A Job Scheduling Approach for Multi-core
Clusters Based on Virtual Malleability

Gladys Utrera!, Siham Tabik?, Julita Corbalan®, and Jestis Labarta3

! Technical University of Catalonia (UPC) 08034 Barcelona, Spain
{gutrera, juli}@ac.upc.edu
2 University of Malaga, 29071 Malaga, Spain
stabikQuma.es
3 Barcelona Supercomputing Center (BSC) 08034 Barcelona, Spain
jesus.labarta@bsc.es

Abstract. Many commercial job scheduling strategies in multi process-
ing systems tend to minimize waiting times of short jobs. However, long
jobs cannot be left aside as their impact on the performance of the
system is also determinant. In this work we propose a job scheduling
strategy that maximizes resources utilization and improves the overall
performance by allowing jobs to adapt to variations in the load. The
experimental evaluations include both simulations and executions of real
workloads. The results show that our strategy provides significant im-
provements over the traditional EASY backfilling policy, especially in
medium to high machine loads.

Keywords: job scheduling, MPI, malleability.

1 Introduction

Modern computational clusters tend to have thousands of execution units [5]. In
order to make these investments profitable, such clusters must have many users
(clients). This leads to a large amount of job submissions that often exceeds the
cluster capacity. Figure [Il shows a typical weekly load of the Marenostrum ma-
chine [I]. Many of these clusters are composed by nodes of multi-core processors.
Multi-core processors have two or more complete computational cores integrated
in the same chip. As a processing core can act as an independent processor or
CPU, in this work terms core and CPU are synonyms.

A job scheduling strategy (JSS) is an algorithm that allocates resources to
submitted jobs while applying system’s administrative policies and priorities. A
JSS has to deal with a wide variety of applications, from sequential to highly
parallel codes, with execution times that varies from minutes to days. This sce-
nario converts the comparison of two JSS into a difficult task. The high cost
of the clusters usually makes user satisfaction the main objective for improving
performance of the JSSs. For this reason, waiting times of short jobs that exceed
by far their execution times are inadmissible. However, long jobs also play an
important role in the performance which finally affect short jobs as well.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 191-03] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

192 G. Utrera et al.

MareMNostrum Queue

L T00.LHy

cpus
WIANTLI0 T80

Mon 13 Tue 28 Wed 21 Thu 22 Fri 23 Sat 24 Sun 25
O running jobs @ waiting jobs

Fig. 1. Marenostrum load and wait queue during a week [I]

cpus cpus
10
8

2

4 6 time

(b) EASY backfilling

(c) FCFS-malleable

Fig. 2. Job scheduling under : (a) FCFS, (b) EASY backfilling and (c) FCFS-malleable

To quantify the performance of JSSs, this work uses three metrics, namely the
response time, slowdown and fragmentation. The first two metrics depend on the
waiting and execution times of jobs while the last one measures the utilization
of the computing system. The following classification of job flexibility is com-
monly accepted in the literature [I4]: rigid jobs, which are compiled to be run
with a specific and fixed number of processes; moldable jobs can be executed on
multiple CPU partition sizes, but once the execution starts, these sizes cannot
be modified; malleable, if the size of the assigned partition can also be modified
during the execution. Moldable and malleable jobs would increase system utiliza-
tion. However, they are not the common case in production systems. This paper
presents a JSS, called First Come First Served-malleable (FCFS-malleable), that

A Job Scheduling Approach for Multi-core Clusters Based on VM 193

minimizes waiting times by maximizing system utilization no matter the jobs’
execution time, nor their flexibility type. The proposed JSS is based on the idea
of Virtual Malleability (VM)[24]. VM allows jobs to adapt to changes in the
number of CPUs at runtime preserving the original number of processes. Fig-
ure] exemplifies two JSSs from literature, FCFS and EASY backfilling, and
FCFS-malleable on a hypothetical machine of 10 CPUs where the x- and y- axis
represent time and number of CPUs respectively. Each rectangle is labeled with
the name of the job it represents (e.g. J1) and the number of processes per CPU
(e.g., 8x1 means that each of the 8 processes is assigned to a different CPU).
The jobs arrived to the wait queue in the following order: J1,J2,J3, J4, J5, J6
with execution times equal to 2,1,1,2,2,1 time units respectively.

Figure shows the execution of the workload under FCFS. The execution
of each job is delayed till there are enough CPUs for it. Meanwhile a group of
available CPUs is not used even though there are jobs in the wait queue. For
example, 2 CPUs are idle when J1 is running and 6 CPUs are idle when J5 is
running which generates fragmentation.

Figure shows how EASY backfilling [16] works. To alleviate the delayed
execution and fragmentation problem it tries to forward jobs ahead in the queue
when there are enough resources for them to be executed and provided they
don’t delay the first job in the queue. For example, J3 can start together with
J1. However, EASY backfilling does not always find a suitable hole for a waiting
job so fragmentation is not always eliminated (e.g. after J1 and J3 finish).

Figure demonstrates how the JSS proposed in this paper behaves. As
there are jobs in the wait queue, VM is applied to J1 (the oldest) so it starts
its execution shrunk in 4 CPUs together with J2 and J3. Even shrinking J2 and
J3, there are not enough CPUs for J4, so it has to wait and J2 and J3 can run
expanded. This restriction is due to the fact that in this work VM can reduce the
number of CPUs only up to half of the total assigned number. After J2 and J3
finish, J4 and J5 can start their executions shrunk. Finally, J6 starts expanded
as there are no jobs in the wait queue [.

The experimental results showed that FCFS-malleable overcomes EASY back-
filling by 28% in average slowdown and 31% in average response time.

The main contributions of this work are as follows:

— A new JSS based on the concept of VM. The algorithm is easy to imple-
ment and does not require neither application recompilation nor any previous
knowledge about the application.

— A study of the impact on the performance when applying VM to individual
applications, taking into account intranode contention.

— Evaluations and comparison of the proposed JSS using both simulator and
a runtime system.

! We assume that two processes are executed twice slower on a single CPU than on
two separated CPUs. Different studies indicate that this time could be by far less
then twice [22][26], since computation and communication can be overlapped.

194 G. Utrera et al.

2 Related Work

The problem of scheduling and allocating resources to jobs in parallel systems
has been addressed in previous research from two perspectives. While some works
focus on providing support, libraries and runtime systems, to make individual
applications malleable [2007USITTI24T5] others attempt to integrate heuristics or
new techniques to backfilling or FCFS policies [23IT0J9I21].

In [20] the moldability is applied in conjunction with folding [18] to reduce wait
times. They create as many threads as the available number of CPUs and execute
the job in the assigned partition. As the load increments, the partition of the
latest arrived job is reduced to a half, freeing CPUs. The folding must be done at
explicit synchronizing points in the source code. This generates additional wait
time and requires extra effort from programmers and system support.

In [7] the authors modify the number of used CPUs at predetermined points of
execution. The evaluation was carried out using workloads of only up to 10 jobs
of NAS Benchmarks, with small classes like A and B. The inclusion of dynamic
malleability support using a resource manager was also studied in [8IIT] They
all require applications to be malleable or code modifications.

Certain levels of oversubscription improve resources utilization. The schedul-
ing of jobs on the assigned CPUs can be done explicitly as in Gang Scheduling
[13]. A static schedule of parallel communicating processes must be computed a
priori, and a global context switch is used to coschedule these communicating
processes. In this way, these processes have the illusion of running on a dedi-
cated (but slower) system. These schemes usually require long time quanta to
amortize the high context switch and synchronization costs, making the system
less responsive for interactive and I/O-intensive applications. Furthermore, they
keep the CPU idle while a process is performing I/O or is waiting for a message
within its allotted time quantum. In [27] they propose an alternative to overcome
this problem by matching pairs of processes: compute bound with I/0 bound to
share a time slice. The idea looks interesting, but they still have synchronization
costs and extra effort to find, if possible, the correct matching. On the other
hand, the experiments use applications with no more than 16 processes.

Implicit coscheduling [6I28] tries to overcome the drawbacks of explicit
coscheduling by relying on local schedulers, so that interactive and I/O-bound
jobs are properly handled. They use the communication behavior of parallel pro-
cesses to make scheduling decisions. Compared to explicit coscheduling, these
strategies are easier to implement on clusters, and have better scalability and
reliability characteristics basing exclusively on local knowledge.

In [25] it is shown that when a job shares CPUs with itself response time
and stability are improved. The fact of oversubscribing CPUs was recently re-
addressed in multi-core systems [15]. Using several applications from different
programming models they demonstrated that oversubscribing up to 8 tasks to
each single CPU improves throughput over pure space sharing.

The most commonly used backfilling strategies are EASY backfilling and Con-
servative backfilling [19]. Conservative backfilling prioritizes predictability in re-
sponse times and fairness, while EASY backfilling provides better response times,

A Job Scheduling Approach for Multi-core Clusters Based on VM 195

especially for short jobs. Many previous related works focus on making backfilling
strategies more flexible by integrating moldability with them [23]. The partition
size for a job is selected based on its scalability and turnaround time by applying
the Downey model [I0]. Results demonstrate a gain in performance over pure
backfilling and pure moldability [9] on individual applications. In [21] they pro-
pose a relaxation of conservative backfilling by allowing all waiting jobs to be
delayed but only to some extent which improved response time predictability and
resource utilization. Bounded slowdown obtained worse results than backfilling.
The JSS presented in this paper has the following advantages over state-of-art:
no predefined synchronization points are required to vary the number of CPUs;
jobs are unaware of the changes in the number of assigned CPUs and consequently
there is no overhead derived from data redistribution, process creation or elim-
ination at runtime; no need for recompilation; no job classification is required;
no prior knowledge of the job is needed; all the jobs are candidate to be shrunk
and moldability is not required. Finally, evaluations were done using both real
executions with workloads made from benchmarks with large variations in data
size, number of processes and communication degree. Simulations use well-known
workload traces rather than synthetic workloads with few jobs and CPUs.

3 The FCFS-Malleable Job Scheduling Strategy

First, this section describes our JSS and defines the metrics that are used for
the comparisons of JSSs. After that, a brief description of the implementation
of the runtime system is provided. A deeper description can be found in [26].

3.1 FCFS-Malleable Algorithm

Algorithm 1. Code executed at job arrival
1: GetJobFromWaitQueue(J)

2: if FreeCpus > J.cpusRequested then

3: J.cpusAllocated < J.cpusRequested

4: Execute(J) //This function updates FreeCpus

5: else

6: listOfOrderedJobs = SortByArrivalTime(listO f RunningJobs)
7: //Selects as many jobs as required to execute J

8: listOfCandidates = SelectCandidateJobs(listO fOrderedJobs, J)
9: if listNotEmpty(listO fCandidates) then

10: J.epusAllocated = J.cpusAllocated/2;

11: for V = JobsInList(listO fCandidates) do

12: V.cpusAllocated = V.cpusAllocated /2

13: Shrunk(V') //This function updates FreeCpus and NumdJobsShrunk
14: end for

15: Execute(J)

16: end if

17: end if

196 G. Utrera et al.

FCFS-malleable combines FCFS with VM. Applying VM to a job consists on
running it on a pool of CPUs with a size less than or equal to the number of pro-
cesses. In the case the number of CPUS is smaller than the number of processes,
each CPU will have binded a queue of processes belonging to the same job. The
size of this queue is called multiprogramming level (MPL). The maximum MPL
was set to 2. This maximum level was chosen based on: memory bandwidth, num-
ber of CPUs per node, number of entry points to the interconnection network.

FCFS-Malleable is an event driven algorithm executed at job arrival and at
job ending. Algorithm [shows the code executed when a new job arrives. At
that event, the algorithm evaluates whether it is possible to start a new job
depending on the available CPUs. If so, it starts the job with as many CPUs as
requested (lines 3-4). Otherwise, the JSS tries to free CPUs and execute the job
by applying VM to some jobs that are already running, including J if necessary.
When a job finishes execution, if the wait queue is not empty, Algorithm [is
applied, otherwise, running shrunk jobs are expanded to the newly freed CPUs.
Several criteria to decide which job to shrink or expand first were evaluated: the
oldest first, the one with less CPU utilization, the longest first and, the shortest
first. Our experiments showed that the oldest one first is the best option. Line
8 of Algorithm [implements this option.

Metrics Used for Evaluations. In order to quantify the performance of our
technique and make comparisons with others JSSs from bibliography three met-
rics were used: average response time, average slowdown and fragmentation.

Response time, is the time elapsed between the job submission and termina-
tion. This metrics evidences long jobs performance and is calculated by averaging
the response times of all the jobs across a workload. For example, the average
response times of the example shown in Figures [2(a)| [2(b)l and [2(c)| are equal
to 4.66,4.33 and 3.66 time units respectively.

Slowdown relates execution and wait time as it is shown in formula (). This
metrics indicates short jobs performance and is calculated by averaging the slow-
down of all the jobs across a workload. It is important to note that to calculate
the value of the average slowdown for the FCFS-malleable policy, the execution
time in numerator of formula[llis obtained using VM (i.e. with the overheads of
running shrunk included). The average slowdown in Figures [2(a)] 2(b)} and [2(c)|
are equal to 3.5,3.16 and 2.5 time units respectively. The utilization of the sys-
tem is usually addressed as the percentage of CPUs that are busy running jobs.
As we are concerned only when there are jobs in the wait queue, we will use
the fragmentation concept instead (see formula (2])). In the example provided
in introduction, the fragmentation values are equal to 30% for Figures and

2(b)land 0% for [2(c)|

WaitTime + ExecutionTime

Slowdown = 1
FExecutionTimeFExpanded (1)
t=start to termination
whenWaitQueueNotEm freeCPUs

Fragmentation = 2 uhenw f@ NotEmpty (2)

WorkloadT otalTime x TotalC PU s

A Job Scheduling Approach for Multi-core Clusters Based on VM 197

3.2 Runtime System Implementation

Let us now describe the runtime system and relevant details of implementation of
the experimental framework. The runtime system is composed by a job scheduler
(JS) and a runtime library. The JS receives as input a trace file and the JSS to
apply. The trace file has identifications of the jobs, their arrival times and the
number of requested CPUs [4]. The JS tracks information about node allocation,
jobs in the wait queue, and already finished jobs.

The implementation of FCFS-malleable uses a library (VM library) that im-
plements the concept of VM. The VM library was constructed using the Message
Passing Interface [2], MPI, interposition mechanism. MPI was selected for being
the most widely used and for its portability across shared and distributed memory
architectures. The VM library is linked dynamically with jobs and communicates
with the JS via TCP/IP sockets. This avoids the necessity of job recompilation.
The library is in charge of CPU allocation and scheduling of processes. Process
migrations are only allowed within a node and when VM is applied. Otherwise,
processes remain binded to their assigned CPUs. The whole mechanism is trans-
parent to the user. A job is said to run shrunk when is executed on a CPUs par-
tition smaller than its number of processes. Processes belonging to the same job
compete with themselves for the use of CPUs. A job is said to run expanded when
is executed on a CPUs partition equal to its number of processes.

The scheduling of processes on a CPU is done by applying implicit coschedul-
ing (see Section [for more details): only local knowledge (e.g. local communi-
cation events) is taken into account to make scheduling decisions. In particular
Self co-scheduling [25] is applied. A running process yields the CPU and blocks
immediately every time it executes a blocking operation (e.g. wait for a message
that has not arrived yet). This type of scheduling promotes the overlapping of
communication and computation phases.

The experiments were performed on a multi-core cluster with 10240 IBM
Power PC 970MP cores at 2.3 GHz (2560 JS21 blades), 20 TB of main memory,
2510 nodes, and interconnection networks: Myrinet and Gigabit Ethernet. The
operating system is Linux: SuSe Distribution. Each node has 4 cores sharing
memory and each L2 cache is shared by every 2 cores.

4 Simulator

An event-driven simulator was constructed to extensively evaluate and compare
JSSs. The simulator uses trace files in format of [4] as input and output. The
following information about jobs is required to do the simulations: execution
time, requested CPUs, requested time, CPU utilizationd. Notice that FCFS-
malleable may vary the number of CPUs of jobs at runtime. Thus, for FCFS-
malleable we know only the expanded execution time of jobs. Next we provide a
model to estimate the execution time of jobs when VM is applied to them.

2 The field ”CPU utilization” is used only by FCFS-malleable. In this work we refer
to CPU utilization of a job to the average CPU time used by all its processes. That
is the time when the CPU is doing useful work (i.e. computation).

198 G. Utrera et al.

Formula (B]) arises from empirical observations. It estimates the execution
time of a job when it runs isolated on different number of CPUs using the VM
library. The value of MPL can vary during the execution time and is greater
than 1 every time the job runs shrunk and is equal to 1 every time the job runs
expanded. The parameter C PUUtil is the percentage of CPU utilization when
the job runs expanded. The parameter execTime corresponds to the expanded
execution time of the job. The parameter OV represents the overhead generated
by the contention suffered when using the interconnection network. In our simu-
lations, OV was set to random values between 0 and 1 as trace files have neither
information about the communication-computation ratio nor the message sizes.
We validated the proposed model by comparing results of simulations with real
executions of several synthetic workloads.

estimated]splatedExecTime = 3)
t=termination o vecTime x MPL(t) « CPUUil

t=start

Our final model is described by formula (@]).

estimatedExecTime = estimatedl solated ExecTime-+
execTime x OV

(4)

4.1 Validation of the Simulator

A synthetic workload trace was constructed to validate the simulator by applying
the model in [I7]. The trace was adjusted to have 150 jobs to be launched during
2 hours with average machine loads from 30% to 90%.

Table 1. Comparison of average wait times, response times and slowdowns between
simulator and runtime system

EASY backfilling FCFS-malleable
Avg wait Avgresp Avgsld Avgwait Avgresp Avgsld
%load S R S R S R S R S R S R
30 55.0 60.0 107.0113.0 2.1 2.1 16 1.3 735 733 12 14
50 69.6 74.0 121.3 125.0 6.5 6.5 13.2 13.8 93.5 93.0 3.2 3.2
70 93.0 100.0 145.2 152.0 10.7 10.3 36.8 32.0 118.3 113.0 6.0 5.7
90 175.0 162.0 228.0 214.0 19.0 16.0 118.0 111.0 220.0 198.9 10.8 9.6

In order to execute the trace generated with [17] in the runtime system, we
substituted applications in the trace for real applications. Applications in the
trace were matched according to their execution time and number of processes.
In this way interarrival times were kept with the same characteristics as of the
original trace. We used the NAS Parallel Benchmarks [3] classes A, B, C and D
and number of processes varying from 1 to 128. We chose these benchmarks as
they include widely used kernels. We executed the synthetic traces under FCFS-
malleable and EASY backfilling JSSs both on simulator and runtime system.
Table[dl provides the average waiting time, response time and slowdown obtained

A Job Scheduling Approach for Multi-core Clusters Based on VM 199

with the simulator (S) and with the real execution (R). The average relative error
of the simulator compared to the runtime system is equal to 7%. Considering
that the average gain of FCFS-malleable over EASY backfilling in the runtime
system is around 30% we concluded that this error is acceptable.

5 Results and Analysis

Cleaned traces from Parallel Workload Archive [] were used in our experiments.
A cleaned trace does not contain flurries of activity by individual users which
may not be representative of normal usage. Table 2] summarizes the workloads
characteristics.

The columns show the names of the used workloads, total number of CPUs
in the machine, number of jobs in the workload, average CPU utlization, aver-
age CPU utilization by long jobs and the ratio between the average number of
requested CPUs by the machine capacity. For example, the workload in figure [I]
has this ratio equal to 2. We have classified long jobs as the ones with number
of processes greater than 64 and execution times greater than 8 hours and short
jobs as the ones with execution times less than 10 minutes.

Table 2. Description of the workload log traces used for simulation

Workload Cpus Jobs Avg CPU Util Avg long jobs CPU Util Req.Cpus/Cpus

CTC 430 20K-25K 57 % 70% 5.8
SDSC Blue 1152 20K-25K 23 % 70% 3.8
SDSC 128 40K-45K 66 % 90% 8.8

The CTC trace contains records from IBM SP2 located at the Cornell Theory
Center. SDSC and SDSC Blue traces are from the San Diego Supercomputing
Center. We now present the experimental results obtained from simulations using
the workloads traces from Table

5.1 Experimental Results

Figures |3(a)), [3(b)}, [3(c)| and |3(d)| show the average wait time, execution time,
response time and slowdown respectively for CTC, SDSC and SDSC Blue work-
loads under FCFS-malleable and EASY backfilling J ssdd.

FCFS-malleable JSS obtained better average response time in all the traces,
especially in trace SDSC Blue. This workload contains jobs with low CPU uti-
lization, which leads to higher degree of overlap of communication and commu-
nication. In addition, this workload has no sequential jobs, thus all the jobs are
eligible for applying VM.

3 Variations of backfilling policies are used in most of the Top50 machines[I2]. EASY
backfilling is used as a reference for performance comparison in almost every job
scheduling research. That is why we chose EASY backfilling for our comparisons.

200 G. Utrera et al.

As it was expected, average execution times are larger under FCFS-malleable
due to the reduction on the number of CPUs. However, these execution times
are not twice larger than the execution times in EASY backfilling.

FCFS-malleable obtains substantially better average slowdowns in CTC and
SDSC Blue but not in SDSC. This means that the performance of short jobs
is degraded in that workload. Analyzing this penalization we found that it was
due to the strong presence of sequential jobs and the high CPU utilization of
long jobs. EASY backfilling outperformed FCFS-malleable only on jobs with
execution time less than 3 minutes and number of processes less than 16. EASY
backfilling failed to find a suitable hole to forward long sequential jobs or with
high degree of parallelism. This study can be found in [26].

50000 14000 | mEASY-backfilling -
- B EASY-backfilling v 12000
L g I FCFS-malleabl
@ 40000 -— . FCFS-malleable £ matieable
£ < 10000 -
5
% 30000 g 8000 |
S o
o 20000 — ¢ 6000 - —
‘D.P [
- [4 4 -
5 10000 — g 000
o 2000 -+ —
. = 2
0 < 0 ‘
CTC SDSCBlue SDSC CTC SDSCBlue SDSC
(a) Average wait time (b) Average execution time
__ 50000 350
= M EASY-backfilling 200 m EASY-backfilling
- c +— — —
g 40000 — FCFS-malleable s FCFS-malleable
= S 250 —
T
/]
2 30000 — 3 200 -
g_)
g 20000 - — g 150 —
g g 100 —
¥ 10000 - l — 2, B
I 0 - o -
CTC SDSCBlue SDSC CTC SDSCBlue SDSC
(¢) Average response time (d) Average slowdown

Fig. 3. Average wait, execution, response time and slowdown for CTC, SDSC and
SDSC Blue under FCFS-malleable and Easy backfilling

The CPU utilization for long jobs is the highest for the SDSC workload (see
Table[2]). We re-simulated the SDSC workload trace varying the average value of
CPU utilization of long jobs between 60% and 100%. We observed that for long
jobs with CPU utilization under 90% the average slowdown for FCFS-malleable
is smaller than for EASY backfilling. Due to lack of space we omitted that study
here, but it can be found in [26].

A Job Scheduling Approach for Multi-core Clusters Based on VM 201

Table 3. Average MPL

Workload EASY backfilling FCFS-malleable

CTC 0.75 0.91
SDSC Blue 0.76 0.98
SDSC 0.89 1.47

FCFS-malleable managed to eliminate fragmentation in all the workloads
while EASY backfilling had fragmentation percentages from 6 for CTC to 14 for
SDSC. Table 3 shows the average MPL of the three workloads for EASY back-
filling and FCFS-malleable. MPL was calculated by averaging the total number
of processes in the system per CPU. FCFS-malleable has average MPL below
2 (the maximum). This means that the workloads have variations so that jobs
could expand from time to time decreasing in this way the average value of MPL.
The value of the average MPL for the SDSC trace means that half of the CPUs
run shrunk jobs all the time.

6 Conclusions and Future Work

In this work we proposed a new job scheduling strategy (JSS) for multi-core clus-
ters: FCFS-malleable. Evaluations on the target architecture were carried out
using a job scheduler and a runtime system implemented for that purpose. In ad-
dition, to extend evaluations to workloads from production systems, a simulator
was constructed. Experimental results showed that FCFS-malleable outperforms
EASY backfilling by 28% in average slowdown and by 31% in average response
time. In addition, our JSS reduces fragmentation thanks to its capability to
adapt jobs to available resources by shrinking and expanding them.

Although in this work we compete with backfilling, our JSS can be combined
with it to take the most of both strategies. We are currently evaluating this
approach. Memory bandwidth was not taken into account in the current study.
We are working on an accurate estimation of the overhead caused by limited
memory bandwidth.

Acknowledgements. This work was supported by the Ministry of Science and
Technology of Spain under contracts TIN2007-60625, TIN2006-01078, TIN2010-
16144 and Juan de la Cierva and the postdoctoral contract funded by the Uni-
versity of Malaga.

References

1. Marenostrum, http://www.bsc.es/marenostrum-support-services

2. MPI library, http://www.mcs.anl.gov/research/projects/mpi/

3. NAS Parallel Benchmarks,
http://www.nas.nasa.gov/Resources/Software/npb.html

4. Parallel workload archive, http://www.cs.huji.ac.il/labs/parallel/workload/

5. Top500 supercomputers sites, http://www.top500.o0rg/

http://www.bsc.es/marenostrum-support-services
http://www.mcs.anl.gov/research/projects/mpi/
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.top500.org/

202

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

G. Utrera et al.

Arpaci-Dusseau, A.C.: Implicit coscheduling: coordinated scheduling with implicit
information in distributed systems. ACM Trans. Comput. Syst. 19, 283-331 (2001)
Buisson, J., Sonmez, O., Mohamed, H., Lammers, W., Epema, D.: Scheduling
malleable applications in multicluster systems. In: Proc. of the IEEE International
Conference on Cluster Computing 2007, pp. 372-381 (2007)

Cera, M.C., Georgiou, Y., Richard, O., Maillard, N., Navaux, P.O.A.: Support-
ing Malleability in Parallel Architectures with Dynamic CPUSETs Mapping and
Dynamic MPI. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.)
ICDCN 2010. LNCS, vol. 5935, pp. 242-257. Springer, Heidelberg (2010)

Cirne, W., Berman, F.: Using moldability to improve the performance of super-
computer jobs. J. Parallel Distrib. Comput. 62, 1571-1601 (2002)

Downey, A.B.: A model for speedup of parallel programs. Technical report, Uni-
versity of California at Berkerley (1997)

El Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Dynamic malleabil-
ity in iterative MPI applications. In: Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid, CCGRID 2007, pp. 591-598.
IEEE Computer Society, Washington, DC (2007)

Ernemann, C., Krogmann, M., Lepping, J., Yahyapour, R.: Scheduling on the Top
50 Machines. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2004. LNCS, vol. 3277, pp. 17-46. Springer, Heidelberg (2005)

Feitelson, D.G., Rudolph, L.: Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing 16(4), 306-318
(1992)

Feitelson, D.G., Rudolph, L.: Toward Convergence in Job Schedulers for Parallel
Supercomputers. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP
1996. LNCS, vol. 1162, pp. 1-26. Springer, Heidelberg (1996)

Iancu, C., Hofmeyr, S., Zheng, Y., Blagojevic, F.: Oversubscription on multicore
processors. In: 24th International Parallel and Distributed Processing Symposium
(IPDPS), pp. 1-11 (2010)

Lifka, D.A.: The ANL/IBM SP Scheduling System. In: Feitelson, D.G., Rudolph,
L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295-303. Springer,
Heidelberg (1995)

Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: Modeling
the characteristics of rigid jobs. Journal of Parallel and Distributed Computing 63,
2003 (2001)

McCann, C., Zahorjan, J.: Processor allocation policies for message-passing par-
allel computers. In: Proceedings of the 1994 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 1994, pp. 19-32.
ACM, New York (1994)

Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Transactions
on Parallel and Distributed Systems 12(6), 529-543 (2001)

Padhye, J., Dowdy, L.W.: Dynamic Versus Adaptive Processor Allocation Policies
for Message Passing Parallel Computers: An Empirical Comparison. In: Feitelson,
D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp.
224-243. Springer, Heidelberg (1996)

Sodan, A.C., Jin, W.: Backfilling with fairness and slack for parallel job scheduling.
Journal of Physics: Conference Series 256(1), 012-023 (2010)

22.

23.

24.

25.

26.

27.

28.

A Job Scheduling Approach for Multi-core Clusters Based on VM 203

Subotic, V., Labarta, J., Valero, M.: Simulation environment for studying overlap
of communication and computation. In: 2010 IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS), White Plains, NY, pp.
115-116 (March 2010)

Sudarsan, R., Ribbens, C.J.: Scheduling resizable parallel applications. In: Inter-
national Parallel and Distributed Processing Symposium, pp. 1-10 (2009)

Utrera, G., Corbaldn, J., Labarta, J.: Implementing malleability on MPI jobs.
In: Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques, PACT 2004, pp. 215-224. IEEE Computer Society,
Washington, DC (2004)

Utrera, G., Corbaldn, J., Labarta, J.: Scheduling of MPI Applications: Self-co-
scheduling. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004.
LNCS, vol. 3149, pp. 238-245. Springer, Heidelberg (2004)

Utrera, G., Tabik, S., Corbalan, J., Labarta, J.: A job scheduling approach to
reduce waiting times. Technical report, Technical University of Catalonia, UPC-
DAC-RR-2012-1 (October 2011)

Wiseman, Y., Feitelson, D.G.: Paired gang scheduling. IEEE Transactions on Par-
allel and Distributed Systems 14(6), 581-592 (2003)

Zhang, Y., Sivasubramaniam, A., Moreira, J., Franke, H.: A simulation-based study
of scheduling mechanisms for a dynamic cluster environment. In: Proceedings of the
14th International Conference on Supercomputing, ICS 2000, pp. 100-109. ACM,
New York (2000)

	A Job Scheduling Approach for Multi-core Clusters Based on Virtual Malleability
	Introduction
	Related Work
	The FCFS-Malleable Job Scheduling Strategy
	FCFS-Malleable Algorithm
	Runtime System Implementation

	Simulator
	Validation of the Simulator

	Results and Analysis
	Experimental Results

	Conclusions and Future Work
	References

