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Abstract. The relay encoder is an unreliable probabilistic device which is 
aimed at helping the communication between the sender and the receiver. In 
this work we show that in the quantum setting the probabilistic behavior can be 
completely eliminated. We also show how to combine quantum polar encoding 
with superactivation-assistance in order to achieve private communication over 
noisy quantum relay channels.  
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1 Introduction 

The relay encoding scheme for classical communication channels was introduced by 
Cover and Gamal [1]. The relay encoding with classical polar coding was studied by 
Andersson et al. [2], using their nested polar relay channel codes. Here we show that 
relay encoding can also be used in the quantum setting to achieve enhanced private 
communication [11] between the sender and receiver. Our two main goals can be 
summarized as follows: First, by constructing capacity-achieving quantum polar 
codes we would like to maximize the transmittable private classical information over 
the quantum relay channel. Second, we would like to prove that using 
superactivation-assistance [5] the reliability of the quantum relay encoder can be 
maximized and the probabilistic behavior can be completely eliminated.  

This paper is organized as follows: In Section 2 we discuss the proposed encoding 
scheme. In Section 3 we show the quantum relay encoder. In Section 4 we present the 
theorems and proofs. Finally, in Section 5, we conclude our results.  

2 Our Private Encoding Scheme 

The channel polarization scheme introduced by Arikan [3] makes it possible to 
achieve the symmetric capacity of a noisy communication channel. The symmetric 
capacity is the highest rate at which the channel can be used for communication if the 
probability of the input letters is equal [3-5]. The polar coding technique was 
extended to secure communication over classical channels by Mahdavifar and Vardy 
[4]. The quantum polar coding scheme was studied by Wilde and Guha [6] and by 
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Renes et al. [7]. Later, the results of [7] were extended by Wilde and Renes [13], [21] 
for arbitrary quantum channels. Gyongyosi and Imre have given a solution for the 
polaractivation of private classical capacity of noisy quantum channels [12,16]. The 
superactivation is an extreme violation of the additivity of quantum channel 
capacities and enables the use of zero-capacity quantum channels for communication 
[5],[14], [17-19]. In this work we show, that this effect can also be exploited. The 
relay encoder is placed between the Alice and Bob and intended to help Bob receiving 
messages from Alice [1].  

The channel which contains an 2  relay encoder between Alice and Bob is called 

the relay channel [1]. In case of a degraded relay channel, the relay receiver 2  works 

better than Bob’s receiver   and the relay encoder can cooperate with original 
encoder 1  to help to decode the message on Bob’s side [1], [2]. In our scheme we 

use polar encoding to achieve the private classical capacity.  
For a quantum channel   the symmetric classical capacity is equal to the 

quantum mutual information ( ):I A B  [10], [15], [20],    

( ) ( )1
lim max :

n

sym
n

C I A B
n

⊗

→∞
= ,                                         (1) 

where n⊗  denotes the n channel uses, and the probability distribution of the input 
states is assumed to be uniform [3], [6]. The symmetric private classical capacity [11], 
[15] can be expressed as follows:  

( ) ( ) ( )( )1
lim max : :

n

sym
n

P I A B I A E
n

⊗

→∞
= − ,                      (2) 

where ( ):I A E  is the quantum mutual information function assuming a symmetric 

channel between Alice and Eve.  
In Fig. 1, we depict our encoding scheme [12]. Alice encodes her private message 

M into the phase using the X basis and then into the amplitude using the Z basis [12]. 
The phase carries the data, while the amplitude is the key for the encryption i.e., in 
our scheme Alice first encodes the phase (data) and then the amplitude (key). Bob 
applies it in the reverse direction using his successive and coherent decoder, and 
finally gets M ′  as follows [7], [8]: he first decodes the amplitude (key) information 
in the Z basis [10]. Then Bob continues the decoding with the phase information, in 
the X basis [10]. According to our encoding scheme, the symmetric private classical 
capacity symP  is defined as  

( ) ( ) ( )( )

( )( ) ( )
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where ( )⋅S  is the von Neumann entropy function, while 

( ) ( ) ( ) ( ):I A E A E H AE= + −S S  stands for the mutual information function 

between Alice and Eve, and ( ). :phase
symI A B  is the symmetric mutual information that 

can be achieved by the phase information between Alice and Bob [3], [12], [15]. 

Phase

Amplitude

1

Key
(Amplitude, Z)

Data
(Phase, X)

Alice Bob

Eve’s channel
(E)

Quantum channel

M M’Aρ Bρ

Eρ

Data
(Phase, X)

Key
(Amplitude, Z)

 

Fig. 1. Private communication of Alice and Bob over a quantum channel in presence of an 
eavesdropper Eve. The quantum channel has positive private classical capacity if it can send 
both phase and amplitude. 

To construct the input polar codeword sets, we use the notation of ‘good’ 

( ), β   and ‘bad’ ( ), β  , where 0.5β <  [3] channels for the transmission of 

phase and amplitude. The inS  set of polar codewords which can transmit private 

information (both amplitude and phase) is denoted by: 

( ) ( ), ,in amp phaseS β β= ∩    .                            (4)   

All of other input codewords cannot transmit private classical information, however 
some of them can be used to transmit non private classical information. These 
codewords are defined by the set badS  as follows:   

( ) ( )( )
( ) ( )( )
( ) ( )( )

, ,

, ,

, , .

bad amp phase

amp phase

amp phase

S β β

β β

β β

= ∩ ∪

∩ ∪

∩

   

   

   

                                      (5) 

From set badS , we define the completely useless codewords which cannot transmit 

any classical information as  

( ) ( ), ,amp phaseβ β= ∩     ,                          (6) 

while the ‘partly good’ (i.e., can be used for non private classical communication) 
input codewords will be denoted by  
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( ) ( )1 , ,amp phaseβ β= ∩                              (7) 

and  

( ) ( )2 , ,amp phaseβ β= ∩     ,                          (8) 

where 0.5β <  is a fixed constant [3]. The working process of the polar-encoding 

based quantum relay encoder 2  can be summarized as follows: The first encoder 1  

encodes the phase information into the codeword A and then sends it to 2 , using set 

( ),phase β  . In the next step, the quantum relay encoder 2  with probability 
2

p  

adds the amplitude information to the phase information, using polar codes from the 

set ( ) 2, \phase β   , and then sends it to Bob. Otherwise, with probability ( )
2

1 pε−  

it leaves unchanged ( ),phase β   and transmits to Bob. The problem with the 

quantum relay encoder 2  is that it is unreliable since it works in a probabilistic way, 

which also makes the channel 
2 

  too noisy.   

3 Our Quantum Relay Encoder 

Our proposed quantum relay encoder 2  is depicted in Fig. 2. Alice would like to 

send her l-length private message M to Bob. The first encoder 1  can encode only 

phase information, while the quantum relay encoder 2  can encode only amplitude 

information. The quantum relay encoder 2  can add the amplitude information to the 

message A received from 1  only with success probability 
2

0 1p< < . In the first 

step, her encoder 1  outputs the n-length phase encoded message A. The second 

encoder 2  gets input on the channel output B′ , which will be amended with 

amplitude information. The relay quantum encoder 2  outputs A′  to the channel, and 

Bob will receive message B. The goal of the whole structure is to help Bob’s encoder 
 , by the quantum relay encoder 2  to cooperate with 1 , to send the private 

message M from Alice to Bob. The quantum relay channel 
1 2   , which includes 

Alice’s first encoder 1  and the relay encoder 2  is defined as 
1 2 1 2 2

=         , 

where 
1 2   is the quantum channel between encoder 1  and the quantum relay 

encoder 2 , while 
2 

  is the quantum channel between the quantum relay encoder 

2  and Bob’s decoder  .  
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Fig. 2. The quantum relay channel with the relay encoder. The first encoder encodes only phase 
information, the second adds only the amplitude information. The quantum relay encoder is not 
reliable, it works with success probability 

2
0 1p< < . 

For a degradable quantum relay channel 
1 2   , the channel 

1 
  is noisier than 

1 2 1 2 2
=         . The 

1 2    quantum relay channel is noisy due to the unreliable 

quantum relay encoder 2 . Using our quantum polar codeword sets from (4), (6), (7) 

and (8) the security of the scheme is guaranteed, since the transmitted codewords on 
channels 

1 2   and 
2 

  are: 

( )
( ) ( )

1 2

2

2: , ,

: , , .

phase in

amp phase in

S

S

β

β β

= ∪

∩ =

 

 

    

    
                             (9) 

which means, that the outputs of 1  and 2   are those polar codewords which will be 

completely useless for Eve. From the polar scheme 2 0=   [7], [13], while the polar 

set inS  is also useless for Eve, which trivially follows from (6). Assuming a degraded 

quantum relay encoder 2 , the following probabilities hold for the relay quantum 

channel 
1 2   : 

( ) ( ) ( ), , , ,p B B A A p B A A p B B A′ ′ ′ ′ ′ ′= ,                               (10) 

where ( )A A B B′ ′→ →  is a Markov chain and ( ) ( ), , ,p B B A A p B B A′ ′ ′ ′= . The 

symmetric classical capacity of quantum relay channel 
1 2   , assuming encoders 1  

and 2 , and decoder   can be expressed as  

( )
( )

( ) ( ){ }
( ) ( )

1 2 ,
max min , : , :

: , : ,

sym
p A A

C I A A B I A B A

I A B B A I A B A

′
′ ′ ′=

′ ′ ′ ′= =

  
                (11) 
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which is equivalent to the following definition. Let be the classical capacity of the 

channel between encoder 1  and quantum relay encoder 2  is ( )
1 2symC   , while 

between 1  and   without quantum relay encoder 2  is ( )
1symC    and between 

2  and   is ( )
2symC   . Using these channels, the capacity ( )

1 2symC     of 

1 2    can be calculated as 

( ) ( ) ( ) ( )( ){ }1 2 1 2 1 2
min ,sym sym sym symC C C C= +            .              (12) 

Our quantum relay encoder differs from the classical relay encoder scheme of [1], [2]. 
The 2  quantum relay encoder outputs codeword 

( )( ) ( ) ( )
2 22, \ 1 , ,phase phaseB p pε εβ β= + −                         (13) 

with ( )( )
2 2, \phaseB pε β=    or ( ) ( )

2
1 , ,phaseB pε β= −    where 

2
pε  is the 

success probability of the quantum relay encoder 2 . Finally, Bob decodes the 

message using set ( ) 2, \phase β   . If Bob received ( ),phaseB β=    from the 

quantum relay encoder 2 , then the decoding process fails—this occurs with 

probability ( )
2

1 pε− . As we will prove, using superactivation-assistance in the relay 

channel 
1 2   , the reliability of 2  will be

2
1pε = ; however, the rate of private 

communication will be lower, which will result in the codeword  

( )*
2, \ .phaseB β=                                     (14) 

with ( )( )*
2

1
, \ .

2 phaseB β=     For the rate of private communication, any 

benefits from the superactivation-assistance can be exploited if and only if 

2
0 0.5pε< < , since in that case *B B> . As follows, we will assume an unreliable 

quantum relay encoder with success probability 
2

0 0.5pε< < . The achievable 

symmetric classical capacities can be summarized as follows: The symmetric classical 
capacity between Alice and the quantum relay encoder 2  is 

( ) ( )
1 2

1
lim ,sym phase
n

C
n

β
→∞

=    . The symmetric classical capacity between Alice 

and Bob with no relay encoder 2  assistance is ( ) ( )
1 2

1
limsym
n

C
n→∞

=   . From these 

results follows that the symmetric private capacity ( )
2symP    can be expressed as 

( ) ( ) ( )
2 1 2 1sym sym symP C C= −        ,                                    (15) 
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thus for the channel between the quantum relay encoder 2  and Bob, the achievable 

symmetric private classical capacity is  

( ) ( )( )2 2

1
lim ,sym phase
n

P
n

β
→∞

= −     ,                      (16)  

which is equal to 

( ) ( )( ) ( )( )
2 .

1 1
lim , , lim .sym phase amp in
n n

P S
n n

β β
→∞ →∞

= ∩ =                (17) 

The private capacity which can be achieved over the quantum relay channel 
1 2    

with the combination of the superactivation-assistance and polar encoding will be 

referred to as ( )
1 2

*
symP    . Using the first encoder 1 , we will get ( )

1 2
0symC >  , 

however ( )
1 2

0symP =  , since 1  can encode only phase information. The relay 

encoder 2  adds amplitude information to the phase information, thus 

( )
2

0symC >  . Since for any input A received from 1  the channel 
2 

  also has 

positive private capacity ( )
2

0symP >  , which can be achieved only with success 

probability 
2

0pε > .  

4 Theorems and Proofs 

In this section we present the theorems and give the proofs. Our result on the 
reliability of the proposed quantum relay encoder is summarized in Theorem 1.  

 
Theorem 1. Using the unreliable quantum relay encoder 2  with 

2
0 0.5pε< < , the 

superactivation-assisted private classical capacity ( )
1 2symP     of the quantum relay 

channel 
1 2    will be positive and the reliability of the quantum relay encoder 

equals to 
2

1pε = . 

Proof: First, Alice generates codeword A with 1 . In the next step, she transmits it 

over 
1 2   and feeds B′  into 2 , which will result in A′ . It will be transmitted over 

2 
 , which will result in Bob’s input B. For positive private classical capacity 

0symP > , both the phase and the amplitude have to be transmitted; however, the 

encoders 1  and 2  individually cannot encode both of them. Using channel 
2 

  

between 2  and  , for the superactivation of we define the following channel   

( )
2

0 0 1 1 1ep p= ⊗ + − ⊗    ,                          (18) 
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where 0 1p≤ ≤  and e  is the 50% erasure channel [5]. The channel with 

probability p is a 
2 

  channel (i.e., an 
1 2 1 2 2

=          channel, since the 

encoder 1  is applied before channel 
2 

 ), otherwise, with probability ( )1 p− , it is 

an 50% erasure channel, which also has zero private capacity, i.e., ( ) 0eP = . To 

superactivate the joint construction of 1 2⊗  , Alice will feed the following 

entangled system to the inputs (denoted by A and C) of the joint channel [5]:  

( )
1 1 1 1

1
0 0 0 0 0 0 0 0

2AC A C A C
ρ + += ⊗ + ⊗ ⊗ Ψ Ψ ,                  (19)  

where ( )1
00 11

2
+Ψ = + is a Bell-state. The cohI  quantum coherent information 

of 1 2⊗   for the input system ACρ  is ( ) ( ) ( )
1 21 2 2 1coh cohI p p I⊗ = −       

[5], from which follows that for the private classical capacity of 1 2⊗  , 

( ) ( ) ( )
1 21 2 2 1symP p p P⊗ ≥ −      , where ( )

1 2cohI     is the coherent 

information of channel 
1 2   , and 0 1p< < . The lower bound on the achievable 

superactivated symmetric private classical capacity of 1 2⊗   is 

( ) ( )
1 21 2

1

2sym cohP I⊗ ≥      . Using ( ) ( )
1 2 1 2sym cohP I=       , we get the 

following lower bound for the P symmetric private classical capacity of 1 2⊗  : 

( ) ( )
1 21 2

1

2sym symP P⊗ ≥      ,                                   (20) 

thus for our encoding scheme ( ) ( )
1 21 2

1

2sym symP P⊗ =      . The required 

condition ( ).
. : 0amp

symI A B >  for the positive private capacity ( )
1 2

P     of the relay 

channel 
1 2     is also satisfied. Finally, the superactivation-assisted private classical 

capacity ( )1 2P ⊗   of  1 2⊗   is evaluated as follows: 

( ) ( ) ( )( )
( )( ) ( )

( ) ( )

1 2 .

0 1 0

1

1
: :

2

2 21
,

2    2 :

phase
sym sym

phase phase phase

phase

P I A B I A E

I A E

σ σ σ

σ

⊗ = − =

 + −
 
 − − 

 

S S

S

                    (21) 

which is the half of the private classical capacity ( )
1 2

P    , that can be achieved 

over 
1 2    if 

2
1pε = . The following result concludes our proof, since 
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( ) ( )
2 1 2 1 2

1

2sym symp P Pε <       , if the 
2

pε  initial success probability of encoder 2  

was between 
2

0 0.5pε< < .                  ■ 

 
In case of  

2
0 0.5pε< <  then the superactivation-assistance of 2  can enhance the 

reliability the private classical communication over 
1 2    using the quantum relay 

encoder 2 . Assuming asymptotic limit with n → ∞ , for the superactivation-assisted 

private classical capacity of 1 2⊗   the following relation holds: 

( ) ( )1 2 1 2 .
n

sym symP P
⊗⊗ ≥ ⊗                                 (22) 

Next we show that with the help of the combination of quantum polar encoding and 
superactivation-assistance the private capacity of 

1 2    can be achieved. The joint 

channel construction 1 2⊗   realizes the quantum relay encoder 2  with 
2

1pε = . 

Using this scheme, the rate of private communication between Alice and Bob can be 
increased if initially the 

2
pε success probability of  2   was 

2
0 0.5pε< < , while the 

reliability of the quantum relay encoder can be maximized to the 
2

1pε = . We use the 

same channel   as defined in (18), but in this case, instead of applying ACρ  in (19) 

Alice feeds to the inputs of 1 2⊗   an arbitrary quantum system ( ),phaseρ β∈   

(assumed being symmetric in A and C, which will result in 

1 2 1 2e e⊗ = ⊗         ). Using our polar set construction the result of Theorem 2 

is satisfied for the quantum relay encoder. 
 
Theorem 2. Using superactivation-assisted polar coding and a degraded quantum 

relay encoder 2  with 
2

0 0.5pε< <  and input ( ),phaseρ β∈  , for the 

superactivation-assisted private capacity ( )
1 2

*
symP     and the symmetric private 

classical capacity ( )
1 2symP     hold that ( ) ( )

1 2 1 2

*1 1

2 2sym symP P>       .  

Proof: For the input system, the quantum coherent information of 1 2⊗   is 

evaluated as follows:  

( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

2
1 2

1 1

1 ,

coh coh

coh coh

coh e e

I p I

p p I p p I

p p I

⊗ = ⊗

+ − + −

+ − ⊗

     

     

   

 

 

                        (23) 

where ( ) 0coh e eI ⊗ =   and ( )
1 2 1 2

0cohI ⊗ =       , since e e⊗   is a 

symmetric channel [5], while ( )
1 2 1 2

0cohI ⊗ =       , since quantum relay encoder 
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2  can add the amplitude information to the phase information received from 1  in 

message A only with probability 
2

0 0.5pε< < . (The relay channel 
1 2    can 

transmit quantum information only with probability 
2

pε ; otherwise it produces an 

output σ , which will result in zero quantum coherent information.) It trivially leads 

to zero quantum capacity ( )
1 2 1 2

0Q ⊗ =       , since to achieve positive quantum 

capacity 
2

0.5pε >  is required.              ■ 

 
The main result on the combination of superactivation-assistance and our quantum 
polar coding scheme is summarized in Theorem 3.  

 
Theorem 3. Using the superactivation-assisted quantum relay channel 

1 2   , the 

reliability of any 2  will be the maximal 
2

1pε =  and the symmetric private classical 

capacity will be lower bounded by ( )*
1 2

1 1
lim

2sym inn
P S

n→∞

 ⊗ ≥  
 

  . 

Proof: Assuming a quantum relay encoder 2  with reliability 
2

pε , this result reduces 

to ( )
2 2

.symp Pε    Using the channel structure 1 2⊗   constructed for the 

superactivation of quantum relay encoder 2 , using the result obtained in (23),  

( ) ( ) ( )
1 21 2 2 1coh cohI p p I⊗ = −                                       (24) 

where 0 1p< <  and ( )
1 2

0cohI >   , combining with  

( ) ( )
1 2

*
1 2

1

2sym symP P⊗ ≥                                              (25) 

and using ( ) ( )
1 2 1 2sym cohP I=       , lead us to the following result regarding the 

symmetric private classical capacity of superactivation-assisted polar encoding-based 

quantum relay channel 
1 2   : ( ) ( )

1 2

*
1 2

1
.

2sym symP P⊗ ≥       In the asymptotic 

limit with n → ∞ , the following lower bound holds: 

( ) ( )* *
1 2 1 2

1 1
lim .

2
n

sym sym inn
P P S

n

⊗

→∞

 ⊗ ≥ ⊗ ≥  
 

                         (26) 

For the polar-coding based superactivation of relay encoder 2  our proof is concluded 

as follows: 

( ) ( )( ) ( )( )

( ) ( )

*
1 2 .

* *
1 2 1 2

1 1
lim , , ,

2

1 1
lim ,

2

sym phase amp
n

sym sym in
n

P
n

P P S
n

β β
→∞

→∞

 ⊗ ≥ ∩ 
 

 ⊗ ≥ ⊗ ≥  
 

     

   
            (27) 
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where ( )
1 2

1
lim in sym
n

S P
n→∞

≥    , since the maximum of the rate of any private 

communication over the relay channel 
1 2    cannot exceed 

1
lim
n n→∞ inS , which 

concludes our proof. For the output *B  of the superactivation-assisted quantum relay 
channel 

1 2   :   

( )( ) 2

*
2

1 1
, \

2 2phase in inB S B p Sεβ= = > =    ,                   (28) 

i.e., if 
2

0 0.5pε< <  the ( )
1 2symP     private capacity of 

1 2    can be achieved by 

the combination of the proposed polar coding scheme and the superactivated relay 
channel 

1 2   .                 ■ 

5 Conclusion 

In this paper we have shown that by combining the polar coding with superactivation-
assistance, the reliability of the quantum relay encoder can be increased and the rate 
of the private communication over the superactivation-assisted relay quantum channel 
can be maximized at the same time. The proposed encoding scheme can be a useful 
tool in private quantum communications. 
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