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Abstract. PLSA(Probabilistic Latent Semantic Analysis) is a popular topic 
modeling technique for exploring document collections. Due to the increasing 
prevalence of large datasets, there is a need to improve the scalability of com-
putation in PLSA. In this paper, we propose a parallel PLSA algorithm called 
PPLSA to accommodate large corpus collections in the MapReduce framework. 
Our solution efficiently distributes computation and is relatively simple to  
implement. 
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1 Introduction 

In many text collections, we encounter the scenario that a document contains multiple 
topics. Extracting such topics subtopics/themes from the text collection is important for 
many text mining tasks[1]. The traditional modeling method is “bag of words” model 
and the VSM(Vector Space Model) is always used as the representation. However, this 
kind of representation ignores the relationship between the words. For example, “actor” 
and “player” are different word in the “bag of words” model but have the similar 
meaning. Maybe they should be put into one word which means the topic. To deal with 
this problem, a variety of probabilistic topic models have been used to analyze the 
content of documents and the meaning of words[2]. PLSA is a typical one, which is 
also known as Probabilistic Latent Semantic Indexing (PLSI) when used in information 
retrieval. The main idea is to describe documents in terms of their topic compositions. 
Complex computation need to be done in the PLSA solving process. There is a need to 
improve the scalability of computation in PLSA due to the increasing prevalence of 
large datasets. Parallel PLSA is a good way to do this.  

MapReduce is a patented software framework introduced by Google in 2004. It is a 
programming model and an associated implementation for processing and generating 
large data sets in a massively parallel manner [5,9]. Users specify a map function that 
processes a key/value pair to generate a set of intermediate key/value pairs, and a 
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reduce function that merges all intermediate values associated with the same  
intermediate key [5]. MapReduce is used for the generation of data for Google’s  
production web search service, sorting, data mining, machine learning, and many other 
systems [5]. 

Two kinds of parallel PLSA with MapReduce have been propose in [10], which are 
P2LSA and P2LSA+ respectively. In P2LSA, the Map function is adopted to perform the 
E-step and Reduce function is adopted to perform the M-step. Transferring a large 
amount of data between the E-step and the M-step increases the burden on the network 
and the overall running time. Differently, the Map function in P2LSA+ performs the 
E-step and M-step simultaneously. However, the parallel degree is still not well. Dif-
ferent from these two algorithms, we have different parallel strategies. We design two 
kinds of jobs, one is for counting all the occurrences of the words and the other is for 
updating probabilities.  

In this paper, we first present PLSA in Section 2. In Section 3 we introduce the 
MapReduce framework. We then present parallel PLSA (PPLSA). Section 5 uses 
large-scale application to demonstrate the scalability of PPLSA. Finally, we draw a 
conclusion and discuss future research plans in Section 6. 

2 Probabilistic Latent Semantic Analysis 

2.1 The Main Idea of PLSA 

For extracting topics from the text collection, a well accepted practice is to explain the 
generation of each document with a probabilistic topic model. In such a model, every 
topic is represented by a multinomial distribution on the vocabulary. Correspondingly, 
such a probabilistic topic model is usually chosen to be a mixture model of k compo-
nents, each of which is a topic[1]. One of the standard probabilistic topic models is the 
Probabilistic Latent Semantic Analysis (PLSA). 

The basic idea of PLSA is to treat the words in each document as observations from 
a mixture model where the component models are the topic word distributions. The 
selection of different components is controlled by a set of mixing weights. Words in the 
same document share the same mixing weights. 

For a text collection 1{ , , }ND d d= K , each occurrence of a word w belongs to

1{ , , }MW w w= K . Suppose there are totally K topics, the topic of document d is the 

sum of the K topics, i.e. 1 2( | ), ( | ), , ( | )Kp z d p z d p z dK and 1
( | ) 1

K

Kk
p z d

=
= . In other 

words, each document may belong to different topics. Every topic z  is represented by 
a multinomial distribution on the vocabulary. For example, if the words such as  
“basketball” and ”football” occur with a high probability, it should be considered that it 
is a topic about ” physical education”. Each w in document d can be generated as  

follows. First, pick a latent topic kz with probability ( | )p z d . Second, generate a word 
w  with probability ( | )kp w z . Fig.1(a) is the graphic model and Fig.1(b) is the 

symmetric version with the help of Bayes’ rule. 
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Fig. 1. The graphic model of PLSA 

2.2 Solving PLSA with EM Algorithm 

The standard procedure for maximum likelihood estimation in PLSA in the Expectation 
Maximization(EM) algotithm[3]. Acoording to EM algorithm and the PLSA model, the 
E-step is the following equation. 

 '

( ) ( | ) ( | )
( | , )

( ') ( | ') ( | ')
z

P z P d z P w z
P z d w

P z P d z P w z
=
  

(1)
 

It is the probability that a word w in a particular document d is explained by the 
factor corresponding to z .  

The M-step re-estimation equations are as follows. 
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3 MapReduce Overview 

MapReduce is a programming model and an associated implementation for processing 
and generating large data sets. As the framework showed in Fig.2, MapReduce speci-
fies the computation in terms of a map and a reduce function, and the underlying 
runtime system automatically parallelizes the computation across large-scale clusters 
of machines, handles machine failures, and schedules inter-machine communication to 
make efficient use of the network and disks. 

Essentially, the MapReduce model allows users to write Map/Reduce components 
with functional-style code.  
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Fig. 2. Illustration of the MapReduce framework: the “map” is applied to all input records, which 
generates intermediate results that are aggregated by the “reduce” 

Map takes an input pair and produces a set of intermediate key/value pairs. The 
MapReduce library groups together all intermediate values associated with the same 
intermediate key and passes them to the reduce function [6]. That is, a map function is 
used to take a single key/value pair and outputs a list of new key/value pairs. It could be 
formalized as: 
 

map :: (key1, value1) ֜ list(key2, value2) 
 

The reduce function, also written by the user, accepts an intermediate key and a set of 
values for that key. It merges together these values to form a possibly smaller set of 
values. Typically just zero or one output value is produced per reduce invocation. The 
intermediate values are supplied to the users reduce function via an iterator. This allows 
us to handle lists of values that are too large to fit in memory. The reduce function is 
given all associated values for the key and outputs a new list of values. Mathematically, 
this could be represented as: 
 

reduce :: (key2, list(value2)) ֜ (key3, value3) 
 

The MapReduce model provides sufficient high-level parallelization. Since the map 
function only takes a single record, all map operations are independent of each other 
and fully parallelizable. Reduce function can be executed in parallel on each set of 
intermediate pairs with the same key. 

4 Parallel PLSA Based on MapReduce 

As described in section2, EM algorithm is used to estimate parameters of the PLSA 

model. Our purpose is to compute ( | )P w z , ( | )P d z  and ( )P z . The whole procedure is 

an iteration process. We set A to represent ( , ) ( | , )n d w P z d w , and so the equation (2) to 
equation (4) can be rewritten as follows. 
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Note that the key step is to compute A and computing R is necessary for the computa-

tion of ( )P z . In each iteration, computing ( | )P w z need to sum up A for each docu-

ment d  first and then do the normalization. Similarly, computing ( | )P d z need to sum 

up A for each word w . It is obviously that the computation of A  for one document is 

irrelevant with the result of another one in the same iteration. For the same 
reason, 

computation of 
w

A  and R  is in the same situation. So the computation of A
, 

w
A and R could be parallel executed. Therefore, we design two kinds of MapReduce 

job, one is to compute d
A  and w

A , the other is for computing R .  
For the job computing 

d
A  and 

w
A , the map function, shown as Map1, per-

forms the procedure of computing A  and 
w

A  for each document and thus the map 

stage realizes the computation of A  and 
w

A for all the documents in a parallel way. 

The reduce function, shown as Reduce1, performs the procedure of summing up 
A  to 

get d
A . 

For the job computing R , the map stage realizes the computation of ( , )
w

n d w for 

each document, and 
,

( , )
d w

R n d w≡  is gotten in the reduce stage. The map function 

and reduce function are shown as Map2 and Recuce2 respectively. 
As the analysis above, the procedure of PPLSA is shown in the following. 

 
Procedure PPLSA 

1. Input: Global variable numCircle, the number of latent 
topics 

2. Initialize p(z), p(w|z), p(d|z); 
3. The job computing R is carried out; 
4. for (circleID = 1; circleID <= numCircle; circleID++) 
5.    /*numCircle is the max number of interations.*/ 
6.      The job computing 

d
A  and 

w
A is carried out. 

7.      Compute 
,d w

A ; 

8.      Update p(z), p(w|z), p(d|z); 
9. end 

10. Output p(z), p(w|z), p(d|z). 
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Map1  Map(key, value) 
Input: pz, pdz, pwz, the offset key, the sample value 
Output: <key’, value’> pair 

1. Initialize arrayzd[] which is used for storing w
A  

2. for (int i = 1;i<strarry1.length;i++) /*strarry1.length= 
the number of words in value*/ 

3.     compute p(z)*p(d|z)*p(w|z) for each topic and proceed  
the normalization 

4.     for(int j = 0;j<number of topics;j++) 
5.       tmp= n(d,w)P(z|d,w)  
6.       Output(key’=j+”-w-”+(WordID-1),value’=tmp);/*for 

computing P(w|z) */ 
7.       arrayzd[j] += tmp;   /*compute ∑ nሺd,wሻPሺz|d, wሻ୵  */ 
8.     end 
9. end 

10.  for (i=0;i<number of topics;i++) 
11.       Ouput(key’=j+”-d-”+(DocID-1),value’=arrayzd[j]);  

/*for computing P(d|z) */ 
12.  End 

 

 

 

Reduce 1  Reduce (key, value) 
1. sum=0; 
2. for(Text value:values) 
3.    sum+=value /* sum up the values with the same key */ 
4. end 
5. output(key,sum); 

 
 
 

Map2  Map(key, value) 
Input: the offset key, the sample value 
Output: <key’, value’> pair  

1. nCount=0; 
2. for (int i = 1;i< the number of words in value ;i++)   
3.    get each word frequence freq[i]; 
4.    nCount+=freq[i]; 
5. end 
6. Output(key’=a random number belong (0,100),  

value’=nCount) 
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Reduce 2  Reduce (key, value) 

1. sum=0; 
2. for(Text value:values) 
3.    sum+=value;  
4. end 
5. output(key,sum); 

5 Experimental Analysis 

In this section, we evaluate the performance of PPLSA. Performance experiments were 
run on a cluster of 4 computers, each of which has four 2.8GHz cores and 4GB 
memory. Hadoop version 0.20.2 and Java 1.5.0_14 are used as the MapReduce system 
for all the experiments. Experiments were carried on 10 times to obtain stable values 
for each data point. 

5.1 The Datasets 

We performed experiments on two datasets: a subset of the TREC AP corpus con-
taining 2246 documents with 10,473 unique terms and a dataset extracted from internet 
about stock, containing 316 html documents with 27,925 terms. 

5.2 The Evaluation Measure 

We use scaleup, sizeup and speedup to evaluate the performance of PPLSA algorithm. 
 
Scaleup: Scaleup is defined as the ability of an m-times larger system to perform an 
m-times larger job in the same run-time as the original system. The definition is as 
follows. 
 

 

1( , )
mm

T
Scaleup data m

T
=

        
(8)

 
 
Where, 1T  is the execution time for processing data on 1 core, mmT  is the execution 
time for processing m*data on m cores.  
 
Sizeup: Sizeup measures how much longer it takes on a given system, when the dataset 
size is m-times larger than the original dataset. It is defined by the following formula: 
 

 1

( , ) mT
Sizeup data m

T
=

                            
(9)

 
Where, mT  is the execution time for processing m*data, 1T  is the execution time for 
processing data. 



 PPLSA: Parallel Probabilistic Latent Semantic Analysis Based on MapReduce 47 

Speedup: Speedup refers to how much a parallel algorithm is faster than a  
corresponding sequential algorithm. It is defined by the following formula: 
 

 

1

p

T
Speedup

T
=

   
(10)

 

Where, p  is the number of processors, 1T  is the execution time of the algorithm 
with 

one processor, pT  is the execution time of the parallel algorithm with p processors.
 

5.3 The Performance and Analysis 

To demonstrate how well the PPLSA algorithm handles larger datasets when more 
cores of computers are available, we have performed scaleup experiments where the 
increase of the datasets size is in direct proportion to the number of computer cores in 
the system. We ran the datasets which are 60-times, 120-times and 240-times of the 
original ones on 4, 8, 16 distributed machines respectively. The scaleup performance of 
PPLSA is shown in Fig.3. 
 

 

Fig. 3. Scaleup performance evaluation 

We have plotted scaleup which is the execution time normalized with respect to the 
execution time for 4 machines. Clearly the PPLSA algorithm scales very well, being 
able to keep the execution time almost constant as the dataset and machine sizes  
increase.  

To measure the performance of sizeup, we fix the number of cores to 4, 8 and 16 
respectively. Fig.4 shows the sizeup results on different cores. The results show 
sublinear performance for the PPLSA algorithm, the program is actually more efficient 
as the dataset size is increased. Increasing the size of the dataset simply makes the 
noncommunication portion of the code take more time due to more I/O and more 
documents processing. This has the result of reducing the percentage of the overall time 
spent in communication. Since I/O and CPU processing scale well with sizeup, we get 
sublinear performance. 
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(a) Sizeup for AP dataset                (b) Sizeup for stock dataset 

Fig. 4. Sizeup performance evaluation 

We used 4 cores as the baseline to measure the speedup of using more than 4 cores. 
The speedup performances are shown in Fig.5.  

 

        

(b) Speedup for AP dataset                 (b) Speedup for stock dataset 

Fig. 5. Speedup performance evaluation 

From Fig.5 we can see that PPLSA can achieve linear speedup when the core  
is small. However, the improvement becomes gradually undramatic as the number  
of processors grows. This is expected due to both the increase in the absolute  
time spending in communication between machines, and the increase in the fraction  
of the communication time in the entire execution time. When the fraction of the  
computation part dwindles, adding more machines (CPUs) cannot improve much 
speedup. 

Moreover, the speedup performance shows better on the large datasets. This is an 
artifact of the large amount of data each node processing. In this case, computation cost 
becomes a significant percentage of the overall response time. Therefore, PPLSA 
algorithm can deal with large datasets efficiently. 
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6 Conclusion 

In this paper, we presented a parallel implementation of PLSA based on MapReduce. 
We use scaleup, sizeup and speedup to evaluate the performance. The experimental 
results show that it scales well through the machine cluster and has a nearly linear 
speedup. However, due to the limit memory, the algorithm do not work well when the 
dataset are too large. In the future, we will look into strategies to solve this problem. 
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