). Indistinguishability holds because of
Lemmas and [G O

4 A Multi-round Variant with Short Challenges

Since blinding the offline protocol does not achieve zero-knowledge, we explore
a variant that can guarantee it. Furthermore, we avoid the use of the random
oracle model in order to achieve a stronger proof.

The main obstruction to achieving zero-knowledge lies with the use of the
Schnorr [40] protocol as the basis of the proof construction (since the Chaum-
Pedersen protocol is a parallel version of Schnorr’s). Our approach to guaran-
teeing the voter’s privacy with regard to a dishonest copier is to adapt ideas
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from [§] while keeping the rest of the proof construction. For this we reduce the
challenge space so that ¢ < logg. Since the challenge space is now polynomial
in size compared to the security factor (the bit-size of ¢), the protocol can be
simulated thus making it zero-knowledge.

We first present the modified protocol used by a voter for submitting a vote
to Helios. It is repeated t times, and a dishonest voter cannot succeed with
probability greater that log¢~!. Compared to the original, offline protocol the
only difference is the challenge generation: instead of using a hash function, a
(short) challenge is selected randomly.

We then divert the online protocol in order to achieve an equivalent result to
blinding. We follow the notation used in Protocol Pl for the proof commitments
and () for the vote.

Protocol 4. Online Ballot Verification.

Step 1. Voter: Choose w €r Z,; and let a, := ¢g",b, := h". Let A :== 1 — v,
choose ¢y, sy €Er Z, and let ay = g**/a§ and by = h/(8/g*)>.
Send (ag, bg, a1,b1) as a commitment to Helios.

Step 2. Helios: Choose ¢ €r Z[iog q1, send c to the voter as a challenge.

Step 3. Voter: Let ¢, := ¢ — ¢y and let s, := w + re,, send (co, So, c1, 1) to
copier as reply.

Step 4. Helios: Check if ¢ Lo+ 1, a; L g% /a’ and b; L h%i/(B/g%)< for
1 =0, 1. If yes, accept, otherwise, reject.

Protocol @ is complete, sound and zero-knowledge. Completeness is maintained
from the original Helios protocol as only the challenge generation is different.
Thus an honest voter will always be able to convince Helios. We will now prove
that the protocol satisfies the special soundness property and is zero-knowledge.

Lemma 7. Protocol []] satisfies special soundness.

Proof. We repeat the argument of Lemma [f]: suppose a (potentially dishonest)
voter can, given one set of commitments, answer two different challenges. Then
he would be able to calculate log, a. Thus no dishonest verifier who does not
know log, a has a better than 1/logq chance to complete a round successfully.

a

Lemma 8. Protocol[]] is zero-knowledge under the DDH assumption.
Proof. We will describe a simulator for the online protocol.

1. Fori€0,1 choose ¢;,s; €r Zy and let a; :== g% /a and b; := h* /(B/g")%.
Send the commitments to the Verifier.

2. If the Verifier replies with ¢ = co + ¢1, output the transcript (ao,bo, a1,b1),
¢, (co, So, c1,81). Otherwise, reset the Verifier and return to Step 1.

Against verifiers who cannot solve the DDH problem, a set of simulated commit-
ments is indistinguishable to a set of random elements, so the verifier’s reply,
V(ao, bo,a1,b1) will be independent of ¢ = co + ¢1. As such, the simulator has
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a 1/[logq| chance to guess the challenge correctly in one try and thus runs in
expected polynomial time. Again, under the DDH assumption the simulated tran-
scripts are indistinguishable from mormal ones. O

We now present a way to divert the above protocol such that blinded ballot
copying can take place, while achieving zero-knowledge even against dishonest
copiers. As in the offline case, suppose the voter has cast an encrypted vote
(o, B) = (¢g",h"g"),v € 0,1 with appropriate proof, and the copier is requesting a
different proof in order to copy it. We also assume that the copier has blinded the
vote by re-encrypting it as (o/, 8') = (¢°a, h*8) and has presented the blinded
rather than the original vote to Helios. Again, we follow the notation used in
Protocol [ for the proof commitments.

Protocol 5. Diverted Ballot Verification.

Step 1. Voter: Choose w €r Z, and let a, := g*,b, := h". Let A :=1—w
and choose ¢y, sy €r Z, and let ay := g** /a5 and by := h** /(B/g*)>.
Send (ag, bo, a1,b1) as a commitment to the copier.

Step 2. Copier: Choose Ay, Ay, ko, k1 €r Z;. Let A; := aigf/aAi, B; .= bihf
/(B/g")? fori = 0,1. Send (Ag, By, A1, B1) to Helios as a commitment.

Step 3. Helios: Choose ¢ €r Z[1og 41, send ¢ to copier as a challenge.

Step 4. Copier: Let C' := ¢ — Ay — Ay, send C to voter as a challenge.

Step 5. Voter: Let ¢, := C — ¢y and let s, := w + re¢y, send (co, So, €1, 51) to
copier as a reply.

Step 6. Copier: Check if C' = co + c1, a; = g% /af and b; - h%i/(B/g")¢ for
i = 0,1. If yes, accept and let C; := ¢; + A; and S; := s; + k;. Let
S! = S; + zC; Send (Cy, S, Cy,57) to Helios. Otherwise, reject.

Theorem 2. The diverted ballot verification protocol is a divertible interactive
zero knowledge proof of validity for helios ballots.

Proof. (sketch) First we prove that both interactions are zero-knowledge. Com-
pleteness transfers over from the offline blinded copying protocol since the only
difference from the offline protocol is the challenge generation and vote blind-
ing (point to Lemma for VB). Special soundness holds for both interactions (see
Lemma [7). Furthermore, the simulator of Lemma[8 can be used to prove that
both interactions are zero knowledge.

It is easy to see that neither the copier or Helios can calculate a witness directly
as that would solve the discrete logarithm problem.

Finally, indistinguishability transfers over from the offline version. O

As the diverted ballot verification protocol is provably zero-knowledge, the tran-
scripts cannot be used as signatures: they might be signatures for invalid ballots
produced by a simulator operated by a dishonest voter and a dishonest Helios.
As such, the universal verifiability property of Helios no longer holds. Such a
modification would thus require trust to be placed on the bulletin board admin-
istrator, something that diverges significantly from the original design of Helios
but is necessary if we want to achieve zero-knowledge and avoid using the random
oracle model.
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5 Conclusion and Further Work

We have described a protocol which enables voters to allow people who trust
them to copy their vote without revealing it in the process. This can be used as
an alternative to public endorsements. In settings where one person’s expertise
or judgement is well regarded our protocol offers the ability for others to trust
his judgement without forcing him to reveal his opinion —this can be especially
important in small, local elections where revealing one’s vote can lead to rivalries
(of course in a small or close election the tally [20] or even the result might reveal
information). We also include an online variant of the protocol which offers
greater security to the voter but requires a trusted server to accept ballots.
Blinded vote copying would also reduce the power of traditional voting blocs.
A voting bloc is a club or special interest group that coordinates its voting.
They achieve stronger [38] representation compared to individual voters by not
diffusing their votes. The trust requirements for blinded vote copying are more
relaxed than in a typical voting bloc since the “leader” does not need to make
his vote public. By making the creation of voting blocs easier we thus create a
more even voting field without needing to change the electoral system.
Since our main contribution is honest-verifier zero-knowledge a natural con-
tinuation would be implementing a trusted warden that facilitates the copying.
It would also be interesting to replace the original voter with a coalition of
voters, essentially providing a framework (thus avoiding the complexity of secure
multi-party computation) for holding a primary election amongst the members
of the coalition. This can lower the barrier for creating a voting bloc further
since there is no need for a single person to be singled out as the decision maker.
Another avenue for future research would be using a witness-hiding protocol
such as Schnorr-Okamoto [36] instead of Schnorr as a proof of knowledge for
discrete logs and integrating it with a homomorphic encryption scheme. The
result would then be witness-hiding (which is adequate for security since the
witness in our case includes the vote) rather than honest-verifier zero-knowledge.
In the context of internet voting, the issues of untrusted platforms and the
lack of a private voting booth (generalised under “physical assumptions”) have
been known and well described (see eg. [35/13]). We argue that the potential
for voter cooperation is a third characteristic, unique to internet voting. It is
therefore natural to state a more general open problem: What other differences
exist between e-booth and internet voting?
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