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Abstract. Using the first commercially available 100Gbps Ethernet
technology with a link of varying length, we have evaluated the perform-
ance of the Lustre file system and its networking layer under different
latency scenarios. The results led us to a better understanding of the im-
pact that the network latency has on Lustre’s performance. In particular
spanning Lustre’s networking layer, striped small I/O, and the parallel
creation of files inside a common directory. The main contribution of this
work is the derivation of useful rules of thumbs to help users and system
administrators predict the variation in Lustre’s performance produced
as a result of changes in the latency of the I/O network.

1 Introduction

Scientific instruments create an enormous amount of data every day. For ex-
ample, the NASA Earth Observation System (EOSDIS) created about 2.9TiB
data in average each day in 2010 [1]. To share this data with collaborating scient-
ists, WAN file systems have already proven their value. The European DEISA
project [2] utilizes a series of dedicated 10Gbps links to serve a distributed GPFS
file system to different HPC centers. Since about 2006, the parallel file system
Luste has gained some attention while being used in WAN environments [3,4,5].
These evaluations and the consecutive use of Lustre as a production file system
in the DataCapacitor project at Indiana University have demonstrated that par-
allel file systems can be used efficiently on networks with latencies of more than
100 milliseconds.

However, up to now, the relevant publications only describe different use cases,
experiences, and tuning efforts, but none focuses on the interplay between the
network latency, the Lustre tunables and the resulting performance of the file
system. Advancing this understanding will certainly ease Lustre’s tuning effort
as well as give some hints about how to use the file system in production, e.g.
how files should be striped. Our aim in this paper is to make a first step in this
direction by analyzing our observations on the 100Gpbs Ethernet testbed.

The paper is structured as follows. The next section (Section 2) introduces
the testbed system itself. In Section 3, previous work on performance models,
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especially for parallel file systems, is reviewed. Within Section 4, the Lustre
networking layer is evaluated and a simple performance model for this software
layer is presented. After this, Section 5 deals with the performance obtained
when different I/O calls are issued from a single client while Section 6 extends
this work to multiple clients. Section 7 gives a conclusion and sketches future
work.

2 100GbE Testbed between Dresden and Freiberg

The 100Gbps testbed, provided by Alcatel-Lucent, T-Systems, HP, and DDN,
provided a unique resource to, on the one hand test this new technology, and
on the other hand to extend our knowledge about different network services.
The testbed spans the distance between the cities of Dresden and Freiberg in
Saxony, Germany with a geographical distance of about 37 km and a optical cable
length of about 60km. During the test, additional boxes with optical cables
have been used to extend the testbed from 60 up to 400km. This allows us
to conduct experiments using different latency configurations with a reliability
not found in software-based latency injection methods. An Alcatel-Lucent 1830
photonic service switch connects both sides and can transmit 100Gbps on a
single carrier. The 7750 SR-12 service router links the optical layer and the
network adapter. Both service routers (Freiberg and Dresden) have one media
dependent adapter (MDA) with 100Gbps, two adapters with 5x10Gbps, five
adapters with 2x10Gbps, and 20x1Gbps adapters.

HP provided 34 DL160G servers, 17 on each location, which are stocked with
a ServerEngines-based 10Gbps card, each connected to one of the 10Gbps in-
terfaces of the Ethernet switch. All servers are equipped with one six core Intel
Westmere (Xeon 5650, 2.67GHz) processor and 24GiB of RAM.

Several sub-projects were scheduled on this testbed. Initial TCP tests provide
the subsequent projects with a reliable base in terms of the available bandwidth
and the network behavior in general. Three different parallel file systems: GPFS,
Lustre, and FhGFS are installed on the HP servers to study the impact of the

Fig. 1. 100Gbps testbed equipment with connection cables
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latency on the file system performance. An overview of the testbed setup is
shown in Figure 1.

3 Related Work

The performance analysis of network file systems accessed over high latency
networks such as WANs has been the focus of several studies during the last
decade, and has been gaining importance as the technological trends make this
use case more and more practical. The first studies describing the viability of a
WAN file system in HPC context were conducted by the researchers working on
the TeraGrid project, and can be found in [6]. The first published experiences
using a minimally tuned Lustre file system in a WAN environment are detailed
in [3,4,5,7]. More recent publications concentrate not on analyzing Lustre’s raw
performance over WAN, but more on its suitability for concrete use cases. An
analysis of the use cases that would profit from an HPC WAN file system the
most is presented in [8]. In [9], Cai et al. evaluated the suitability of a Lustre
over WAN solution to sustain database operations. In [10], Rodriguez et al.
describe their experience using Lustre over WAN for the CMS experiment at the
LHC. Even though the modeling and simulation of storage systems have been a
subject of study for at least two decades, most of the publications concentrate
on modeling the individual components and not the file systems. To the best of
our knowledge, there is only one publication explicitly dealing with the modeling
of Lustre’s performance, namely [11], in which Zhao et al. applied the idea of
relative modeling to predict the performance of a Lustre file system.

4 Lustre’s Networking Layer

In the first part of this paper we will discuss the performance of Lustre at its
networking layer without considering the storage hardware and software com-
ponents acting on lower layers. Understanding the performance of Lustre’s net-
working layer is a first logical step in order to gain an understanding about how
this parallel file system behaves when its major tunable parameters and network
conditions are changed.

4.1 The LNET Protocol

Lustre Networking (LNET) is a custom networking API that leverages on
the native transport protocol of the I/O network to interconnect the
Metadata Server (MDS), the Object Storage Servers (OSSs), and the client sys-
tems of a Lustre cluster. It offers support for most of the network technologies
used in HPC through a set of Lustre Network Drivers (LNDs) that are both
available as individual kernel modules, and user space libraries. Internally, LNET
uses a stateful protocol based on remote procedure calls that was derived from
Sandia Portals. The bandwidths achievable by LNET during the file system
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operation are determined by a combination of its own performance paramet-
ers, and the characteristics and configuration of the underlying I/O network.
In low-latency environments, the relevance of the former group of parameters is
not apparent, since Lustre achieves its maximal performance without much tun-
ing. Their importance, however, is promptly made clear as soon as the network
latency increases.

LNET fragments all data transfers in units called Lustre RPCs, whose sizes
are always aligned to the system page size, and range from a single page (in
most cases 4096 bytes) up to one megabyte. The maximal size a Lustre RPC
may have, can be modified on a per client basis as long as the new size sat-
isfies the conditions stated in [12]. In order to minimize the transmission and
processing overhead associated with small RPCs, Lustre tries to merge adjacent
RPCs to form RPCs of maximal size. The individual size of an RPC being trans-
mitted is ultimately determined by a combination of the maximal RPC size, the
size of the buffers being read or written by the application, and on whether or
not the operation is immediately committed to disk (call to fsync(), operation
in O DIREC mode, etc.). LNET is a stateful protocol in which every RPC being
sent must be acknowledged by the receiver. Similarly to TCP’s sliding window
protocol, LNET may send more than one RPC before waiting for an acknow-
ledgment response. These unacknowledged RPCs are normally referred to as the
RPCs in flight. Like in the previous case, the maximal number of RPCs in flight
sent by LNET during any operation is a parameter that can be defined on a per
client basis.

In the following section we explore the interplay between the size and count
of Lustre RPCs in flight, and how they affect, together with the network latency,
the LNET effective bandwidth.

4.2 Model Constraints

The performance of LNET is heavily dependent on the underlying transport pro-
tocol it relies upon, and especially on its congestion avoidance mechanisms. In
order to keep our model as simple, and as general as possible, we will constrain it
to data transmissions that are unthrottled by the transport protocol of the I/O
network. The behavior of the LNET bandwidth as a function of its in-flight data
is best exemplified in Figure 2. Our focus will lie in the unthrottled state (a) in
which changes in the RPC size or count, as well as on the network latency yield
a full effect on the LNET bandwidth. Even though this constrain is certainly
undesirable, doing otherwise would incur in excessive complexity, while simul-
taneously tying our model to a particular transport protocol (implementation).

4.3 Proposed Model

It is well understood that for any given network, the relation between the
bandwidth-delay product and the amount of in-flight data that is actually present
in a network segment at a given time is one of the key factors determining the
network throughput [13]. The maximal amount of in-flight data Dmax that fits
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Fig. 2. Behavior of the LNET bandwidth as a function of its in-flight data. (a) un-
throttled communication, (b) throttled by the transport protocol, and (c) maximal
utilization reached.

inside a network path is determined by the bandwidth-delay product, defined
as the round-trip time l of the network, multiplied by the network bandwidth
b, plus the buffer space m of the network devices along the way (Equation 1).
It is trivial to see that (omitting the buffer space m) any change in the network
latency from l0 to l1 will immediately affect Dmax by a factor of l1/l0.

Dmax = l ∗ b+m (1)

On the other hand, the amount of data D that LNET may put down the wire
before waiting for an acknowledgment is mainly defined by the size s and number
c of RPCs in flight (Equation 2). In a similar way, a change in the size and number
of RPCs in flight should affect D by a factor of (s1c1)/(s0c0).

D = s ∗ c (2)

Our first modeling hypothesis will be that the LNET bandwidth will vary by
the same factor, and in direct proportion to D, and by the same factor but in
inverse proportion to Dmax. This means that the expected variation in a known
LNET bandwidth b0 resulting from a change in the network latency, or in the
size and number of RPCs in flight during an unthrottled communication can be
calculated using Equation 3.

b = (
s1
s0

c1
c0

l0
l1
)b0 (3)

4.4 Measurement and Comparison with the Model

The benchmarking of the LNET performance was conducted on the testbed sys-
tem previously introduced using the LNET-Selftest tool distributed with Lustre.
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This tool allows the generation of intense LNET traffic between groups of nodes
without requiring any physical I/O. The generated workload is also supposed to
be similar to that produced by Lustre during real I/O operation.

Using (3) we were able to obtain a good approximation of the experimental
data for changes in the network latency and RPC count. However, the bandwidth
changes resulting from increasing the RPC size up from its minimum value were
roughly half as big as those predicted. This difference indicates that an increase
in the RPC size doesn’t translate 1:1 to an increase in the LNET in-flight data.
In spite of this, the model can be adapted by introducing a factor k to account
for this overhead, as shown in Equation 4 .

b =
1

k
(
s1
s0

c1
c0

l0
l1
)b0 (4)

It is expected for the value of k to vary depending on each particular network
configuration. For the testbed system, a value of k = 2.27 yielded the best
results with an overall error of less than 15%. Figure 3 and 4 compare some
of the predictions against the experimental data. The predictions of the model
were done using the measured performance obtained with one 4KiB RPC in
flight and a network latency of 2.17ms to extrapolate all other points.

Fig. 3. Predictions of the LNET model
for 128KiB RPCs using different latency
settings and RPC counts.

Fig. 4. Predictions of the LNET model
for 2 RPCs in flight using different latency
settings and RPC sizes.

5 Single Client Performance Observations

The aim of this section is to describe the impact of the latency for small file
accesses and a single Lustre file system client. This data is advantageous for
users that use WAN file systems similiar to home file systems, for example for
compiling source code or for editing input files. The main parameters that have
an impact on the performance and that can be influenced by the user are mainly
the file size, the access size and for Lustre, the way the striping is done. For the
striping it is worth mentioning, that the stripe size is fixed to 1MiB as this is
the native stripe size of the DDN devices. Thus, only the number of used stripes
can be adjusted.
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5.1 Setup and Measurements

For these tests we performed initial measurements with IOzone and a fiber length
of 200km and compared the results with results gathered at 400km. Comparing
this data with performance data collected locally (at 0 km) would have not made
sense in this context as the communication locally was done via InfiniBand
and any comparison would not only include the latency difference but also the
difference between the protocols.

5.2 Observations and Findings

Fig. 5 shows the difference between the 200 km and the 400km data for different
I/O functions, for different file sizes and one block size. The figure shows the
performance in KiB/s for the 400km case in percent, using the performance for
200km as 100%. It shows that there is a noticeable performance impact only on
the initial write of a file. All other functions, which reuse existing files, show only
a small performance impact. This impact is due to the fact that the creation of
a file needs at least one RTT. With increasing file sizes, this additional RTT has
less influence on the total time of the operation.

Fig. 6 shows a more detailed performance study of the influence of the file
size and the stripe count on the performance. The figure shows the differences
in the latencies for the initial creation of files with different sizes and different
stripe counts. Here, we subtracted the numbers gathered at 200km from the
numbers gathered at 400 km. As the next step, we normalized this time difference
to the difference in the RTTs (4.14ms − 2.17ms = 1.97ms) between the two
distances. This allows to characterize the impact of the additional distance on
the performance.

Up to 1MiB file size, all data is written to a single stripe and the number of
stripes that the file can use does not influence the performance. The ’1’ in the
figure in these cases just means that at 400 km it takes 1.97ms longer to create
a file and to write the content than it takes at 200 km. For each additional stripe
used there is a penalty that is added as soon as a new stripe is used. This is due
to the fact that the Lustre file system creates the objects on the storage servers
for the first stripes in a sequential fashion.

This can create a large impact on file systems with a large number of stripes
used by default, as the time to write the first NMiB will always be (N+1)∗RTT.
The +1 has to be added for the initial file creation on the metadata server, the
stripes are created in an extra step. The problem with this finding is that in these
cases the bandwidth is determined by the RTT, and not by the capabilities of
the link.

Fig. 7 shows that there is no significant performance impact by the addition
of 200 km to the distance when the same file is accessed with different block sizes
or with different I/O functions. As most file I/O for these cases is rather small,
this implies that the clients cache most I/O operations efficiently.
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Fig. 5. Comparison of different I/O functions for 200 km and 400 km for different file
sizes. A block size of 4KiB and a stripe count of 1 was used. The performance for
400 km is given in percent relative to the performance for 200 km.

Fig. 6. Time differences for the initial file creations between the 400 km and the 200 km
setup. The time difference is normalized to the difference of the RTTs for both distances.

Fig. 7. Comparison of different I/O functions for 200 km and 400 km for different
block sizes. A file size of 16MiB and a stripe count of 1 was used. The performance for
400 km is given in percent relative to the performance for 200 km.
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6 Performance Observations for Multiple Clients

The goal of the experiment was to determine the latency of the I/O traffic for
multiple clients working in parallel, and to analyze the impact of the extension
of the testbed fiber length on different file sizes. We therefore used the Lustre
file system described above to generate unidirectional I/O traffic from Dresden
to Freiberg. Up to 16 clients were used to measure latency and bandwidth using
8B files for latency and 2GiB files for bandwidth. The benchmarking tool used
to generate the workload was IOR [14].

6.1 Setup and Measurements

Each process wrote its own file using POSIX I/O in O DIRECT mode to ensure
that the I/O operation is immediately committed to disk (see Fig. 8). The
value blockSize in Fig. 9 denotes the amount of data that is written to each
file per process, while transferSize represents the size of the payload being sent
with each I/O request. This is restricted by IOR to a minimum of 8 bytes and a
maximum of 2GiB. IOR uses MPI to synchronize processes, therefore switching
on intraTestBarriers adds a MPI Barrier(all) between each test to ensure that
there is no traffic left from previous I/O operations.

api=POSIX
f i l eP e rP r o c=1
useO DIRECT=1
in t r aTe s tBa r r i e r s=1
r e p e t i t i o n s=10
w r i t eF i l e=1
r eadF i l e=0

Fig. 8. IOR configuration header

RUN
b lockS i z e=8
t r a n s f e r S i z e=8
numTasks=16
RUN
b lockS i z e =2147483648
. . .

Fig. 9. I/O test with 16 processes each
sending 8B and 2GB

The 1GbE management links were used for the MPI communication not to
disrupt the Lustre traffic. Also, each test was repeated 10 times for higher ac-
curacy. The benchmarks were executed on the Dresden HP nodes on a mount
point pointing to the Lustre in Freiberg using the SFA10K DDN storage and the
16 Freiberg HP nodes as OSTs.

In the experiments, IOR was run on one Server using one process writing
to only one OST at first. Then additional servers doing the same file I/O were
added up to the point where 16 processes were writing 16 files in parallel each
to its own OST. This setup generated data for:

– different optical line length (60 km, 200 km, and 400km)
– different number of parallel writes (1-16)
– different file sizes (8 B up to 2GiB).
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6.2 Observations and Findings

IOR can separately log the times for the functions involved in writing a file to
disk (open(), write(), close()). We normalized the values to the round-trip
time that was measured on the TCP layer (60 km → 0.72ms, 200 km → 2.17ms,
400km → 4.14ms) to see how many RTTs it takes to complete each of the
functions and whether this depends on the number of parallel clients or not.

Fig. 10. Minimum RTT for file open of
8Byte files

Fig. 11. Average RTT for file open of
8Byte files

We first look at the time needed to open a file at the different line lengths
and for different numbers of parallel clients. The numbers shown are for 8Byte
files but are essentially the same for 2GiB files as well. The minimum numbers
in Fig. 10 show the anticipated time of 1 RTT only for the 400km distance.
The latency of the computer hardware has a larger influence at 60 km due to
the small transfer time compared to the time needed for processing. The time
needed for the open() call is the RTT plus an overhead which in turn is a
function depending on the number of parallel processes. Using a linear least
squares fit we can determine the slope being 0.08 for 60 km and 0.06 for 200 km.
This means that each additional process adds an overhead of 8% of the RTT for
60 km and 6% for 200km to the minimum time needed to complete a open()

call for the first process in the group that issues the open call. Additionally, the
average time rises with the number of parallel processes (all processes involved
and 10 repetitions) as seen in Fig. 11. This is due to the locking of the directory
in which all files reside.

For the close() call the minimum times are nearly the same across all process
counts at 1 RTT as there is no additional workload on the MDS. Again, 2GiB
files do not differ from 8bytes files. Fig. 13 shows the transfer times for the
write() call with minimum and maximum values as error bars. For large files the
distance has no significant impact on the transfer time. As each of the processes
was writing to its own OST, the number of parallel streams has no noticeable
influence on the individual performance either.
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Fig. 12. Minimum RTT to close files of
8 bytes

Fig. 13. Write RTT and data rate for
2GiB files

7 Conclusion

In this paper we explored some aspects of the performance variation exhibited
by the Lustre file system when subjected to changes in the network latency. Fur-
thermore, we used the empiric results obtained using a testbed network between
the cities of Dresden and Freiberg to derive basic rules explaining the observed
interaction between different performance parameters. Our findings describe the
interplay between the bandwidth-delay product of the network, and the size and
count of Lustre RPCs in flight for unthrottled communications, the penalty in-
troduced by the stripe count during file creation, and the overhead encountered
when concurrently opening files from multiple nodes.

There are several ways in which this work could be further improved. The
first one would be to investigate whether the results are still valid for other
deployments of Lustre or not. Among the other things deserving a deeper look
are the relation between the RPC size and its induced overhead (expressed with
the constant k), and how the congestion avoidance mechanisms acting at the
transport layer of the network affect the predictions of the LNET-model.
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