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Abstract. Sparse decomposition has been widely used in numerous
applications, such as image processing, pattern recognition, remote sens-
ing and computational biology. Despite plenty of theoretical develop-
ments have been proposed, developing, implementing and analyzing novel
fast sparse approximation algorithm is still an open problem. In this
paper, a new pursuit algorithm Double Least Squares Pursuit (DLSP)
is proposed for sparse decomposition. In this algorithm, the support of
the solution is obtained by sorting the coefficients which are calculated
by the first Least-Squares, and then the non-zero values over this sup-
port are detected by the second Least-Squares. The results of numerical
experiment demonstrate the effectiveness of the proposed method, which
is with less time complexity, more simple form, and gives close or even
better performance compared to the classical Orthogonal Matching
Pursuit (OMP) method.

Keywords: Sparse decomposition, Sparse representation, Sparse
approximation algorithm,Double Least-Squares Pursuit.

1 Introduction

The sparse decomposition problem (also referred to as sparse approximation)
is one of the main problems for sparse representation and compressed sensing.
Given a full rank matrix A ∈ R

n×m with n < m and a vector b ∈ R
n, the sparse

decomposition problem can be stated as follows [1]:

(P0) : min
x

‖x‖0 subject to b = Ax (1)

i.e., find a sparsest representation for b over A, or

(P ε
0 ) : min

x
‖x‖0 subject to ‖b−Ax‖2 ≤ ε (2)

i.e., find a sparsest approximation for b with error ε.
(P0) is the exact case and (P ε

0 ) is the error-tolerant version of (P0), with error
tolerance ε > 0, and ‖x‖0 represents the number of nonzero entries in vector x.
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In both (P0) and (P ε
0 ) , matrix A is often referred to as dictionary while vector

b is referred to as observation. In practice, (P ε
0 ) is more suitable for real world

problems than (P0).
It has been proven that, given an arbitrary redundant dictionary A and an

observation b, to solve the sparse representation (P0) and (P ε
0 ) is a NP-hard

problem [2]. As a result, researchers turn to find the approximate solutions for
this problem.

The methods for solving (P0) and (P ε
0 ) mainly include two categories: greedy

algorithms [3,4] and convex relaxation techniques [5-8]. Greedy algorithms for
approximating the solution of l0 − norm, such as orthogonal matching pursuit
(OMP) [3] and matching pursuit(MP) [4], make a sequence of locally optimal
choices in hope of determining a globally optimal solution. Although these meth-
ods are simple and efficient, the solutions are sub-optimal. Convex relaxation
techniques replace the combinatorial sparse approximation problem with a re-
lated convex program in hope that the solutions coincide, i.e., replacing the
highly discontinuous l0 − norm by a continuous or even smooth approximation,
such as lp norms for p ∈ (0, 1] or even by smooth function. A lot of algorithms
have been proposed for lp − norm sparse decomposition [5-8]. Although these
methods have made some success in solving many practical problems, the com-
putational cost of the methods still needs to be further treated, and to develop,
implement and analyze novel fast sparse approximation algorithms is still an
open problem [9].

In this paper, we propose a new pursuit algorithm –– Double Least Squares
Pursuit (DLSP) motivated by Least-Squares. In the proposed DLSP algorithm,
the support of the solution is obtained by sorting the coefficients which are calcu-
lated by the first Least-Squares, and then the non-zero values over this support
are detected by the second Least-Squares. The results of numerical experiment
demonstrate that the proposed method is with less time complexity, more simple
form and quite good performance.

The paper is organized as follows. Section 2 introduces the basic Orthogonal
Matching Pursuit (OMP) method. Section 3 is devoted to the details of our
proposed algorithm –– Double Least-Squares Pursuit (DLSP). Section 4 presents
the numerical results and comparison experiment results with other methods.
Section 5 contains the conclusions.

2 Orthogonal Matching Pursuit (OMP)

The OMP [3] is the most classical greedy algorithm for approximating the solu-
tion of (P0) or (P

ε
0 ). Its basic procedure is described in Fig. 1. OMP selects the

column which is most correlated with the current residuals at each step, and the
selected column is added into the support set. Then, the residuals are updated
by projecting the observation onto the linear subspace which is spanned by the
columns that have already been selected, i.e., the support set, and the algorithm
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then iterates. The algorithm does not stop until the l2 − norm of the residual
reaches a pre-specified value ε. Compared with other alternative methods, OMP
is with more simple form and faster implementation.

Thresholding-Algorithm is a simplification of the OMP, which selects the
k largest inner product as the desired support, and only the first projection
is used. Besides, many improved or extended versions of OMP have been
developed [11-13].

Task:Approximating the solution of (P ε
0 ) : minx ‖x‖0 subject to ‖b − Ax‖2 ≤ ε

Parameters: Given the matrix A, the vector b, and the error threshold ε.
Initialization: k=0, and

• the initial solution x0 = 0,
• the initial residual r0 = b−Ax0 = b,
• the initial solution support S0 = support(x0) = Φ.

Main Iteration: k=k+1 and performing the following steps:

• Greedy selection. Find atom aj0 , j0 = argmaxj a
T
j r

k−1

• update Support:Update Sk = S(k − 1) ∪ j0.
• Update Provisional Solution: Compute xk, the minimizer of

min ‖b−Ax‖22 subject to Support{x} = Sk.
• Update Residual: Compute rk = b−Axk.
• Stopping Rule:If ‖rk‖2 ≤ ε,stop,Otherwise apply another iteration.

Output:The proposed solution is xk obtained after k iterations.

Fig. 1. Orthogonal-Matching-Pursuit, a greedy algorithm for approximating the
solution of (P ε

0 )

3 Double Least Squares Pursuit

3.1 Motivation

Euclidean or l2 − norm problem is one of the most common norm approxima-
tion problems [10], which is also called the least-squares approximation
problem, i.e.,

min ‖b−Ax‖22 (3)

and the objective is the sum of squares of the residuals.
The problem has the unique solution,

xopt = AT (AAT )
−1

b = A+b (4)
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From above we have

b ≈
n∑

i=1

a1x
1
opt + a2x

2
opt + ...+ amxm

opt (5)

where ai represents the i-th column of matrix A, and xi
opt is the i-th entry

of xopt.
The absolute value of xi

opt represents the contribution of the i-th column of
A, i.e., ai, for the representation of b. So we can select the k columns of A
correspond with the k largest entries of xopt as the desired support.

3.2 Double Least-Squares Pursuit

Fig. 2 presents a formal description of Double Least Squares Pursuit.
Note that the stage “ set xopt = A+b ” in “Initialization ” is our first Least-

Squares and the Updating Provisional Solution stage is another Least-Squares,
so we called the proposed algorithm as Double Least Squares Pursuit.

After getting the solution of the least-squares approximation problem xopt,
we select the k columns of A correspond with the k largest entries of xopt as the
desired support, and then the non-zero values over this support are detected by
the second Least-Squares.

Task:Approximating the solution of (P ε
0 ) : minx ‖x‖0 subject to ‖b − Ax‖2 ≤ ε

Parameters: Given the matrix A, the vector b, and the error threshold ε.
Initialization: k=0, and

• the initial solution x0 = 0,
• the initial residual r0 = b−Ax0 = b,
• the initial solution support S0 = support(x0) = Φ.
• the solution of the least-squares approximation problem, min ‖b−Ax‖22

xopt = A+b

Main Iteration: Incrementing k by 1 and performing the following steps:

• Updating Support. find the maxima, j0 of xj
opt : ∀j /∈ Sk−1, x

j0
opt ≥ xj

opt,and

update Sk = S(k − 1) ∪ j0
• Update Provisional Solution: Compute xk, the minimizer of

min ‖b−Ax‖22 subject to Support{x} = Sk.
• Update Residual: Compute rk = b−Axk.
• Stopping Rule:If ‖rk‖2 ≤ ε,stop,Otherwise apply another iteration.

Output:The proposed solution is xk obtained after k iterations.

Fig. 2. Double Least Squares Pursuit for approximating the solution of (P ε
0 )
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In Equation (5), when A is an orthogonal matrix, we have

xopt = AT (AAT )
−1

b = AT Ib = ATb (6)

xi
opt becomes the inner product of ai and b, and Double Least-Squares Pursuit

is equivalent to the Thresholding-Algorithm. Both of them find the support of
the solution by choosing the k largest inner products.

In the above algorithm description, the number of the required non-zeros, k,
is assumed to be already obtained. Alternatively, we can increase k until the

error ‖b−Axk‖2 reaches a pre-specified value ε.

3.3 Time Complexity

For DLSP, due to the pseudo-inverse of matrix A can be computed and stored
in advance, the searching for the k elements of the supports amounts to a sim-
ple sort of the entries of the vector A+b. OMP needs to compute the inner
products in each iteration. So if the proposed solution has k0 non-zeros, the
OMP method requires 2k0mn flops, while DLSP and Thresholding-Algorithm
methods require only k0mn flops. Obviously, DLSP is faster and simpler
than OMP.

4 Numerical Experiments

We compared the Double Least-Squares Pursuit (DLSP) with OMP and the
Thresholding-Algorithm on a simple date set to demonstrate their comparative
behavior. Experimental data and measurement method in [1] are adopted in
this paper: Random matrix A with size 30 × 50 is created with entries drawn
from the norm distribution, and the columns of this matrix are normalized to
have a unit l2 − norm. The sparse vector x is with independent and identically-
distributed random supports of cardinalities in the range [1,10], and its non-
zero entries are drawn as random uniform variables in the range[−2, 1] ∪ [1, 2].
Once x is generated, we compute b = Ax, and then apply the above men-
tioned algorithms to seek for x. We perform 1,000 such tests per cardinality, and
the average results are used. According to the Uniqueness-Spark Theorem[1],
in all of our tests the original solution is also the sparsest, as the spark of
A is 31.

In this experiment, the distance between the solution xk and the ground
truth x is measured by l2 − error and recovery of the support. The l2 − error

is computed by ‖x− xk‖2/‖x‖2.The recovery of the support is computed as the
distance between the supports of the two solutions, denoting the two supports
as S’ and S, we define the distance by

dist(S′, S) =
max{|S′|, |S|} − |S′ ∩ S|

max{|S′|, |S|} (7)

where, |S| represents the size of S.
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All these algorithms seek the proper solution until the residual is below a
certain threshold (i.e.,‖rk‖2 ≤ 1e− 4. The experimental results are summarized
in Fig. 3 and Fig. 4.

Fig. 3 and Fig. 4 show that the performance of DLSP is close to OMP and
better than Thresholding-Algorithm. DLSPs performance in terms of relative
l2 recovery error is better than OMPs, while in terms of the success rate in
detecting the true support is close to OMPs.

Fig. 3. Algorithms performance in terms of relative l2 recovery error

Fig. 4. Algorithms performance in terms of the success rate in detecting the true
support
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5 Conclusion

This paper presents a new pursuit algorithm Double Least-Squares Pursuit
(DLSP) for sparse decomposition. This method finds the support of the so-
lution and gets the non-zero values over this support by applying Least-Squares
twice. Experimental results demonstrate that the proposed method is with more
simple form, less time complexity and quite good performance.

Our future work will focus on deep theoretical analyze of DLSP which will help
in understanding the results obtained in this paper and making more theoretical
improvement.
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