
Z. Shi, D. Leake, and S. Vadera (Eds.): IIP 2012, IFIP AICT 385, pp. 40–49, 2012.
© IFIP International Federation for Information Processing 2012

PPLSA: Parallel Probabilistic Latent Semantic Analysis
Based on MapReduce

Ning Li1,2,3, Fuzhen Zhuang1, Qing He1, and Zhongzhi Shi1

1 The Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2 Graduate University of Chinese Academy of Sciences, Beijing, China
3 Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and

Computer Science, Hebei University, Baoding, China
{lin,heq}@ics.ict.ac.cn

Abstract. PLSA(Probabilistic Latent Semantic Analysis) is a popular topic
modeling technique for exploring document collections. Due to the increasing
prevalence of large datasets, there is a need to improve the scalability of com-
putation in PLSA. In this paper, we propose a parallel PLSA algorithm called
PPLSA to accommodate large corpus collections in the MapReduce framework.
Our solution efficiently distributes computation and is relatively simple to
implement.

Keywords: Probabilistic Latent Semantic Analysis, MapReduce, EM, Parallel.

1 Introduction

In many text collections, we encounter the scenario that a document contains multiple
topics. Extracting such topics subtopics/themes from the text collection is important for
many text mining tasks[1]. The traditional modeling method is “bag of words” model
and the VSM(Vector Space Model) is always used as the representation. However, this
kind of representation ignores the relationship between the words. For example, “actor”
and “player” are different word in the “bag of words” model but have the similar
meaning. Maybe they should be put into one word which means the topic. To deal with
this problem, a variety of probabilistic topic models have been used to analyze the
content of documents and the meaning of words[2]. PLSA is a typical one, which is
also known as Probabilistic Latent Semantic Indexing (PLSI) when used in information
retrieval. The main idea is to describe documents in terms of their topic compositions.
Complex computation need to be done in the PLSA solving process. There is a need to
improve the scalability of computation in PLSA due to the increasing prevalence of
large datasets. Parallel PLSA is a good way to do this.

MapReduce is a patented software framework introduced by Google in 2004. It is a
programming model and an associated implementation for processing and generating
large data sets in a massively parallel manner [5,9]. Users specify a map function that
processes a key/value pair to generate a set of intermediate key/value pairs, and a

 PPLSA: Parallel Probabilistic Latent Semantic Analysis Based on MapReduce 41

reduce function that merges all intermediate values associated with the same
intermediate key [5]. MapReduce is used for the generation of data for Google’s
production web search service, sorting, data mining, machine learning, and many other
systems [5].

Two kinds of parallel PLSA with MapReduce have been propose in [10], which are
P2LSA and P2LSA+ respectively. In P2LSA, the Map function is adopted to perform the
E-step and Reduce function is adopted to perform the M-step. Transferring a large
amount of data between the E-step and the M-step increases the burden on the network
and the overall running time. Differently, the Map function in P2LSA+ performs the
E-step and M-step simultaneously. However, the parallel degree is still not well. Dif-
ferent from these two algorithms, we have different parallel strategies. We design two
kinds of jobs, one is for counting all the occurrences of the words and the other is for
updating probabilities.

In this paper, we first present PLSA in Section 2. In Section 3 we introduce the
MapReduce framework. We then present parallel PLSA (PPLSA). Section 5 uses
large-scale application to demonstrate the scalability of PPLSA. Finally, we draw a
conclusion and discuss future research plans in Section 6.

2 Probabilistic Latent Semantic Analysis

2.1 The Main Idea of PLSA

For extracting topics from the text collection, a well accepted practice is to explain the
generation of each document with a probabilistic topic model. In such a model, every
topic is represented by a multinomial distribution on the vocabulary. Correspondingly,
such a probabilistic topic model is usually chosen to be a mixture model of k compo-
nents, each of which is a topic[1]. One of the standard probabilistic topic models is the
Probabilistic Latent Semantic Analysis (PLSA).

The basic idea of PLSA is to treat the words in each document as observations from
a mixture model where the component models are the topic word distributions. The
selection of different components is controlled by a set of mixing weights. Words in the
same document share the same mixing weights.

For a text collection 1{ , , }ND d d= K , each occurrence of a word w belongs to

1{ , , }MW w w= K . Suppose there are totally K topics, the topic of document d is the

sum of the K topics, i.e. 1 2(|), (|), , (|)Kp z d p z d p z dK and 1
(|) 1

K

Kk
p z d

=
= . In other

words, each document may belong to different topics. Every topic z is represented by
a multinomial distribution on the vocabulary. For example, if the words such as
“basketball” and ”football” occur with a high probability, it should be considered that it
is a topic about ” physical education”. Each w in document d can be generated as

follows. First, pick a latent topic kz with probability (|)p z d . Second, generate a word
w with probability (|)kp w z . Fig.1(a) is the graphic model and Fig.1(b) is the

symmetric version with the help of Bayes’ rule.

42 N. Li et al.

Fig. 1. The graphic model of PLSA

2.2 Solving PLSA with EM Algorithm

The standard procedure for maximum likelihood estimation in PLSA in the Expectation
Maximization(EM) algotithm[3]. Acoording to EM algorithm and the PLSA model, the
E-step is the following equation.

 '

() (|) (|)
(| ,)

(') (| ') (| ')
z

P z P d z P w z
P z d w

P z P d z P w z
=


(1)

It is the probability that a word w in a particular document d is explained by the
factor corresponding to z .

The M-step re-estimation equations are as follows.

, '

(,) (| ,)
(|)

(, ') (| , ')
d

d w

n d w P z d w
P w z

n d w P z d w
= 


 (2)

',

(,) (| ,)
(|)

(',) (| ',)
w

d w

n d w P z d w
P d z

n d w P z d w
= 


 (3)

, ,

1
() (,) (| ,), (,)

d w d w

P z n d w P z d w R n d w
R

= ≡ 

 (4)

3 MapReduce Overview

MapReduce is a programming model and an associated implementation for processing
and generating large data sets. As the framework showed in Fig.2, MapReduce speci-
fies the computation in terms of a map and a reduce function, and the underlying
runtime system automatically parallelizes the computation across large-scale clusters
of machines, handles machine failures, and schedules inter-machine communication to
make efficient use of the network and disks.

Essentially, the MapReduce model allows users to write Map/Reduce components
with functional-style code.

 PPLSA: Parallel Probabilistic Latent Semantic Analysis Based on MapReduce 43

Fig. 2. Illustration of the MapReduce framework: the “map” is applied to all input records, which
generates intermediate results that are aggregated by the “reduce”

Map takes an input pair and produces a set of intermediate key/value pairs. The
MapReduce library groups together all intermediate values associated with the same
intermediate key and passes them to the reduce function [6]. That is, a map function is
used to take a single key/value pair and outputs a list of new key/value pairs. It could be
formalized as:

map :: (key1, value1) ֜ list(key2, value2)

The reduce function, also written by the user, accepts an intermediate key and a set of
values for that key. It merges together these values to form a possibly smaller set of
values. Typically just zero or one output value is produced per reduce invocation. The
intermediate values are supplied to the users reduce function via an iterator. This allows
us to handle lists of values that are too large to fit in memory. The reduce function is
given all associated values for the key and outputs a new list of values. Mathematically,
this could be represented as:

reduce :: (key2, list(value2)) ֜ (key3, value3)

The MapReduce model provides sufficient high-level parallelization. Since the map
function only takes a single record, all map operations are independent of each other
and fully parallelizable. Reduce function can be executed in parallel on each set of
intermediate pairs with the same key.

4 Parallel PLSA Based on MapReduce

As described in section2, EM algorithm is used to estimate parameters of the PLSA

model. Our purpose is to compute (|)P w z , (|)P d z and ()P z . The whole procedure is

an iteration process. We set A to represent (,) (| ,)n d w P z d w , and so the equation (2) to
equation (4) can be rewritten as follows.

 , '

(|) d

d w

A
P w z

A
= 


(5)

44 N. Li et al.

 ',

(|) w

d w

A
P d z

A
= 


(6)

 , ,

1
() , (,)

d w d w

P z A R n d w
R

= ≡ 

(7)

Note that the key step is to compute A and computing R is necessary for the computa-

tion of ()P z . In each iteration, computing (|)P w z need to sum up A for each docu-

ment d first and then do the normalization. Similarly, computing (|)P d z need to sum

up A for each word w . It is obviously that the computation of A for one document is

irrelevant with the result of another one in the same iteration. For the same
reason,

computation of
w

A and R is in the same situation. So the computation of A
,

w
A and R could be parallel executed. Therefore, we design two kinds of MapReduce

job, one is to compute d
A and w

A , the other is for computing R .
For the job computing

d
A and

w
A , the map function, shown as Map1, per-

forms the procedure of computing A and
w

A for each document and thus the map

stage realizes the computation of A and
w

A for all the documents in a parallel way.

The reduce function, shown as Reduce1, performs the procedure of summing up
A to

get d
A .

For the job computing R , the map stage realizes the computation of (,)
w

n d w for

each document, and
,

(,)
d w

R n d w≡ is gotten in the reduce stage. The map function

and reduce function are shown as Map2 and Recuce2 respectively.
As the analysis above, the procedure of PPLSA is shown in the following.

Procedure PPLSA

1. Input: Global variable numCircle, the number of latent
topics

2. Initialize p(z), p(w|z), p(d|z);
3. The job computing R is carried out;
4. for (circleID = 1; circleID <= numCircle; circleID++)
5. /*numCircle is the max number of interations.*/
6. The job computing

d
A and

w
A is carried out.

7. Compute
,d w

A ;

8. Update p(z), p(w|z), p(d|z);
9. end

10. Output p(z), p(w|z), p(d|z).

 PPLSA: Parallel Probabilistic Latent Semantic Analysis Based on MapReduce 45

Map1 Map(key, value)
Input: pz, pdz, pwz, the offset key, the sample value
Output: <key’, value’> pair

1. Initialize arrayzd[] which is used for storing w
A

2. for (int i = 1;i<strarry1.length;i++) /*strarry1.length=
the number of words in value*/

3. compute p(z)*p(d|z)*p(w|z) for each topic and proceed
the normalization

4. for(int j = 0;j<number of topics;j++)
5. tmp= n(d,w)P(z|d,w)
6. Output(key’=j+”-w-”+(WordID-1),value’=tmp);/*for

computing P(w|z) */
7. arrayzd[j] += tmp; /*compute ∑ nሺd,wሻPሺz|d, wሻ୵ */
8. end
9. end

10. for (i=0;i<number of topics;i++)
11. Ouput(key’=j+”-d-”+(DocID-1),value’=arrayzd[j]);

/*for computing P(d|z) */
12. End

Reduce 1 Reduce (key, value)
1. sum=0;
2. for(Text value:values)
3. sum+=value /* sum up the values with the same key */
4. end
5. output(key,sum);

Map2 Map(key, value)
Input: the offset key, the sample value
Output: <key’, value’> pair

1. nCount=0;
2. for (int i = 1;i< the number of words in value ;i++)
3. get each word frequence freq[i];
4. nCount+=freq[i];
5. end
6. Output(key’=a random number belong (0,100),

value’=nCount)

46 N. Li et al.

Reduce 2 Reduce (key, value)

1. sum=0;
2. for(Text value:values)
3. sum+=value;
4. end
5. output(key,sum);

5 Experimental Analysis

In this section, we evaluate the performance of PPLSA. Performance experiments were
run on a cluster of 4 computers, each of which has four 2.8GHz cores and 4GB
memory. Hadoop version 0.20.2 and Java 1.5.0_14 are used as the MapReduce system
for all the experiments. Experiments were carried on 10 times to obtain stable values
for each data point.

5.1 The Datasets

We performed experiments on two datasets: a subset of the TREC AP corpus con-
taining 2246 documents with 10,473 unique terms and a dataset extracted from internet
about stock, containing 316 html documents with 27,925 terms.

5.2 The Evaluation Measure

We use scaleup, sizeup and speedup to evaluate the performance of PPLSA algorithm.

Scaleup: Scaleup is defined as the ability of an m-times larger system to perform an
m-times larger job in the same run-time as the original system. The definition is as
follows.

1(,)
mm

T
Scaleup data m

T
=

(8)

Where, 1T is the execution time for processing data on 1 core, mmT is the execution
time for processing m*data on m cores.

Sizeup: Sizeup measures how much longer it takes on a given system, when the dataset
size is m-times larger than the original dataset. It is defined by the following formula:

 1

(,) mT
Sizeup data m

T
=

(9)

Where, mT is the execution time for processing m*data, 1T is the execution time for
processing data.

 PPLSA: Parallel Probabilistic Latent Semantic Analysis Based on MapReduce 47

Speedup: Speedup refers to how much a parallel algorithm is faster than a
corresponding sequential algorithm. It is defined by the following formula:

1

p

T
Speedup

T
=

(10)

Where, p is the number of processors, 1T is the execution time of the algorithm
with

one processor, pT is the execution time of the parallel algorithm with p processors.

5.3 The Performance and Analysis

To demonstrate how well the PPLSA algorithm handles larger datasets when more
cores of computers are available, we have performed scaleup experiments where the
increase of the datasets size is in direct proportion to the number of computer cores in
the system. We ran the datasets which are 60-times, 120-times and 240-times of the
original ones on 4, 8, 16 distributed machines respectively. The scaleup performance of
PPLSA is shown in Fig.3.

Fig. 3. Scaleup performance evaluation

We have plotted scaleup which is the execution time normalized with respect to the
execution time for 4 machines. Clearly the PPLSA algorithm scales very well, being
able to keep the execution time almost constant as the dataset and machine sizes
increase.

To measure the performance of sizeup, we fix the number of cores to 4, 8 and 16
respectively. Fig.4 shows the sizeup results on different cores. The results show
sublinear performance for the PPLSA algorithm, the program is actually more efficient
as the dataset size is increased. Increasing the size of the dataset simply makes the
noncommunication portion of the code take more time due to more I/O and more
documents processing. This has the result of reducing the percentage of the overall time
spent in communication. Since I/O and CPU processing scale well with sizeup, we get
sublinear performance.

48 N. Li et al.

(a) Sizeup for AP dataset (b) Sizeup for stock dataset

Fig. 4. Sizeup performance evaluation

We used 4 cores as the baseline to measure the speedup of using more than 4 cores.
The speedup performances are shown in Fig.5.

(b) Speedup for AP dataset (b) Speedup for stock dataset

Fig. 5. Speedup performance evaluation

From Fig.5 we can see that PPLSA can achieve linear speedup when the core
is small. However, the improvement becomes gradually undramatic as the number
of processors grows. This is expected due to both the increase in the absolute
time spending in communication between machines, and the increase in the fraction
of the communication time in the entire execution time. When the fraction of the
computation part dwindles, adding more machines (CPUs) cannot improve much
speedup.

Moreover, the speedup performance shows better on the large datasets. This is an
artifact of the large amount of data each node processing. In this case, computation cost
becomes a significant percentage of the overall response time. Therefore, PPLSA
algorithm can deal with large datasets efficiently.

 PPLSA: Parallel Probabilistic Latent Semantic Analysis Based on MapReduce 49

6 Conclusion

In this paper, we presented a parallel implementation of PLSA based on MapReduce.
We use scaleup, sizeup and speedup to evaluate the performance. The experimental
results show that it scales well through the machine cluster and has a nearly linear
speedup. However, due to the limit memory, the algorithm do not work well when the
dataset are too large. In the future, we will look into strategies to solve this problem.

Ackonwledgement. This work is supported by the National Natural Science Founda-
tion of China (No. 60933004, 60975039, 61175052, 61035003, 61072085, 60903088),
National High-tech R&D Program of China (863 Program) (No.2012AA011003).

References

1. Mei, Q., Zhai, C.: A note on EM algorithm for probabilistic latent semantic analysis. In:
Proceedings of the International Conference on Information and Knowledge Management,
CIKM (2001)

2. Steyvers, M.: Probabilistic Topic Models. In: Landauer, T., McNamara, D., Dennis, S.,
Kintsch, W. (eds.) Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum

3. Hofmann, T.: Probabilistic Latent Semantic Analysis. In: Proc. of 15th Conference on
Uncertainty in Artificial Intelligence, pp. 289–296. Morgan Kaufmann, San Francisco
(1999)

4. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine
Learning 42(1), 177–196 (2001)

5. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:
Proc. of Operating Systems Design and Implementation, San Francisco, CA, pp. 137–150
(2004)

6. Ghemawat, S., Gobioff, H., Leung, S.: The Google File System. In: Symposium on
Operating Systems Principles, pp. 29–43 (2003)

7. Hadoop: Open source implementation of MapReduce (June 24, 2010),
http://hadoop.apache.org

8. Han, J., Kamber, M.: Data Mining, Concepts and Techniques. Morgan Kaufmann (2001)
9. Lammel, R.: Google’s MapReduce Programming Model - Revisited. Science of Computer

Programming 70, 1–30 (2008)
10. Jin, Y., Gao, Y., Shi, Y., Shang, L., Wang, R., Yang, Y.: P2LSA and P2LSA+: Two

Paralleled Probabilistic Latent Semantic Analysis Algorithms Based on the MapReduce
Model. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936,
pp. 385–393. Springer, Heidelberg (2011)

	PPLSA: Parallel Probabilistic Latent Semantic Analysis Based on Map
Reduce
	Introduction
	Probabilistic Latent Semantic Analysis
	The Main Idea of PLSA
	Solving PLSA with EM Algorithm

	MapReduce Overview
	Parallel PLSA Based on MapReduce
	Experimental Analysis
	The Datasets
	The Evaluation Measure
	The Performance and Analysis

	Conclusion
	References

