
CUDA-For-Clusters:

A System for Efficient Execution
of CUDA Kernels on Multi-core Clusters

Raghu Prabhakar1,�, R. Govindarajan2, and Matthew J. Thazhuthaveetil2

1 University of California, Los Angeles
raghu@cs.ucla.edu

2 Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, India

{govind,mjt}@serc.iisc.ernet.in

Abstract. Rapid advancements in multi-core processor architectures
coupled with low-cost, low-latency, high-bandwidth interconnects have
made clusters of multi-core machines a common computing resource.
Unfortunately, writing good parallel programs that efficiently utilize all
the resources in such a cluster is still a major challenge. Various program-
ming languages have been proposed as a solution to this problem, but
are yet to be adopted widely to run performance-critical code mainly due
to the relatively immature software framework and the effort involved in
re-writing existing code in the new language. In this paper, we motivate
and describe our initial study in exploring CUDA as a programming
language for a cluster of multi-cores. We develop CUDA-For-Clusters
(CFC), a framework that transparently orchestrates execution of CUDA
kernels on a cluster of multi-core machines. The well-structured nature
of a CUDA kernel, the growing popularity, support and stability of the
CUDA software stack collectively make CUDA a good candidate to be
considered as a programming language for a cluster. CFC uses a mixture
of source-to-source compiler transformations, a work distribution run-
time and a light-weight software distributed shared memory to manage
parallel executions. Initial results on running several standard CUDA
benchmark programs achieve impressive speedups of up to 7.5X on a
cluster with 8 nodes, thereby opening up an interesting direction of re-
search for further investigation.

Keywords: CUDA, Multi-Cores, Distributed Programming,
Distributed Systems, Clusters, Software Distributed Shared Memory.

1 Introduction

Clusters of multi-core nodes have become a common HPC resource due to their
scalability and attractive performance/cost ratio. Such compute clusters typi-
cally have a hierarchical design with nodes containing shared-memory multi-core

� The author was affiliated with the Indian Institute of Science during this work.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 415–426, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

416 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

processors interconnected via a network infrastructure. While they provide an
enormous amount of computing power, writing parallel programs to efficiently
utilize all the cluster resources remains a daunting task. For example, intra-node
communication between tasks scheduled on a single node is much faster than
inter-node communication, hence it is desirable to structure code in a way so
that most of the communication takes place locally. Interconnect networks have
large bandwidth and are suitable for heavy, bursty data transfers. This task of
manually orchestrating the execution of parallel tasks efficiently and managing
multiple levels of parallelism is difficult. A popular programming choice is a hy-
brid approach [10] using multiple programming models like OpenMP[5] (intra-
node) and MPI[20] (inter-node) to explicitly manage locality and parallelism.
The challenge lies in writing parallel programs that can readily scale across sys-
tems with steadily increasing numbers of both cores per node and nodes in the
cluster. Various programming languages and models that have been proposed
as a solution to this problem ([11], [12] etc.,) are yet to be adopted widely due
to the effort involved in porting applications to the new language as well as the
constantly changing software stack supporting the languages.

GPGPU computation has attracted the attention of software developers and
researchers off-late, and has been facilitated mainly by NVIDIA’s CUDA [3] and
OpenCL [4]. In particular, CUDA has become a popular language as evident from
an increasing number of users [3] and benchmarks [6] [13]. However, CUDA is a
shared memory programming model designed in tandem with the CUDA archi-
tecture which consists of homogeneous cores. Therefore intuitively, CUDA does
not seem to fit the bill to program distributed machines. However, the semantics
of CUDA enforce a structure on parallel kernels where communication between
parallel threads is guaranteed to take place correctly only if the communicat-
ing threads are part of the same thread block, through some block-level shared
memory. From a CUDA thread ’s perspective, the global memory offers a relaxed
consistency that guarantees coherence only across kernel invocations, and hence
no communication can reliably take place through global memory within a ker-
nel invocation. Such a structure naturally exposes data locality information that
can readily benefit from the multiple levels of hardware-managed caches found
in conventional CPUs. In fact, previous works such as [21] and [22] have shown
the effectiveness using CUDA to program multi-core shared memory CPUs, and
similar research has been performed on OpenCL as well [16]. There has also been
some recent work on using OpenCL to program heterogeneous CPU/GPU clus-
ters [17]. More recently, a compiler that implements CUDA on multi-core x86
processors has been released commercially by the Portland Group [7]. CUDA
has evolved into a very mature software stack with efficient supporting tools like
debuggers and profilers, making application development and deployment easy.

Considering the factors of programmability, popularity, scalability, support
and expressiveness, we believe that CUDA can be used as a single language to
efficiently program a cluster of multi-core machines. From a utility perspective,
establishing an execution flow from CUDA to a distributed system would imme-
diately enable many CUDA programs to achieve speedups on commodity cluster

CUDA-For-Clusters (CFC) 417

machines. In this paper, we explore this idea and describe CFC, a framework to
execute CUDA kernels can be efficiently and in a scalable fashion on a cluster
of multi-core machines. As the thread-level specification of a CUDA kernel is
too fine grained to be profitably executed on a CPU, we employ compiler tech-
niques described in [22] to serialize threads within a block and transform the
kernel code into a block-level specification. The independence and granularity
of thread blocks makes them an attractive schedulable unit on a CPU core. As
global memory in CUDA provides only a relaxed consistency, we show it can be
realized by a lightweight software distributed shared memory (DSM) that pro-
vides an abstraction of a single shared address space across the compute cluster
nodes. Finally, we describe our work-partitioning runtime that distributes thread
blocks across all cores in the cluster. We evaluate our framework using several
standard CUDA benchmark programs from the Parboil benchmark suite [6] and
the NVIDIA CUDA SDK [2] on a compute cluster with eight nodes. We achieve
promising speedups ranging from 3.7X to 7.5X compared to a baseline multi-
threaded execution (around 56X compared to a sequential execution). We claim
that CUDA can be successfully and efficiently used to program a compute cluster
and thus motivate further exploration in this area.

The rest of this paper is organized as follows: Section 2 provides the necessary
background. In Section 3, we describe the CFC framework in detail. In Section
4, we describe our experimental setup and evaluate our framework. Section 5
discusses related work. In section 6 we discuss possible future directions and
conclude.

2 Background

2.1 CUDA Programming Model

The CUDA programming model provides a set of extensions to the C program-
ming language enabling programmers to execute functions on a GPU. Such func-
tions are called kernels. Each kernel is executed on the GPU as a grid of thread
blocks. The grid size and block size are specified by the programmer during invo-
cation. Data transfer between the main memory and GPU DRAM is performed
explicitly using CUDA APIs. Each block is scheduled to execute on one stream-
ing multiprocessor (SM) on the GPU. Each SM contains a number of scalar
processors (SP), a large register file and some scratch pad memory. Thread-
private variables are stored in registers in each SM. Read-only GPU data that
has been declared as constant is mapped to a different constant memory. Pro-
grammers can use shared memory - which is a low-latency, user-managed scratch
pad memory - to store frequently accessed data. Shared memory data is visible to
all the threads within the same block.The syncthreads construct provides barrier
synchronization across threads within the same block.

Each thread block in a kernel grid gets scheduled independently on the SM
that it is assigned to. The programmer must be aware that a race condition
potentially exists if two or more thread blocks are operating on the same global

418 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

memory address and at least one of them is performing a write/store opera-
tion. This is because there is no control over when the competing blocks will
get scheduled. CUDA’s atomic primitives can be used only to ensure that the
accesses are serialized in some arbitrary order, but there is no mechanism to
communicate globally across blocks in a single kernel invocation.

2.2 Compiler Transformations

As the per-thread code specification of a CUDA kernel is too fine grained to be
scheduled profitably on a CPU, we first transform the kernel into a per-block
code specification using transformations described in the MCUDA framework
[22]. Logical threads within a thread block are serialized, i.e., the kernel code
is executed in a loop with one iteration for each thread in the block. Loop
boundaries provide implicit barrier synchronization. Hence, syncthreads() is
implemented using a technique called deep fission. The single thread loop nest
is split into two separate loops at the point of invocation of syncthreads(),
thereby preserving CUDA’s execution semantics. Thread-local variables that are
live across such synchronization boundaries are expanded into an array so that
each logical thread can maintain its state correctly. Thread-private variables
are replicated selectively, avoiding unnecessary duplication while preserving each
thread’s instance of the variable. The end result of all transformations is a block-
level specification of the CUDA kernel that can be compiled and executed on
a CPU. [22] has further details on these transformations. A CUDA kernel is
composed of several blocks, and is executed by calling the above function several
times in a loop. The next section describes how we distribute this execution
across nodes using MPI and OpenMP.

3 CUDA for Clusters (CFC)

In this section, we describe CFC in detail. Section 3.1 describes CFC’s work
partitioning runtime scheme. Section 3.2 describes CFC-SDSM, the Software
DSM that used to realize CUDA global memory in a compute cluster.

3.1 Work Distribution

Executing a kernel involves executing the per-block code fragment for all block
indices, as specified in the kernel’s execution configuration. In this initial work,
we employ a simple work distribution scheme that divides the set of block indices
into contiguous, disjoint subsets called block index intervals. The number of
blocks assigned to each node is determined by the number of executing nodes,
which is specified as a parameter during execution. If there are more blocks
than nodes (as is usually the case), each node gets assigned more than one
block. For the example in Fig. 1, the set of block indices 0 – 7 has been split
into four contiguous, disjoint subsets {0, 1}, {2, 3}, {4, 5} and {6, 7}, which are
scheduled to be executed by nodes N1, N2, N3 and N4 respectively. OpenMP is

CUDA-For-Clusters (CFC) 419

dim3 dg(4,2);
dim3 db(128);
kernel<<<dg,db>>>(params)

for(i=0; i<8;i++)
perBlockCCode(params,i,db,dg)

blocksPerNode=2
start=nodeRank*blocksPerNode

#pragma omp parallel for
for(i=start; i<start+blocksPerNode;i++)
 perBlockCCode(params,i,db,dg)

Fig. 1. Structure of the CFC framework. The pseudo-code for kernel invocation at each
stage is shown on the right for clarity.

used within each node to execute the assigned work units in parallel on multiple
cores. For example, in Fig. 1, within each node the assigned blocks are executed
in parallel using multiple threads on cores P1 and P2. The thread blocks are
thus distributed uniformly irrespective of the size of the cluster or number of
cores in each cluster node.

3.2 CFC-SDSM

CFC supports CUDA kernel execution on a cluster by providing the global
CUDA address space through a software abstraction layer, called CFC-SDSM.
We begin by noting CUDA kernels with data races produce unpredictable re-
sults on a GPU. However, global data is coherent at kernel boundaries; all thread
blocks see the same global data when a kernel commences execution. We there-
fore enforce a relaxed consistency semantics[8] in CFC-SDSM that ensures co-
herence of global data at kernel boundaries. Thus, for a data-race free CUDA
program, CFC-SDSM guarantees correct execution, but provides no such guaran-
tees for racy programs. Constant memory is maintained as separate local copies
on every node.

As the size of objects allocated in global memory can be large, CFC-SDSM
operates at page-level granularity. Table 1 describes the meta information stored
by CFC-SDSM for each page of global data in its page table.

CFC-SDSM Operation CFC-SDSM treats all memory allocated using cu-
daMalloc as global data. Each allocation call typically populates several entries
in the CFC-SDSM table. Every memory allocation is performed starting at a
page boundary using mmap. At the beginning of any kernel invocation, CFC-
SDSM marks every global memory page to be read-only. Thus, any write to a
global page within the kernel results in a segmentation fault which is handled by
CFC-SDSM’s SIGSEGV handler. The segmentation fault handler first examines

420 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

Table 1. Structure of a CFC-SDSM page table entry

Field Description

pageAddr Starting address of the page.
pnum A unique number (index) given to each page, used during synchronization.
written 1 if the corresponding page was written, else 0.
twinAddr Starting address of the page’s twin.

the address causing the fault. The fault could either be due to (i) a valid write
access to a global memory page that is write-protected, or (ii) an illegal address
caused by an error in the source program. In the latter case, the handler prints
a stack trace onto standard error and aborts execution. If the fault is due to the
former, the handler performs the following actions:

– Set the written field of the corresponding CFC-SDSM table entry to 1.
– Create a replica of the current page, called its twin. Store the twin’s address

in the corresponding CFC-SDSM table entry.
– Grant write access to the corresponding page and return.

In this way, at the end of the kernel’s execution, each node is aware of the global
pages it has modified. Note that within each node, the global memory pages
and CFC-SDSM table are shared by all executing threads, and hence all cores.
So, the SIGSEGV handler overhead is incurred only once for each global page
in a kernel, irrespective of the number of threads/cores writing to it. Writes
by a CPU thread/thread block are made visible to other CPU threads/thread
blocks executing in the same node by the underlying hardware cache coherence
mechanism, which holds across multiple sockets of a node. Therefore, no special
treatment is needed to handle shared memory.

The information of global pages that have been modified within a kernel
has to be communicated globally to all other nodes at kernel boundaries. To
accomplish this, each node constructs a vector called writeVector specifying the
set of global pages written by the node during the last kernel invocation. The
writeVectors are communicated to other nodes using an all-to-all broadcast.
Every node then computes the summation of all writeVectors. We perform this
vector collection-summation operation using MPI Allreduce[20]. At the end of
this operation, each node knows the number of modifiers of each global page. For
instance, writeV ector[p] == 0 means that the page having pnum = p has not
been modified, and hence can be excluded from the synchronization operation.

Pages having writeVector[pnum] == 1 have just one modifier. For such pages,
the modifying node broadcasts the up-to-date page to every other cluster node
To reduce broadcast overheads, all the modified global pages at a node are
grouped together in a single broadcast from that node. The actual page broadcast
operation is implemented using MPI Bcast.

For pages that have more than one modifier, each modifier must communicate
its modifications to other cluster nodes. CFC-SDSM accomplishes this by diff ing
the modified page with its twin page created by the SIGSEGV handler in each

CUDA-For-Clusters (CFC) 421

modifier node. In CFC-SDSM, each modifier node other than node 0 computes
the diff s and sends them to node 0, which collects all the diff s and applies
them to the page in question. Diff ing is an inexpensive operation that is easily
performed using a bitwise xor operation. Node 0 then broadcasts the up-to-date
page to every other node. The coherence operation ends with each node receiving
the modified pages and updating the respective pages locally.

We show in section 4 that centralizing the diff ing process at node 0 does not
cause much of a performance bottleneck mainly because the number of pages
with multiple modifiers is relatively less. For pages with multiple modifiers, CFC-
SDSM assumes that the nodes modified disjoint chunks of the page. If multiple
nodes have modified overlapping regions in a global page the program has a data
race, and under CUDA semantics the results are unpredictable. CFC-SDSM does
not guarantee correctness for such programs.

3.3 Lazy Update

Broadcasting every modified page to every other node creates a high volume of
network traffic, which is unnecessary most of the times. We therefore implement
a lazy update optimization in CFC-SDSM where modified pages are sent to
nodes lazily on demand. CFC-SDSM uses lazy update if the total number of
modified pages across all nodes exceeds a certain threshold. We have found that
a threshold of 2048 works reasonably well for many benchmarks (see section
4). In lazy update, global data is updated only on node 0 and no broadcast is
performed. Instead, in each node n, read permission is set for all pages p that
were modified only by n (since the copy of page p is up-to-date in node n), and
the write permission is reset as usual. If a page p has been modified by some
other node(s), node n’s copy of page p is stale. Hence, CFC-SDSM invalidates p
by removing all access rights to p in n. Pages which have not been modified by
any node are left untouched (with read-only access rights). At the same time,
on node 0, a server thread is forked to receive and service lazy update requests
from other nodes. In subsequent kernel executions, if a node tries to read from an
invalidated page (i.e. a page modified by some other node in the previous kernel
call), a request is sent to the daemon on node 0 with the required page’s pnum.
In section 4, we show that the lazy update scheme offers appreciable performance
gains for a benchmark with a large number of global pages.

4 Performance Evaluation

In this section, we evaluate CFC using several representative benchmarks from
standard benchmark suites.

4.1 Experimental Setup

For this study, we performed all experiments on an eight-node cluster, where
each node is running Debian Lenny Linux. Nodes are interconnected by a high-
bandwidth Infiniband network. Each node is comprised of two quad-core Intel
Xeon processors running at 2.83GHz, thereby having eight cores.

422 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

Compiler Framework. Fig. 2 shows the structure the CFC compiler frame-
work. We use optimization level O3 in all our experiments.

Fig. 2. Structure of the compiler framework

Benchmarks. We used five benchmark applications and one kernel. Four are
from the Parboil Benchmark suite [6]. Blackscholes and the Scan kernel are
applications from the NVIDIA CUDA SDK[2]. The benchmarks are from dif-
ferent computing disciplines, and are representative of present day workloads,
all of which have mature CUDA implementations in standard benchmark suites.
Table 2 briefly describes each benchmark.

Table 2. Benchmarks and description

Benchmark Description

cp Coulombic potential computation over one plane in a 3D grid, 100000 atoms
mri-fhd FHd computation using in 3D MRI reconstruction, 40 iterations
tpacf Two point angular correlation function
blackscholes Call and put prices using Black-Scholes formula, 50000000 options, 20 iterations
scan Parallel prefix sum, 25600 integers, 1000 iterations
mri-q Q computation in 3D MRI reconstruction, 40 iterations

Performance Metrics. In all our experiments, we keep the number of threads
equal to the number of cores on each node (eight threads per node in our cluster).
We haven’t explored variable number of threads per node. We define speedup of
an n node execution as:

speedup =
tbaseline

tCLUSTER
(1)

, where tbaseline represents the baseline multi-threaded execution time on one
node, and tCLUSTER represents execution time in the CFC framework on n
nodes. The baseline uses a single node and hence requires only OpenMP (and
not MPI). The baseline can only gain because of this, thereby ensuring fairness
in comparison. Observe that the speedup is computed for a cluster of n nodes
(i.e., 8n cores) relative to performance on one node (i.e., 8 cores). In effect, for
n = 8, the maximum obtainable speedup would be 8. Each benchmark has been
run 10 times, and the median value is reported.

CUDA-For-Clusters (CFC) 423

4.2 Results

Table 3 shows the number of pages of global memory as well as the number of
modified pages. Our benchmark set has a mixture of large and small working
sets along with varying percentages of modified global data, thus covering a
range of GPGPU behavior suitable for studying an implementation such as ours.
Benchmark speedups are shown in Fig. 3. Fig. 3(a) shows speedups with the lazy

Table 3. Number of pages of global memory declared and modified in each benchmark

Benchmark Global pages Modified % Unmodified

Cp 1024 1024 0

Mri-fhd 1298 510 60.7

Tpacf 1220 8 99.3

BlackScholes 244145 97658 60

Mri-q 1286 508 60.49

Scan 50 25 50

Fig. 3. Comparison of execution times of various benchmark applications on our sys-
tem. (a) shows normalized speedups on a cluster with 8 nodes without lazy update.
(b) shows the performance of BlackScholes with the lazy update optimization.

update optimization disabled for all the benchmarks, while 3(b) shows speedups
for the BlackScholes benchmark when the lazy update optimization is enabled.
As we have set a threshold of at-least 2048 global pages to trigger CFC-SDSM
to operate in lazy mode, only blackscholes triggers this operation. Any number
of pages less than this can easily be handled by CFC-SDSM in the normal mode,
and the experimental results demonstrate it. Hence we study the lazy update
effect only on Blackscholes. We make the following observations:

– Our implementation has low runtime overhead. Observe the speedups for
n = 1, i.e., the second bar. In almost all cases, this value is close to the
baseline. BlackScholes slows down by about 14% due to its large global
data working set.

424 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

– The Cp benchmark shows very high speedups in spite of having a high
percentage of global data pages being modified. Cp is a large benchmark
with lots of computations that can utilize many nodes efficiently.

– The Scan benchmark illustrates the effect of a CUDA kernel design on its
performance on a cluster. Originally, the Scan kernel is small where only
512 elements are processed per kernel. Spreading such a small kernel’s exe-
cution over many nodes was an overkill and provided marginal performance
gains comparable to Blackscholes in Fig. 3(a). However, after the kernel was
modified (coarsened or fattened) to processes 25600 elements per kernel, we
achieve the speedups shown in 3(a).

– The BlackScholes benchmark shows scalability, but low speedups. Due to
the large volume of network traffic it generates, this benchmark benefits from
lazy update. On a cluster with 8 nodes, we obtain a speedup of 3.7X with
lazy update, compared to 2.17X without lazy update. This suggests that
the performance gained by reducing interconnect traffic compensates for the
overheads incurred by creating the daemon thread. We have observed that
for this application, invalidated pages are never read in any node.

– We can observe network overhead specifically only in BlackScholes where
we’ve overloaded CFC-SDSM with many pages. The lazy update scheme
seems to work pretty well even for large memory sizes. We would like to
explore potential problems when we scale this to hundreds of nodes in the
future.

– Across the benchmarks, our runtime approach to extend CUDA programs
to clusters has achieved speedups ranging from 3.7X to 7.5X on an 8 node
cluster.

In summary, we are able to achieve appreciable speedup and a good scaling
efficiency (upto 95%) with number of nodes in the cluster. While an 8-node
cluster is not a very big cluster, it serves as a reasonable platform to demonstrate
the effectiveness of CFC. Future work will deal with studying larger clusters and
problems arising from that.

5 Related Work

We briefly discuss a few previous works related to programming models, using
CUDA on non-GPU platforms and software DSMs. The Partitioned Global Ad-
dress Space family of languages (Chapel[11], X10[12] etc.) aims to combine the
advantages of both message-passing and shared-memory models. Intel’s Concur-
rent collections [1] is another shared memory programming model that aims to
abstract the description of parallel tasks.

Previous works like [7], [14] and [22] use either compiler techniques or binary
translation to execute kernels on x86 CPUs. In all the works mentioned here,
CUDA kernels have been executed on single shared-memory hardware.

Various kinds of software DSMs have been suggested in literature like [9], [15],
[18], and [19], to name a few. CFC-SDSM differs from the above works in the
sense that locks need not be acquired and released explicitly by the programmer.

CUDA-For-Clusters (CFC) 425

All global memory data is ‘locked’ just before kernel execution and ‘released’
immediately after, by definition. Also, synchronization operation proceeds either
eagerly or lazily, depending on the total size of global memory allocated. This
makes our DSM very lightweight and simple.

6 Conclusions and Future Work

In this paper, we have presented an initial study in exploring CUDA as a lan-
guage to program clusters of multi-core machines. We have implemented CFC,
a framework that uses a mixture of compiler transformations, work distribu-
tion runtime and a lightweight software DSM to collectively implement CUDA’s
semantics on a multi-core cluster. We have evaluated our implementation by
running six standard CUDA benchmark applications to show that there are in-
deed promising gains that can be achieved.

Many interesting directions can be pursued in the future. One direction could
be towards optimizing network usage by building a static communication cost
estimation model or tracking global memory access patterns that can be used by
the runtime to schedule blocks across nodes appropriately. Another interesting
and useful extension to this work would be to consider GPUs on multiple nodes
as well, along with multi-cores. Automatic compile-time kernel coarsening and
automatic kernel execution configuration tuning are other interesting areas.

References

1. Intel concurrent collections for c++, http://software.intel.com/en-us/articles/
intel-concurrent-collections-for-cc/

2. Nvidia cuda c sdk, http://developer.download.nvidia.com/compute/cuda/sdk
3. Nvidia cuda zone, http://www.nvidia.com/cuda
4. Opencl overview,

http://www.khronos.org/developers/library/overview/opencl_overview.pdf

5. Openmp specifications, version 3.0,
http://openmp.org/wp/openmp-specifications/

6. The parboil benchmark suite,
http://impact.crhc.illinois.edu/parboil.php

7. The portland group, http://www.pgroup.com
8. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.

IEEE Computer 29, 66–76 (1995)
9. Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,

Zwaenepoel, W.: Treadmarks: Shared memory computing on networks of worksta-
tions. Computer 29(2), 18–28 (1996)

10. Cappello, F., Etiemble, D.: Mpi versus mpi+openmp on ibm sp for the nas bench-
marks. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomput-
ing (CDROM), Supercomputing 2000. IEEE Computer Society, Washington, DC
(2000)

11. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/
http://developer.download.nvidia.com/compute/cuda/sdk
http://www.nvidia.com/cuda
http://www.khronos.org/developers/library/overview/opencl_overview.pdf
http://openmp.org/wp/openmp-specifications/
http://impact.crhc.illinois.edu/parboil.php
http://www.pgroup.com

426 R. Prabhakar, R. Govindarajan, and M.J. Thazhuthaveetil

12. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform clus-
ter computing. In: OOPSLA 2005: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions, pp. 519–538. ACM, New York (2005)

13. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tip-
paraju, V., Vetter, J.S.: The scalable heterogeneous computing (shoc) benchmark
suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, GPGPU 2010, pp. 63–74. ACM, New York (2010)

14. Diamos, G.F., Kerr, A.R., Yalamanchili, S., Clark, N.: Ocelot: a dynamic opti-
mization framework for bulk-synchronous applications in heterogeneous systems.
In: PACT 2010: Proceedings of the 19th International Conference on Parallel Ar-
chitectures and Compilation Techniques, pp. 353–364. ACM, New York (2010)

15. Gelado, I., Stone, J.E., Cabezas, J., Patel, S., Navarro, N., Hwu, W.M.W.: An
asymmetric distributed shared memory model for heterogeneous parallel systems.
SIGARCH Comput. Archit. News 38(1), 347–358 (2010)

16. Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R., Zheng, B.:
Twin peaks: a software platform for heterogeneous computing on general-purpose
and graphics processors. In: Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques, PACT 2010, pp. 205–216.
ACM, New York (2010)

17. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: Opencl as a programming model
for gpu clusters. In: LCPC 2011: Proceedings of the 24th International Workshop
on Languages and Compilers for Parallel Computing, (2011)

18. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM
Trans. Comput. Syst. 7(4), 321–359 (1989)

19. Manoj, N.P., Manjunath, K.V., Govindarajan, R.: Cas-dsm: a compiler assisted
software distributed shared memory. Int. J. Parallel Program. 32(2), 77–122 (2004)

20. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI-The Com-
plete Reference, Volume 1: The MPI Core. MIT Press, Cambridge (1998)

21. Stratton, J.A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., Hwu,
W.M.W.: Efficient compilation of fine-grained spmd-threaded programs for multi-
core cpus. In: CGO 2010: Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pp. 111–119. ACM, New York
(2010)

22. Stratton, J.A., Stone, S.S., Hwu, W.-M.W.: Mcuda: An efficient implementation
of cuda kernels for multi-core cpus, pp. 16–30 (2008)

	CUDA-For-Clusters: A System for Efficient Execution of CUDA Kernels on Multi-core Clusters
	Introduction
	Background
	CUDA Programming Model
	Compiler Transformations

	CUDA for Clusters (CFC)
	Work Distribution
	CFC-SDSM
	Lazy Update

	Performance Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusions and Future Work
	References

