
Hardening Access Control and Data Protection

in GFS-like File Systems

James Kelley1, Roberto Tamassia1, and Nikos Triandopoulos2,3

1 Brown University, Providence, Rhode Island, USA
2 RSA Laboratories, Cambridge, Massachusetts, USA

3 Boston University, Boston, Massachusetts, USA

Abstract. The Google File System (GFS) is a highly distributed, fault-
tolerant file system designed for large files and high throughput batch
processing. We consider the first complete security analysis of GFS
systems. We formalize desirable security properties with respect to the
successful enforcement of access control mechanisms and data confiden-
tiality by considering a threat model that is much stronger then in previ-
ous works. We propose extensions to the GFS protocols that satisfy these
properties, and provide a comprehensive analysis of the extensions, both
analytically and experimentally. In a proof-of-concept implementation,
we demonstrate the practicality of the extensions by showing that they
incur only a 12% slowdown while offering higher-assurance guarantees.

1 Introduction

As more companies adopt the cloud computing framework, an increasing amount
of sensitive and mission-critical data will be placed in the cloud. Thus, it is
necessary to develop and deploy strong security controls in the underlying cloud
framework to protect this data. This necessity is underscored by the work several
researchers have done demonstrating various weaknesses in current commercial
cloud offerings (e.g., [23,24]).

The Google File System (GFS) is the file system developed in-house by Google
to support their storage needs [12]. GFS is a distributed file system utilizing a
single server for managing file metadata and (up to) legions of data servers
for storing file data. A file is split into blocks (typically tens or hundreds of
megabytes in size) which are spread out over the data servers. The servers are
assumed to be running on commodity hardware, and the system is meant to scale
to thousands of machines. So, machine failures are assumed to be a frequent, and
entirely normal, occurrence.

The paradigm ushered in by GFS has since seen deployment in cloud comput-
ing infrastructures—notably, HDFS in Hadoop [14]—as the underlying storage
mechanism for the large quantities of data. The architecture of GFS lends it-
self to supporting a MapReduce computing framework, and, indeed, they were
developed together. As such, GFS sees use in large data centers for perform-
ing computations on enormous data sets (e.g., tens and hundreds of terabytes
or more) with already great efficiency and several efforts to further improve its

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 19–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



20 J. Kelley, R. Tamassia, and N. Triandopoulos

performance (e.g., [5,8,15]). The usefulness of the MapReduce framework has
made the use of data warehouses highly desirable, but potentially costly—due
to the large setup and maintenance costs. Given this, companies are increas-
ingly outsourcing these MapReduce needs to the cloud (such as Amazon’s EC2
and Elastic MapReduce services). GFS has thus inspired several copy-cat cloud-
centric implementations, including the Hadoop File System, CloudStore, and
TPlatform [4,6,22], all of these falling under the banner of GFS-like file systems.

1.1 Security Issues and Challenges

In a GFS-like system, files are broken up into blocks which are replicated and
distributed across multiple data servers to achieve fault-tolerance. The system is
managed by a central metadata server that handles all metadata operations and
tracks the placement of blocks, seeking to balance the load across all servers and
maintain enough replicas of blocks. Figure 1 shows the basic architecture in GFS-
like systems. For example, to create a file, a user contacts the metadata server
who records the metadata and replies with a list of data servers; then, the user
contacts the data servers to upload the data. Also, the metadata server manages
access control information for each file, but here things become problematic.

Fig. 1. Basic architecture of a GFS-like system

The design of GFS assumes a benevolent environment: the users are assumed
to behave well and not interfere with each other. For example, in the Hadoop
File System (HDFS) (and others, see [6,22]), by default the data servers service
any request from any user. An assumption of total user benevolence has little
justification in the real-world. Thus, it is necessary to integrate security controls
into GFS-like file systems to make attacks by malicious users much more difficult.

As an example attack, when accessing a file, a user will contact the metadata
server M to learn the location of the file blocks and then contact the individual
servers to read the blocks. Since access control checks are performed only at M ,
they can be bypassed by contacting data servers directly. In a more sophisticated
attack, the attacker could register their own machine as a data server. GFS does
not authenticate any data server registrations, so any machine may complete the



Hardening GFS-like File Systems 21

registration protocol. Once registered, the attacker can simply wait to be given
users’ data blocks. Ideally, a GFS-like system should achieve a holistic security
posture guaranteeing that no attacker can compromise the secure functionality
of the system with respect to the integrity and confidentiality of its stored files,
nor compromise the system’s access control mechanisms.

A key step in adding robust security to these file systems is to extend respon-
sibility of access control checking to the data servers themselves. In addition to
stronger access control enforcement, all access control checks, and data struc-
tures holding the access control information, must be very efficient. GFS-like file
systems are performance oriented, with data intensive applications and hundreds
to thousands of parallel tasks. A related concern is that one must also endeavor
to avoid putting an undue burden on system administrators. Complex security
controls are much more likely to be ignored if they make administration much
more difficult and/or negatively impact the job-efficiency of normal users.

The initial paper describing GFS states that no security was built into the
system, other than rudimentary checks at the metadata server: no access control
checks at servers and no protection of data in flight [12]. Yahoo! has instrumented
the Hadoop File System (HDFS) with additional access controls to address some
of the security concerns of its users [29]. Their architecture uses Kerberos for
user authentication and message integrity, and uses a token-based access control
scheme (similar to Kerberos tickets). As with GFS, there are no protections for
network traffic and no method to prevent unauthorized servers from registering
as data servers. An outline of many more attacks against the Hadoop MapReduce
framework, of which HDFS is a part, is given in [1]. Some work was done in [7,28]
to harden Hadoop against a worst-case-scenario adversary, putting HDFS on
top of the least-authority file system Tahoe, but this resulted in rather severe
performance penalties. Moreover, the system does not protect against an attacker
bypassing the metadata server to read a block directly from a data server.

1.2 Our Contributions and Approach

In this work, we present the first formal definitions of security for a GFS-like file
system. The adversary considered in the work is also a great deal stronger than in
previous work and the first to be formally defined. The work by Yahoo! in [29] had
an adversarial model, but the adversary was given in terms of its abilities relative
to system privileges (e.g., could not be root) rather than any general abilities.
Our main result is in proving that our modified GFS architecture is secure, given
our formal definition of security, against our more powerful adversary.

From a practical perspective, the contributions of this work are several. Ya-
hoo!’s work on securing HDFS relied on integrating it with Kerberos to provide
message authentication and integrity, but not confidentiality. In this work mes-
sage integrity, authentication, and confidentiality are built into the GFS pro-
tocols themselves, without adding a central key distribution center. Another
contribution is the integration of stronger, pervasive access control enforcement.
It is worth noting that Yahoo!’s work also has pervasive access control enforce-
ment via tokens; however, forging the tokens becomes trivial if the adversary is



22 J. Kelley, R. Tamassia, and N. Triandopoulos

permitted to have root access on their machine. There is no such restriction on
our adversary. Finally, we deployed a proof-of-concept implementation of these
protocols using the Hadoop File System as our starting point. We then per-
formed several experiments to show the practicality of our architecture, showing
an overall slowdown of 12%: a reasonable price for stronger, provable security.

In our approach, the metadata server has an asymmetric key pair, with the
public key distributed to all data servers. The system administrator also has
an asymmetric key-pair which is used to authenticate the start up of each data
server; the public half is known to the metadata server. Next, the data servers
are brought online. Each data server generates two random keys to be shared
with the metadata server for authenticating and encrypting subsequent mes-
sages. The keys are encrypted using the metadata server’s public key, grouped
with some registration information, and the bundle is signed by the adminis-
trator. Upon receiving the message, the metadata server verifies the signature,
then decrypts and saves the keys while recording the registration information
and then replies to the server with some start-up information. All future mes-
sages between these two servers are authenticated via a MAC using one of the
keys sent during registration. The server periodically sends a heartbeat to the
metadata server to attest to its liveness. Once the data servers have started and
registered, the cluster can begin to service clients. When a client first starts to
use the cluster, it must create a session with the metadata server. The client cre-
ates two random session keys and sends them to the metadata server encrypted
with public key of the server. The metadata server stores the keys and replies
with an acknowledgment of the registration. All further communication will be
authenticated by using a MAC with one of the keys associated with the client.

Access control for the files is maintained through tokens: a token (similar to
a Kerberos ticket) is issued by the metadata server to a client to read/write a
file block. Each token is specific to the server that is holding the block. When
returning the token and block location to the client, the metadata server also
sends a pair of random secret keys to be used in authenticating messages to/from
the data server and encrypting any file data transmitted. These keys are only
valid for the duration of the client’s request to the data server. The metadata
server also prepares and returns a ciphertext to be passed to the data server by
the client which contains the information needed for the data server to interact
with the client. When a client is finished with their session, they inform the
metadata server, who then deletes the session keys. If the client crashes, the
session information expires after a given interval of inactivity.

The rest of this paper is organized as follows. Section 2 presents our formal
security definitions. In Section 3, we describe our security-enhanced GFS pro-
tocols and their asymptotic efficiency. Section 4 provides the security analysis.
Section 5 reports on an experimental evaluation on our proof-of-concept imple-
mentation in Hadoop, comparing it to the insecure default Hadoop. Section 6
discusses related work and Section 7 presents concluding remarks.



Hardening GFS-like File Systems 23

2 Definitions and Model

The GFS protocols have a fixed set of roles that can be assumed by principals:
(a) the metadata server M , (b) a data server D, (c) a client C, (d) or the system
administrator SA. A principal not conforming to exactly one of these roles when
executing a protocol will produce an invalid execution of the protocol and all
messages sent in the protocol will be ignored by the other principal.

In the following security definitions, we consider a polynomially bounded ad-
versary: bounded in both time and space. The adversary is also subject to a few
more restrictions, detailed below. We will later prove that, subject to standard
cryptographic assumptions and the definitions in this section, the adversary has
only a negligible probability of successfully violating the security guarantees.

At a high level, GFS is a collection of protocols implementing a network-facing
file system API. We will define this API to be synonymous with the collection
of protocols and it will be this collection that we will secure.

Definition 1. The GFS API is the suite of protocols covering all client–server
and server–server communication in the GFS file system.

As a first step in setting up a GFS-like system, the system administrator SAmust
determine which machines are to constitute the cluster. The metadata server M
is chosen as part of the configuration of the cluster by the administrator, so
we assume M to be given and fixed. The first property we wish the cluster to
have is that only those servers chosen by SA to be data servers can become
part of the cluster. That is, we want to guarantee that SA has full control over
which servers may be data servers. Moreover, we want to ensure that, with
overwhelming probability, a data server can only possess the data blocks that
have been assigned to it by M .

Definition 2. A data server D exporting the GFS API is authorized, if D has
successfully completed the registration protocol with M at the behest of the sys-
tem administrator SA. Moreover, we say that a data server D is authorized with
respect to a block b if D is authorized and M chooses D as a location for b.

In a similar vein to the above definition, we next define correct behavior for a
client. A client’s interactions with the cluster revolves around reading and writing
blocks. Naturally, we would like to restrict clients to only accessing blocks for
which they are “authorized” (defined below). We define accessing a block to be
either a read or a write operation on the block.

Definition 3. A client C of the GFS API is authorized to access a block b, if
that C is permitted, by the access control policy P associated with b, to access b.

The policy P could be any type of access control policy (e.g., capability-based,
mandatory access control, etc.). In GFS-like systems, the enforcement of an ac-
cess control policy is performed solely at the metadata server with data servers
blithely servicing any arriving request. This work provides a secure means to



24 J. Kelley, R. Tamassia, and N. Triandopoulos

extend policy enforcement to the data servers via unforgeable (except with neg-
ligible probability) access tokens. Note, however, that the initial policy check is
still only performed at M .

As a final, basic term we define the notion of “completing a protocol.” A pro-
tocol is considered complete if each principal believes that the other is authorized
and if all messages are received and verify correctly. For example, if a client tries
to read a block from a server, the client has completed the protocol when they
receive the block from the server and the message containing the block passes all
security checks (“verifies”). The server has completed the protocol upon sending
the data block and having it verify at the client. If either party sends an incor-
rect/malformed message, and it is detected by the recipient, then they have not
completed the protocol.

We begin the security definitions by first defining what it means for the GFS
API to be secure with respect to server-to-server interactions. Following that
definition, we define security with respect to clients and passive adversaries. The
term “server” will be used as a shorthand for a data server and/or the metadata
server. Whenever a statement applies to only one of the two, the type of server
will be made explicit.

Definition 4. The GFS API is server-secure if, with overwhelming probability,
only authorized servers can complete the server-to-server protocols. Moreover,
the GFS API is client-secure, if with overwhelming probability, only authorized
servers and clients can complete the client–server protocols.

That is, the GFS API is server-secure if for any unauthorized server U , it cannot
successfully complete any of the server-to-server protocols, except with negligible
probability (similarly for client-security). Later, we will show that our modifica-
tions achieve these properties. Note that, here, “authorized” covers both mean-
ings of a server being authorized: authorized to be a data server, and with respect
to a block. These definitions encompass the behaviors of an active adversary, but
we must not neglect a passive adversary.

Definition 5. The GFS API, is passive-secure if, with overwhelming probabil-
ity, an adversary A, given a polynomially bounded number of messages from GFS
protocol instances, cannot learn the contents of any data block.

Later we will prove that our modifications to the GFS protocols achieve this
property. We can now define what it means for a GFS API to be “secure.”

Definition 6. The GFS API, G, is secure if, with overwhelming probability, it
holds that G is: (i) server-secure, (ii) client-secure, and (iii) passive-secure.

No current GFS implementation achieves any of these properties, except against
much more limited adversaries than the one considered here. For example, the
work done by Yahoo! is client-secure for adversaries that cannot read arbitrary
network traffic, but, since no file is encrypted, it is not passive-secure.

We assume that the adversary is polynomially bounded in both space and time
and is allowed start any protocol, at any time, with any party that recognizes



Hardening GFS-like File Systems 25

that protocol. The adversary may try to impersonate another user or server, or
use his own identity. The adversary cannot subvert known “good” servers or
clients. As an additional power, we allow the adversary to observe any instance
of any protocol at will (i.e., read arbitrary data on the network). As an example,
a malicious user that has obtained root access on their machine fits our model; a
malicious user breaking into another user’s machine (or a data server) does not.
Denial of service attacks are beyond the scope of this work.

We consider only the GFS protocols, all other communication is considered
out-of-band. We also assume that there is some reliable, secure mechanism avail-
able to the metadata server (but not necessarily to data servers) for determining
a user’s identity (e.g., Kerberos). Finally, we will assume reliable message deliv-
ery, but the adversary is permitted to manipulate messages while in transit.

3 Proposed Architecture

In securing GFS-like file systems, we modify the constituent protocols to be prov-
ably secure against the adversary defined above. Messages between clients and
servers, and among servers, must be authenticated to protect integrity and, in
some instances, encrypted to maintain confidentiality of data. The data servers
will need to register with the metadata server and clients will need to start
sessions with the metadata server. The proposed architecture uses public-key
cryptography to bootstrap itself to a place where it can use symmetric cryp-
tography for greater efficiency. This section contains high-level descriptions of
the secured protocols along with an asymptotic analysis of each protocol. Exact
message parameters are omitted both for brevity and clarity. For notation, sym-
metric keys are denoted with a lower case k and the public and private halves
of an asymmetric key used by principal P are denoted PKP and SKP , respec-
tively. A message authentication code created with a key k will be denoted mk.
Variables that represent a name are capitalized. The metadata server will be
denoted by M . It is assumed that M can securely determine the identity of a
client, but data servers do not have this ability.

Client–Metadata Server. When a client C first interacts with M in a session,
C sends the server two keys k1 and k2 (along with a nonce) encrypted with the
public key of M and a MAC appended for integrity, created with k1. The key k1
is used to authenticate all subsequent messages while k2 is used to encrypt some
of the responses from M (e.g., an encryption key for sending file data). Upon
receiving the message,M decrypts the keys and verifies the MAC, then M replies
with the nonce and a MAC of the nonce using k1. Efficiency-wise, this protocol
requires O(1) asymmetric encryption operations, each on input of size O(1), and
O(1) symmetric operations, each on an input of size O(l) and requiring O(l)
time, where l is the length of the message. All subsequent metadata requests
and replies simply contain the request/response, a nonce, and a MAC.

When the client wishes to read/write a file block, they must first contactM to
find the location(s) of the block. Along with the block’s location, say server D,



26 J. Kelley, R. Tamassia, and N. Triandopoulos

M also sends back a ciphertext containing the access token and ephemeral keys
for encrypting and authenticating the messages between C and D. Each key and
token is valid for a single request. A copy of the ciphertext is encrypted with the
long-term encryption key shared between the M and D, to be passed along to
D by C. If there are multiple locations for the block, then there is a ciphertext
and token for each location, as the client could potentially access any or all of
them. If the replication factor is r and the file has n blocks, M must create rn
tokens and send a message of size O(rn). Note, according to [27], while files can
be quite large, at Yahoo! the average file has 1.5 blocks. With a replication factor
of 3 this gives an average of 4.5 tokens created when opening a file.

For a write request, the client contacts M each time it wants to add a block
to the file. M picks locations for the r replicas and determines the “pipeline” of
servers: where the client sends the data to the first server, who forwards it to the
next, etc., rather than have the client communicate with each server individually.
As noted above, when writing a block, the receiving data server will need to
receive from the client an access token and a ciphertext created by M . Thus,
M creates r tokens and r ciphertexts, one for each data server in the pipeline.
Each ciphertext contains the necessary information (and ciphertexts) for the
corresponding data server to continue the pipeline (detailed below). Note that
each subsequent encryption is performed on an incrementally longer message.
For simplicity, assume that the increment i is fixed. Then we have that i+ 2i+
· · ·+ri = O(ir2) bytes must be encrypted to produce a ciphertext of length O(r).
Overall the cost to M is O(ir2). Note, however, that the message generated by
M is typically just a few hundred bytes; so these operations are not a significant
cost. The overall message size for writing a block is O(r), as in the original GFS.

Client–Data Server. The interactions between clients and data servers consist
entirely of requesting and serving read/write operations. The response from the
metadata server to the client (when it starts a request) contains two ephemeral
keys ka and ke that will be used to authenticate and encrypt (respectively)
messages between C and D.

Read and write requests, though similar, require slightly different protocols.
For a read request, C receives a list of tuples L from M containing all of the
information needed by C to read any block of the file (e.g., access token, encryp-
tion key, etc.). Suppose C wishes to read the block b located at data server D.
C contacts D and sends the read request along with a nonce and the ciphertext
c from b’s tuple in L. C also creates and sends a ciphertext c′ containing the
nonce, the access token t for b, and the client’s identity C, encrypted with ke.
Once D receives the request, it decrypts c to obtain the keys and C’s identity.
D then decrypts c′ and checks the access token t. If t is valid, D sends back b
encrypted with the same ephemeral key ke. Both messages are authenticated via
a MAC computed with ka. Note that only O(1) encryption and MAC operations
are performed in both sending and receiving b, but the computational cost for
each is proportional to the length of the message.

To write a block, C first sends the request to M who replies with the name
of the server D (who will hold the block), an access token, two ephemeral keys



Hardening GFS-like File Systems 27

(as above), and a ciphertext cD constructed for D. Here, cD contains the infor-
mation needed by D to verify the client’s identity and authorization, as well as
information about the next server in the pipeline so that D can forward the data.
M also sends a ciphertext c for C containing essentially the same information
as cD. Each message between M and C, again, is authenticated with a MAC.

C then contacts D to write the block. First, C generates a nonce and encrypts
it along with the block data d, using ke. C then constructs a message containing
the write request, the encrypted data, the nonce, the ciphertext cD, and a (newly
created) ciphertext c2 containing the access token t, all of which is authenticated
with mka . D decrypts cD to obtain the ephemeral keys and verifymka . Following
this, D decrypts c2 to obtain t and verifies it. D subsequently forwards the data
to the next server, D′, then decrypts and writes the data to disk. Note that the
data is not reencrypted with a new key as each server in the pipeline has a copy
of ke, given to it in the ciphertext created by M . Finally, D replies with final
status s of the write, authenticated with m′

ka
.

Related to efficiency, we see that the initial message sent by C to D is of
size O(r + l)—as in the original GFS—where r is the replication factor and l
is the length of the block. Part of the message sent is a ciphertext of size O(r),
which was constructed by M for D. The encryption requires O(l) time and the
MAC computation takes O(r + l) time. Each data server in the pipeline verifies
the MAC of the data and then forwards it to the next node in the pipeline
before decrypting it—avoiding a possible decryption-reencryption bottleneck.
Thus, each data server needs to perform a MAC calculation on a message of size
O(r + l) and a single decryption operation on a ciphertext of length l.

Data Server–Metadata Server. An essential part of maintaining data secu-
rity and integrity is preventing a malicious user from spoofing or manipulating
any communication between data servers and M . The first step in ensuring se-
curity is to prevent any spurious data servers (i.e., those started and controlled
by the attacker) from registering as data servers. To effect this, the system ad-
ministrator possesses an asymmetric key pair (PKA, SKA), with M possessing
the public half. M itself has its own asymmetric key pair (PKM , SKM ), which
will be utilized by the data servers.

When a data server D starts, it seeks to register with M . Part of the regis-
tration message is a pair of symmetric keys kDa and kDe to be shared with M .
The key kDa is used to create a MAC for each subsequent message between D
and M , as well as for creating the access tokens for blocks hosted by D. The
key kDe is used for encrypting messages from M to D. The keys themselves are
encrypted with PKM , along with a nonce, to produce the ciphertext, which is
added to the registration message. The administrator then signs the message and
D sends it to M . Upon receiving the message, M verifies the signature, decrypts
c, then saves the keys kDa and kDe . M then sends some start-up information to
D, authenticated with mkD

a
. Note that the efficiency of the registration proto-

col is near optimal, as there are O(1) symmetric and asymmetric cryptographic
operations. The asymmetric operations are all on O(1)-sized input, while the
symmetric operations require O(l) time, where l is the length of the message.



28 J. Kelley, R. Tamassia, and N. Triandopoulos

After registration, D periodically sends heartbeat and “block report” mes-
sages (usually combined together) to M . The heartbeat attests to D’s liveness
while the block report is simply an update on any block state changes (e.g.,
added or deleted). When receiving either of these, M replies with a (possibly
empty) list of commands for D to execute. The heartbeat message is typically a
fixed size and so D requires O(1) time to compute the MAC. But, with the block
report, if the report is of length l′, then the MAC takes O(l′) time to compute
(but still only requires O(1) space).

Data Server–Data Server. Data servers must also interact with each other,
but only in limited circumstances: as part of a pipeline when writing a file block
and transferring blocks during load balancing. In both situations, the sender
appears to the receiver to be just another client writing a block. Thus the sending
data server must have enough information to emulate a client in the client–data
server protocol for writing blocks.

Suppose we have a pipeline of n servers, D1, . . . , Dn, where Di is the i-th
server in the pipeline. The Di will need to forward the data to Di+1. Dn simply
receives the data and does not forward it further. For each Di, the metadata
server M creates a ciphertext cDi containing the information necessary for Di

to continue the data pipeline. The cDi ’s are nested within each other, so that
cD1 contains cD2 , which contains cD3 , etc. Each server Di removes the i-th layer
of encryption and obtains, along with other information, the ciphertext cDi+1 .
The “other information” includes: a nonce, two ephemeral keys, an access token,
and the identity of Di+1. The keys and access token play the same role here
as they do in the client–data server protocol. Transferring blocks during load
balancing is essentially identical to the client–data server protocol for writing
a block. For more details, see the above section describing client–data server
interactions. Note that these inter-server interactions have the same efficiency
as the client–data server protocol for writing a block.

As part of increasing the security of GFS-like file systems, we have the data
server become a point of enforcement for the access controls. Suppose a client
wants to access a file consisting of blocks b1, · · · , bn. The metadata server M
first checks that C has access rights, then creates a token ti for each block bi.
Each ti is valid only at the corresponding data server that holds a copy of bi,
call it D. The token itself is a simply a MAC created from the token information
and the long-term key kDa (described above). When a request to operate on bi
arrives, D will check the token ti before servicing the request.

4 Security

To prove the security of the protocols, we will define a “game” for the adversary
to play. The game simply encapsulates a standard cryptographic reduction: we
will reduce the security of the protocols to the security of the cryptographic
primitives used (i.e., MACs and signatures). The setup for the reduction is a
bit unusual, but, as shown below, the formulation is equivalent to the standard



Hardening GFS-like File Systems 29

reduction framework. We assume that the encryption schemes are semantically
secure and the MAC and signature schemes are existentially unforgeable under
chosen-plaintext attacks. All keys are assumed long enough to be computation-
ally infeasible to brute-force.

4.1 Security Game

We wish to accurately model the adversary, the system, and their interactions
with each other, while giving the adversary as much flexibility as possible. We
define a message-creation game where A has access to a simulator S that main-
tains a simulation of the cluster. A dictates all the events in S. Each event details
a protocol to be executed with principals and parameters chosen by A. A may
submit each message in a protocol as separate events with an arbitrary (but
polynomially bounded) number of events inbetween. We do not allow parallel
executions of the protocols, e.g. multiple instances of server registration initiated
by the same server. Cryptographic keys are chosen by A only when the adver-
sary’s role in the protocol generates the keys. Otherwise the keys are generated
and maintained by the simulator and are hidden from A.

After an event e is submitted to S and the internal state of S is updated, S
outputs a transcript of the (full or partial) protocol execution dictated by e. The
adversary wins the game if, after some polynomial number of steps, he produces
a message that is unique, well-formed, and correctly verifies at the intended
recipient (i.e., a principal in the simulator). We restrict the output message
such that it must be for a protocol of which A is not one of the principals—
otherwise A can win trivially. Note that each protocol consists of exactly two
messages: an initiation message and the response. If the output of the adversary
is a response message, then, for A to win, there must have been an event detailing
the initiation message for that protocol. This setup gives A much more power
over the cluster than would be possible in the real world. However, we will prove
that the protocols are secure against even this more powerful adversary.

4.2 Security Proofs

The following proofs will use the game described above to reduce the security of
the protocols to the security of a cryptographic primitive: whether it is a digital
signature or a message authentication code. The registration protocol is the only
protocol that involves an asymmetric signature for integrity and authentication;
all other protocols use MACs to provide the same protections. As such, the
security of the registration protocol’s initial message reduces to the security of
the digital signature, while the security of every other message reduces to the
the MAC. The next two parts give outlines of formal proofs demonstrating these
reductions.

Data Server Registration. Assume there exists a probabilistic polynomial-
time adversary A, taking as input the public key of the metadata server PKM ,



30 J. Kelley, R. Tamassia, and N. Triandopoulos

and the public key of the system administrator PKSA, who can win the message-
creation game with non-negligible probability. Moreover, assume A’s output is
the initial message of the registration protocol. We will construct an algorithm
B that uses A as a subroutine to break the signature scheme. B takes as input
the public key PK of the signature oracle O and the security parameter 1k.

To use the adversary A, B will need to emulate the simulator. For each event
e output by A, B will run the protocol with the given parameters, update the
state s of the cluster, and return a transcript t to A. Whenever e dictates the
registration of a new data server,B forms the registration messagem in the usual
way and then queries O on m to get the signature σ. The signature σ is used in
place of the administrator’s signature. All other protocols are executed normally
with B exactly mimicking the simulator. Eventually, A outputs a message m.
If the message is anything other than the initial message of the registration
protocol, B fails. Otherwise, B extracts the signature σ̃ and the data d that
was signed and outputs the pair (d, σ̃). If A won the game, then m verifies at its
intended recipient: the metadata server. This implies that σ̃ was a valid signature
for d even though A had no access to the key, i.e. A produced a forgery.

Since B outputs, essentially, the output of A, B succeeds exactly when A
succeeds. Thus, if the transcripts given to A are distributed properly, B inherits
the success probability of A. Note that B runs exactly the protocols in GFS,
with the parameters and principals determined by A each time. Furthermore, the
signature oracle O outputs signatures using a key that is from the same scheme
as the key of the system administrator. Thus, since (almost) all protocols are run
exactly as in the simulator and the signatures are from a distribution identical to
the expected distribution, we have that the input to A is distributed exactly as
expected. This implies that if A has a non-negligible probability of winning the
game, then B has a non-negligible probability of producing a forgery. However,
this contradicts the security of the signature scheme. Thus, it must be that A
has only a negligible probability of winning the game when attacking the initial
message of the registration protocol.

General Proof of Security. We now prove the security of the remaining
protocols as a group. First, it is important to notice that each of the other
protocols have the same structure: principal P1 sends a message μ with a MAC
m, and then principal P2 replies with a message μ′ and a MACm′. We can exploit
this structure and use an adversaryA that can complete one of these protocols to
create an adversary B that can break the security of the MAC scheme. Note that
here we are assuming that the protocols, and the confidential values transferred
therein, are secure against a passively observing adversary—we will prove this
property later. In this reduction, B will have access to polynomially many oracles
for the MAC scheme, each independently instantiated (i.e., the key in each oracle
is chosen at random). B is successful if it can forge a message for any of the
instantiated oracles.

Note that having polynomially many oracles is equivalent in power to having
a single oracle. Briefly, given a single oracle O of polynomially-bounded power
(e.g., a signature oracle) and an adversary who succeeds against polynomially



Hardening GFS-like File Systems 31

many oracles, we can “guess,” with non-negligible probability, which oracle will
be attacked by the adversary. Using this guess, we can then use O to satisfy
queries to the “to-be-attacked” oracle and simulate the remaining oracles. If the
adversary succeeds with non-negligible probability and we made a correct guess,
then we succeed with non-negligible probability.

Since we do not know how many oracles will be needed by B, we give B
access to a meta-oracle MO that will manage the oracle instances. MO has
three operations: start , stop, query. The command start takes no parameters,
instantiates a new MAC oracle with a randomly chosen key, and returns a unique
identifier for the oracle. The stop operation takes an oracle identifier as input
and “destroys” the indicated oracle instance, making further queries under that
identifier invalid. The query operation takes as input the identifier for an oracle
and the input to the oracle, and then returns the output from the selected oracle.

As before, B emulates the simulator as closely as possible when interacting
with A. Whenever an event e starts a new protocol instance, B determines
whether or not a new oracle must be instantiated or if previously instantiated
oracle must be used. For instance, if a client C is reading a block from a data
server D, then B must ask MO to start a new oracle, since a unique MAC key
is used in each block transfer. B would use a previously instantiated oracle for,
say, a data server sending a heartbeat to the metadata server. However, if A
is one of the principals in the protocol, then, since A knows the keys, B must
itself compute the MAC for the message, all other MACs are computed by the
oracles. Note that this does not affect B’s chance of success as A is forbidden
from attacking protocols in which it is a principal.

One difficulty in this reduction is what to do when the key for the MAC
is sent as part of the message or in a previously executed protocol (e.g., the
ephemeral keys for reading a block). Since the oracles are used for (almost) all
MAC generation, B does not have access to the keys and cannot include them
in any messages. The solution is to choose the keys in the message at random—
except for those instances where A is a principal. While substituting in a random
key does not perfectly mimic the simulator, we show next that the distribution
of messages is computationally indistinguishable from the ideal distribution.

Suppose that A can distinguish the distribution of messages produced by B
from the expected distribution, and that we have access to an encryption oracle
for the cipher used to encrypt the keys. Then there exists an A′ that, given a
sample from one distribution or the other, distinguishes the distributions with a
non-negligible advantage over 1

2 . Construct C that generates two random keys k0
and k1, and then constructs two messages m0 and m1 (both conforming to one
of the protocols). C then submits m0 and m1 to the oracle to get O(mb) = cb for
a random b ∈ {0, 1}. Once it has cb, C finishes constructing the protocol message
M and computes the MAC using k0. C submits M with the MAC to A′ and
outputs whatever A′ does. C is correct exactly when A′ is correct. Thus C has a
non-negligible chance to distinguish the encryptions of m0 and m1, contradicting
the semantic security of the cipher. Thus, the view of A is computationally
indistinguishable from the expected view. Since B succeeds exactly when A



32 J. Kelley, R. Tamassia, and N. Triandopoulos

succeeds, if A wins non-negligiblely often, then so does B, contradicting the
security of the MAC scheme. Thus, it must be that there does not exist an A
that can win the game with non-negligible probability. This, combined with the
previous result, implies that A cannot win the game for any of the protocols.

Proof of Security of the Access Token. The definition of security for the
access token is most naturally existential unforgeability under chosen-plaintext
attacks. That is, with overwhelming probability, any token created by the ad-
versary will not verify at any of the data servers. Note that since the token itself
is simply a MAC of a few specific parameters, the security of the token is ex-
actly the security of the MAC scheme. Thus, since we assumed that the MAC
is secure, we have that the access tokens are also secure.

Proof against the Passive Adversary. To prove passive security, we must
ensure that the adversary A cannot learn the contents of any data block. Since
A is not interacting with any other principals, the only way for A to learn
the contents a block is for A to capture the block intransit. File blocks only
travel between and among clients and data servers and, as stated above, the file
blocks are always encrypted before being transmitted. It is worth noting that in
several instances, the key used to encrypt a file block is also sent with the block.
However, the key is also encrypted with a semantically secure cipher. This layer
of encryption should stymie the adversary A, unless A can acquire the key(s) or
compute a non-negligible amount of information about the key(s).

The semantic security of the cipher implies that the passive adversary, with
overwhelming probability, can only learn a negligible amount of information
about any transmitted key (likewise for any key used to encrypt the transmitted
key). Similarly, since the cipher used to encrypt the block data is also semanti-
cally secure and—it was assumed—the key is too long to brute-force in a rea-
sonable amount of time, with overwhelming probability, the passive adversary
A can only learn a negligible amount of information about the contents of the
block. This is exactly the definition of being passive-secure, as desired.

Security Properties Proven. Overall, the above proofs give us the fact that
an adversary (as described in Section 2), with overwhelming probability, cannot
complete any of the protocols in the GFS API, giving us the server-secure and
client-secure properties. Additionally, we demonstrated that with overwhelming
probability the system is also secure against a passive adversary. Thus we have
that the extensions given in this work give a GFS API that is secure.

5 Experimental Results

To demonstrate the practicality of this secured architecture, a proof-of-concept
implementation was created by modifying the open-source Hadoop platform [14]
to implement the above secured protocols. The changes were made to version
0.20.104.2 of the Yahoo! branch of the code (which has since been merged into



Hardening GFS-like File Systems 33

mainline Hadoop). This branch was chosen because it contains all of the Kerberos
integration work performed by Yahoo!. This allows a more direct comparison of
the efficiency of previous security work with the efficiency of this work.

Our implementation uses 2048 RSA for the asymmetric keys, and UMAC128 for
the message authentication codes [18]. The stream cipher Salsa20/12 from [2]
is used for all data encryption—chosen for both its speed and strong security.
The experiments were performed on a cluster of 40 Dell PowerEdge 1855s each
running a dual-core 2.8GHz Intel Xeon with 8 GB of memory and 300GB of disk
space—for a total of 12TB of disk space in the cluster. The operating system
used on each is 64-bit Debian Linux. The metadata server was run on a quad-
core Intel Core2 Q6600 at 2.4GHz with 4GB of memory. While the processor
has 64-bit instructions, the OS was 32-bit Debian Linux with PAE.

We used standard benchmarks of Hadoop: Gridmix2, NNThroughputBench-
mark, and TestDFSIO. Gridmix2 is a mix of various MapReduce jobs designed
to stress HDFS in a number of ways while emulating a real-world workload and
is regarded as the standard macro-benchmark for Hadoop clusters. NNThrough-
putBenchmark is used to test the throughput, and hence scalability, of the meta-
data server (called the NameNode in Hadoop). The TestDFSIO utility measures
the raw read and write speed of the cluster. We summarize the results in Table 1.

Table 1. Comparison of our work against default Hadoop. The first column is in
seconds, the second and third in MB/s and the remaining in operations per second.

Gridmix2 Avg Read IO Avg Write IO Open Create BlockReport

Default Hadoop 23997s 58.6 MB/s 20.2 MB/s 45871 324 8333

Sec-Hadoop 26819s 27.9 MB/s 10.8 MB/s 6711 331 7821

% Slowdown 11.8 52.4 46.5 85.4 -2.1 6.1

Overall Performance. The Gridmix2 column in Table 1 shows that, overall,
this work produces a 12% slow down of Hadoop. The work by Yahoo! in com-
parison achieves a 3% slowdown of the Gridmix2 benchmark, but none of the file
data is encrypted. The remaining columns give the average IO rates for reads
and writes when creating 40 files of 2048MB each with a replication factor of 3.
Average IO is defined as the average the individual IO rates for the created files.
We can see that the average IO rates for the secured Hadoop are a bit less than
half of the rates for the default Hadoop. While this is a significant drop in per-
formance, the effect of this is attenuated by the fact that cluster performance is
not solely IO-bound. For example, even though our work has half the read/write
performance, the overall impact was just a 12% slowdown for the cluster.

Scalability. GFS-like file systems are designed to rapidly scale upward, but
growth is often limited by the capacity of the metadata server. Shvachko in [27]
performs a detailed estimation of the practical limits of a Hadoop cluster assess-
ing memory and computational costs. Looking at the same metrics, the memory
overhead in our work is at most in the tens of kilobytes as only a few dozen



34 J. Kelley, R. Tamassia, and N. Triandopoulos

bytes are stored per server and client. The real cost of our modifications is com-
putational: an increase in both the time spent processing messages from data
servers and handling metadata operations from clients. Table 1 shows that the
throughput of the metadata server decreases between 6.1% and 85.4%, depend-
ing on the action performed. While this reduces the scalability of the cluster,
the limit would only affect very large Hadoop deployments. In particular, our
rather modest metadata server is still able to handle several thousand operations
per second. Thus, a secured cluster could easily scale to hundreds of servers and
even to a few thousand. But, as the “Open” metric shows, a secured Hadoop
will have trouble scaling past a few thousand nodes.

6 Other Related Work

Yahoo! has released their own version of Hadoop, an open source implementa-
tion of the Map-Reduce framework, including a security-enhanced HDFS [29].
This version incorporates Kerberos authentication into all communication: all
servers and users are registered as principals in the Kerberos database and must
authenticate before sending any messages. Their work provides message integrity
and authentication, but not confidentiality. Recent work has been done on dis-
tributed file systems that operate as the underlying cloud storage. However,
security is rarely, if ever, mentioned. The efforts in [11] give a file system that
is similar to GFS but uses a collection of metadata servers instead of a single
central server and finer-grained resource control. User authentication is the only
security feature. The work in [17] provides a flexible and modular cloud storage
system where components can be swapped in/out to provide customized levels
of reliability, efficiency, and consistency semantics, but security is not discussed.

Previous work on security in GFS-like file systems is sparse. Airavat modifies
Hadoop to support mandatory access controls and store the security labels with
the blocks [25]. However, MAC policies are often unwieldy, difficult to set up, and
time-consuming to maintain. Also, the implementation results in a slow-down of
up to 25%. TPlatform [22] has the same access control limitations as the original
Hadoop. CloudStore, another implementation of GFS, does not have any access
controls [6]. Another effort by [16] builds fine-grained access controls on top of
the Hadoop file system (HDFS), but it assumes that HDFS is inherently secure.

SUNDR is a network file system that seeks to reduce the amount of trust
clients must give to the file servers—the converse of our goal: reducing the trust
given to clients—and implements fork-consistency [19]. GPFS is another dis-
tributed file system that provides efficient, fault-tolerant storage [26]. Access
control checks are performed at the storage servers and users are assumed to be
relatively benevolent. The Panache file system is designed to be fully parallel in
all read/write operations, utilizing GPFS to store file data and metadata and
uses parallel NFS on the client-side for reading/writing data [10]. SFS aims to
provide a secure file system over an untrusted network (e.g., the Internet) us-
ing “self-certifying paths” via public-key based client-server authentication [20].
Related work on the integrity verification of outsourced file systems includes au-
thenticated data structures (e.g., [13,21]) and proofs of data possession (e.g., [9]).



Hardening GFS-like File Systems 35

7 Conclusion and Future Work

This work demonstrates the feasibility of greatly enhancing the security of GFS-
like file systems, while maintaining a reasonable overhead. However, a 12% slow-
down is not insignificant and could be improved through various avenues. One
avenue would be to add more flexibility in the architecture (e.g., choosing to
encrypt block data but not use a MAC) so that administrators can more finely
tune the trade-off in security and efficiency. Additional experimentation with
other cipher suites and MAC schemes could be helpful to reduce the overhead
from the security. Another avenue to explore would be utilizing the work of [3]
to provide transport-level encryption for all traffic, transparently to the Hadoop
cluster itself. One weakness of our secured system is the lack of confidentiality
protections for file metadata. While the data itself could not be pilfered, meta-
data such as file names can contain sensitive information. Protecting metadata
is a logical next step in increasing the assurance of GFS-like file systems.

Acknowledgments. Research supported in part by the National Science Foun-
dation under grants CNS–1012060, CNS–1012798, and CNS–1012910 and by a
NetApp Faculty Fellowship. We thank James Lentini for useful discussions.

References

1. Becherer, A.: Hadoop Security Design: Just Add Kerberos? Really? (2010),
http://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-

2010-Becherer-Andrew-Hadoop-Security-wp.pdf

2. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Hei-
delberg (2008)

3. Bittau, A., Hamburg, M., Handley, M., Mazières, D., Boneh, D.: The case for
ubiquitous transport-level encryption. In: USENIX Security, pp. 26–42 (2010)

4. Borthakur, D.: HDFS Architecture,
http://hadoop.apache.org/hdfs/docs/current/hdfs_design.html

5. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N., Kuang,
H., Ranganathan, K., Molkov, D., Menon, A., Rash, S., Schmidt, R., Aiyer, A.:
Apache Hadoop goes realtime at Facebook. In: SIGMOD, pp. 1071–1080 (2011)

6. CloudStore, http://code.google.com/p/kosmosfs/
7. Cordova, A.: MapReduce over Tahoe–a least-authority encrypted distributed file

system (2009), http://www.cloudera.com/videos/hw09_mapreduce_over_tahoe
8. Dittrich, J., Quiané-Ruiz, J., Jindal, A., Kargin, Y., Setty, V., Schad, J.:

Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing).
PVLDB 3(1), 518–529 (2010)

9. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: CCS, pp. 213–222 (2009)

10. Eshel, M., Haskin, R., Hildebrand, D., Naik, M., Schmuck, F., Tewari, R.: Panache:
A parallel file system cache for global file access. In: USENIX FAST (2010)

11. Fesehaye, D., Malik, R., Nahrstedt, K.: A Scalable Distributed File System for
Cloud Computing. Tech. rep., University of Illinois at Urbana-Champaign (2010),
http://www.ideals.illinois.edu/handle/2142/15200

http://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-wp.pdf
http://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-wp.pdf
http://hadoop.apache.org/hdfs/docs/current/hdfs_design.html
http://code.google.com/p/kosmosfs/
http://www.cloudera.com/videos/hw09_mapreduce_over_tahoe
http://www.ideals.illinois.edu/handle/2142/15200


36 J. Kelley, R. Tamassia, and N. Triandopoulos

12. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: SOSP, pp. 29–43
(2003)

13. Goodrich, M.T., Papamanthou, C., Tamassia, R., Triandopoulos, N.: Athos: Effi-
cient Authentication of Outsourced File Systems. In: Wu, T.-C., Lei, C.-L., Rijmen,
V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 80–96. Springer, Heidelberg
(2008)

14. Hadoop, http://hadoop.apache.org
15. Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of MapReduce: An in-depth

study. PVLDB 3(1-2), 472–483 (2010)
16. Kantarcioglu, M., Khan, L., Thuraisingham, B., Gupta, A., Vyas, M., Khadilkar,

V., Mishra, N.: Fine-grained Access Control using HIVE (September 2010),
http://cs.utdallas.edu/secure-cloud-repository/Hive-AC/hive-ac.html

17. Kossmann, D., Kraska, T., Loesing, S., Merkli, S., Mittal, R., Pfaffhauser, F.:
Cloudy: A modular cloud storage system. PVLDB 3(2), 1533–1536 (2010)

18. Krovetz, T.: UMAC: Message Authentication Code using Universal Hashing. RFC
4418 (Informational) (March 2006), http://www.ietf.org/rfc/rfc4418.txt

19. Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure untrusted data repository. In:
USENIX OSDI, pp. 91–106 (2004)

20. Mazières, D., Kaminsky, M., Frans Kaashoek, M., Witchel, E.: Separating key
management from file system security. In: SOSP, pp. 124–139 (1999)

21. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
CCS, pp. 437–448 (2008)

22. Peng, B., Cui, B., Li, X.: Implementation Issues of a Cloud Computing Platform.
IEEE Data Engineering Bulletin (2009)

23. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds. In: ACM CCS, pp.
199–212 (2009)

24. Rocha, F., Correia, M.: Lucy in the sky without diamonds: Stealing confidential
data in the cloud. In: IEEE/IFIP DNSW, pp. 129–134 (2011)

25. Roy, I., Ramadan, H.E., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.:
Airavat: Security and privacy for MapReduce. In: USENIX NSDI, pp. 297–312
(2010)

26. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing
clusters. In: USENIX FAST, pp. 231–244 (2002)

27. Shvachko, K.V.: HDFS scalability: the limits of growth. USENIX; Login 35(2),
6–16 (2010)

28. Wilcox-O’Hearn, Z., Warner, B.: Tahoe: The least-authority filesystem. In: ACM
StorageSS, pp. 21–26 (2008)

29. Yahoo! Distribution of Hadoop, http://developer.yahoo.com/hadoop/

http://hadoop.apache.org
http://cs.utdallas.edu/secure-cloud-repository/Hive-AC/hive-ac.html
http://www.ietf.org/rfc/rfc4418.txt
http://developer.yahoo.com/hadoop/

	Hardening Access Control and Data Protection in GFS-like File Systems
	Introduction
	Security Issues and Challenges
	Our Contributions and Approach

	Definitions and Model
	Proposed Architecture
	Security
	Security Game
	Security Proofs

	Experimental Results
	Other Related Work
	Conclusion and Future Work
	References




