
Stream Automata Are Coalgebras�

Vincenzo Ciancia and Yde Venema

Institute of Logic, Language and Computation, University of Amsterdam

Abstract. Stream automata (also called ω-automata) and ω-regular
languages are of paramount importance in Computer Science and Logic.
A coalgebraic treatment of these structures has not been given yet. We
study a simple two-sorted setting where deterministic Muller automata
can be cast as coalgebras, so that coalgebraic bisimilarity coincides with
language equivalence. From this characterisation, we derive concise and
natural decision procedures for complementation, union, intersection,
and equivalence check.

1 Introduction

Finite state automata and their variants are among the most fundamental struc-
tures in Computer Science. Their applications range over a wide domain, in-
cluding for instance controlling digital circuits, representing languages in formal
language theory, parsing expressions in compilers, model-checking of software
systems. Deterministic finite state automata (DFAs) are possibly the simplest
finite memory machines, although they can represent infinite sets; part of their
usefulness is that set-theoretical operations, such as complementation, union and
intersection of languages can be implemented directly on DFAs.

DFAs are key examples of coalgebras [8]. The crucial observation is that they
admit a universal model, namely the final coalgebra. States of the final coalgebra
represent the regular languages. The most direct consequence of the coalgebraic
presentation is that language equivalence coincides with bisimilarity, yielding a
coinductive proof method to decide language equivalence. Applications range
over a wide domain, including the probabilistic setting [1], and weighted au-
tomata [3].

Stream automata (or ω-automata, see [7] for a comprehensive reference) ac-
cept languages of infinite words. Besides being a fundamental tool in the study
of modal fixpoint logics, they are of vital importance in the field of automated
program verification. There are various kinds of stream automata in the liter-
ature, among which we mention Büchi, parity and Muller automata, in their
deterministic and non-deterministic variants. With the exception of determinis-
tic Büchi automata, all these models accept the same class of languages, namely
the ω-regular ones. The accepting condition is usually expressed in terms of the
set Inf (ρ) of states that are passed infinitely often in a run ρ of the automa-
ton on an infinite word. A coalgebraic formulation of stream automata would
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endow the theory of ω-regular languages with coinduction, a universal model,
and possible generalisations, similarly to DFAs. However, such a characterisation
is non-obvious, since the accepting condition of stream automata has non-local
flavour: it depends on the whole structure of an automaton, not on single states.

In this paper we show that nevertheless it is possible to represent stream
automata as coalgebras. We take Muller automata (DMAs) as the subject of our
investigation, as they can express all the ω-regular languages, even if they are
deterministic. The starting point is a well-known characterisation of ω-regular
languages by their ultimately periodic fragment, that is, the set of infinite words
of the form slω, consisting of the concatenation of a finite word s and a non-
empty word l which is repeated infinitely many times. This result simplifies the
theory of ω-regular languages, as one just needs to study languages of ultimately
periodic words. Such words admit a finite syntactic representation as lassos, that
is, pairs (s, l) representing the word slω.

In [4], Calbrix, Nivat and Podelski proposed to describe the lasso languages
corresponding to Büchi automata using automata over finite words, whose alpha-
bet is augmented with a special symbol “$”. The dollar syntactically represents
the moment when an ultimately periodic word slω starts to repeat l. Well-formed
automata only accept strings with a single occurrence of $, which ought not to
be the last symbol in a word. We continue this program by taking a two-sorted
coalgebraic perspective, that is, we define coalgebras whose state spaces live in a
category of two-sorted structures. This improves on the existing characterisation
as there is no need to augment the alphabet with a special symbol. The “switch”
to the periodic part of a ultimately periodic word is semantically represented by
changing the sort; thus no special conditions on accepted words are needed.

Technically, we present two results. First, we represent Muller automata as
coalgebras for an endo-functor, called Ω, in the functor category Set2. The
representation is such that language equivalence coincides with the coalgebraic
formulation of bisimilarity. This is done in Section 3. The inclusion of DMAs into
Ω-coalgebras is proper. More precisely, we call balanced those coalgebras whose
states correspond in a suitable sense to ω-regular languages. The ones whose
image in the final coalgebra is finite are (up-to bisimilarity) the image of DMAs
into Ω-coalgebras. Balanced coalgebras are in a special form, which makes them
accept bisimulation invariant lasso languages. Our second result is described in
Section 4. Therein, we identify two conditions, namely circularity and coherence,
that are equivalent to bisimulation invariance, and we characterise the coalgebras
corresponding to DMAs as those that are circular and coherent, and have finite
image in the final coalgebra.

The most basic application of coalgebras, in the presence of a final object, is
a generalised notion of partition refinement, yielding minimisation up-to coalge-
braic bisimilarity. When the states are finite, one obtains a decision procedure;
this is the case for the coalgebras obtained from DMAs. We spell out the pro-
cedure in Section 5; in the same section, we go further in considering balanced
coalgebras as acceptors of lasso languages, by showing that boolean operations
are defined in a particularly simple and natural way.
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2 Preliminaries

Here we recall the notion of deterministic Muller automaton and ω-regular lan-
guage. For more background on these topics, the reader is referred to [7].

Remark 1 (Notation). We often omit parentheses in function (and functor) ap-
plication, writing e.g. fx in place of f(x). We write X ∼ Y to signify that X
is isomorphic to Y . We denote the set of natural numbers with the symbol ω.
Throughout the paper, we fix a finite set C called the alphabet. We let C∗ be the
free monoid over C, called the set of finite words, or just words, whose neutral
element is the empty word ε. The length of a word u is denoted with |u|. We
let C+ = C ∗ \ {ε} be the set of non-empty words, and Cω be the set of infinite
words or streams over C, that is, the function space ω → C . Concatenation,
denoted by juxtaposition, is defined over finite words as the binary operation
of the monoid, and extended to uα, for u finite and α infinite, in the obvious
way. For u ∈ C ∗, we let uω be the stream that repeats u infinitely many times.
For f : X → XC a (deterministic transition) function, we write x

c−→f y for
y = f(x)(c), omitting the subscript f when clear from the context. The two
projections of a binary product are written π1, π2. For f : X → Y × Z, we let
f1 = π1 ◦ f and f2 = π2 ◦ f (f is the pairing of f1 and f2).

Definition 1 (DMA). A deterministic Muller automaton (DMA in the follow-
ing) is a tuple (X, δ,M) such that X is a finite set of states, δ : X → XC is
the transition function, M⊆ P(X) is the Muller acceptance condition.

We adopt a formulation of DMAs that does not include initial states, thus we
will speak of the language of a given state, not of an automaton; in other words
every state can be chosen as initial. The definition of accepted language is also
simplified by the deterministic setting.

Definition 2 (̂δ, δ◦). Given δ : X → XC , we define by induction on the struc-

ture of words the functions ̂δ : X → XC∗
as ̂δx(ε) = x, ̂δx(cu) = (̂δ(δxc)u), and

δ◦ : X → P(X)C
∗
as δ◦x(ε) = ∅, δ◦x(cu) = {δxc} ∪ δ◦(δxc)u.

In words, ̂δx(u) is the state reached by the automaton after it processed the
word u, starting at position x, and δ◦x(u) is the set of states the automaton
passed along the way (the starting state x not being included).

Definition 3 (Inf ). For x ∈ X, and α a stream, we let Inf (x, α) ⊆ X represent
the set of states that are traversed infinitely often when following α starting from
x, that is, y ∈ Inf (x, α) if and only if for each u, β such that α = uβ there are

u′, β′ such that β = u′β′, and ̂δx(uu′) = y.

Definition 4 (L(x)). For x ∈ X, we let L(x) denote the language of x, defined
as the set of streams {α ∈ Cω |Inf (x, α) ∈ M}. We call a set of streams ω-
regular if it is L(x) for x a state in a DMA.
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3 Muller Automata Are Coalgebras

DMAs can be turned into coalgebras, in such a way that behavioural equiva-
lence coincides with language equivalence. In Section 3.1 we introduce a simple,
abstract construction, which is meant to be propaedeutic to a more concrete
definition. The latter is provided in Section 3.5. The prerequisites are: the fact
that the looping language of a state in a DMA is regular, which we prove in
Section 3.2; the framework of dependent coalgebras, presented in Section 3.3; a
coalgebraic characterisation of regular languages of non-empty words, given in
Section 3.4. We assume basic prerequisites on coalgebras, and refer the reader
to [9] for further details.

3.1 An Abstract Characterisation

Definition 5 (Loop(x)). We call looping language of x ∈ X the set Loop(x) =
{u ∈ C+|uω ∈ Lx}.
Consider the set P(C+) (that is, the set of sets of non-empty words over the finite
set C ). We will treat its elements as observations, or colours associated to each
state of a coalgebra. We are going to describe DMAs as coalgebras for the functor
T(X) = XC × S, where S = P(C+). We have that T is ω-accessible (finitary)
and weak-pullback preserving. Thus a final coalgebra exists, and behavoural
equivalence (that is, identifiability by coalgebra morphisms) can be equivalently
defined as bisimilarity (connectability via a bisimulation).

Definition 6 (	). Let X be a set and (X, f) be a T-coalgebra. Behavioural
equivalence 	 ⊆ X × X is the kernel of the unique morphism f into the final
coalgebra, that is 	 = {(x, y) | f(x) = f(y)}.
Remark 2. Equivalently, call R ⊆ X×X a bisimulation if and only if, whenever
xR y, then π2(f(x)) = π2(f(y)), and, for all c ∈ C , π1(f(x))(c)Rπ1(f(y))(c).
It is easy to see that two states are behaviourally equivalent if and only if they
are bisimilar, that is, linked by some bisimulation. Behavioural equivalence can
also be defined as a relation over two different coalgebras, using cospans of
morphisms; the two conditions can be obtained from each other using coproducts
of coalgebras.

Definition 7 (Coalgebra of a DMA). Given a DMA (X, δ,M), the coalgebra
map f : X → XC × P(C+) is defined as f(x) = (δ(x),Loop(x)).

The transition structure of the automaton is preserved in the translation. For
each state, its looping language is observed. Roughly, we may say that the ability
to observe the looping language of a state in a coalgebra plays the same role of
the acceptance condition of a DMA.

In Proposition 1 below, we prove that language equivalence coincides with
bisimilarity. For this we need to introduce lasso languages and a well-known
characterisation theorem for ω-regular languages.
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Definition 8 (UP(L)). An ultimately periodic word is a stream α ∈ Cω of
the form s(lω). For L a set of streams, we denote with UP(L) the subset of its
ultimately periodic words, called the ultimately periodic fragment of L.
Definition 9 (Lasso(L)). A lasso is a pair (s, l), with s ∈ C ∗ and l ∈ C+

(the spoke and the loop of the lasso). A lasso (s, l) is a syntactic representation
for the ultimately periodic word slω. For L a set of streams, call Lasso(L) the
set {(s, l)|slω ∈ UP(L)}. For x a state in a Muller automaton, let Lasso(x) =
Lasso(UP(L(x))).
Fact 1 below is well known (see Fact 1, [4]), and needed for Proposition 1.

Fact 1 (Lasso iff. ω-regular) The sets Lasso(x) and L(x) uniquely determine
each other: we have L(x) = L(y) if and only if Lasso(x) = Lasso(y).

Proposition 1 (Language equivalence is bisimilarity). Let (X, δ,M) be a
DMA, and (X, f) be the corresponding coalgebra. For x, y ∈ X, we have L(x) =
L(y) if and only if x 	 y.

Proof. (Proposition 1) By Fact 1, it suffices to prove that Lasso(x) = Lasso(y) if
and only if x 	 y. First we prove that R = {(x, y) ∈ X×X |Lasso(x) = Lasso(y)}
is a bisimulation with respect to f . Observe that Lasso(x) uniquely determines
Loop(x) = {u ∈ c+|(ε, u) ∈ Lasso(x)}. Thus (x, y) ∈ R ⇒ π2fx = π2fy. On the
other hand, Lasso(x) = Lasso(y)⇒ [Fact 1] L(x) = L(y)⇒ ∀c ∈ C .L((δx)c) =
L((δy)c) ⇒ [Fact 1] ∀c.Lasso((δx)c) = Lasso((δy)c) ⇒ ∀c.((π1fx)c, (π1fy)c) ∈
R. Thus, Lasso(x) = Lasso(y) ⇒ x 	 y. For the other direction, assume
Lasso(x) �= Lasso(y). Then there is a lasso (s, l) such that (without loss of

generality) slω ∈ L(x) \ L(y). We have lω ∈ L(̂δxs) ∧ lω /∈ L(̂δys) ⇒ l ∈
Loop(̂δxs)∧ l /∈ Loop(̂δys)⇒ π2f(̂δxs) �= π2f(̂δys)⇒ ̂δxs 	/ ̂δys. For all s ∈ C ∗,
it is easy to prove by induction on the length of s that x 	 y ⇒ ̂δxs 	 ̂δys, so
we may conclude that x 	/ y.

3.2 Loop(x) Is Regular

Here we prove that, given a state x of a DMA, it is possible to construct a
deterministic finite automaton (DFA) that accepts Loop(x). The construction is
similar to the one provided in [4] for Büchi automata.

Definition 10 (DFA for Loop(x)). Fix a DMA (X, δ,M). For x ∈ X, let
(T, γ, Fx, t

0) be a DFA having:

– states in T = (X × P(X))X ;
– transition function γ : T → TC , defined as γ(t)(c) = λy.(δ(π1(t y))c, π2(t y)∪
{δ(π1(t y))c}).

– initial state t0 = λy.(y, ∅);
– accepting states in Fx ⊆ T defined as follows. Consider t ∈ (X × P(X))X .

Define a sequence of states indexed by ω: x0 = x, xi+1 = π1(t(xi)). Since X
is finite, there is a least index k such that xk ∈ {xh|h < k}, so there is i < k
such that xi = xk. Let t ∈ Fx if and only if

⋃

i≤j<k π2(t(xj)) ∈ M.
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In Definition 10, notice that only Fx depends on x, and that it is never the
case that t0 ∈ Fx, thus the language of t0 does not include the empty word.
Intuitively, the DFA we define consumes a word u by following it in parallel
starting from all the states of the automaton. Moreover, in each of these parallel
runs, the states that are traversed are collected. Therefore states of the system
are tuples in (X × P(X))X indexed by the elements of X . At each index x we
can find a pair (z, s), consisting of a reached state z and a set of traversed states
s. This idea is formalised by Lemma 1 (whose proof is a routine induction on u)
and its Corollary 1.

Lemma 1. Consider the DFA of Definition 10. For each u ∈ C ∗, t ∈ T , and
z ∈ X with tz = (x1, s1), we have

(γ̂tu)z = (̂δx1u, s1 ∪ δ◦x1u).

Corollary 1. For each u ∈ C ∗ and x1 ∈ X, we have

(γ̂t0u)x1 = (̂δx1u, δ
◦x1u).

Lemma 1 is concerned with the structure of the DFA for x, that is T , γ, t0. The
idea behind the definition of Fx is to compute Inf (x, uω) for u a finite word.
This is clarified by Lemma 2.

Lemma 2. For u a finite non-empty word, consider the state t = γ̂t0u, and the
objects (xh)h∈ω, i, k from Definition 10. We have

⋃

i≤j<k π2(t(xj)) = Inf (x, uω).

Proof. By Corollary 1 and the hypothesis, for each h, we have ̂δxhu = xh+1,
and π2(t(xh)) = δ◦xhu. Since the sequence (xh) loops, by the automaton being
deterministic we get the thesis.

Finally, as a direct consequence of Lemma 2, we get regularity of Loop(x).

Proposition 2 (Loop(x) is regular). Given a DMA (X, δ,M) and x ∈ X, the
language of finite words Loop(x) is regular, and it is accepted by the automaton
of Definition 10.

Proof. Importing definitions from Definition 10, by Lemma 2, a non-empty word
is accepted from t in the DFA if and only if Inf (x, uω) ∈ M, that is uω ∈ Loop(x).

Remark 3. In case we are dealing with parity automata rather than with Muller
automata, the above construction can be somewhat simplified. Let A = (X, δ,Ω)
be a parity automaton, with Ω : X → ω the priority map. Now we can still base
the DFA for Loop(y) (where y ∈ X) on the idea of considering parallel runs
from each state of A. We no longer have to collect the full set of states that were
passed during each run, but only the maximal priority of these states. In other
words, the carrier set of the automaton recognizing the looping language for y
can be based on the set TΩ = (X×Ran(Ω))X , where Ran(Ω) ⊆ ω is the (finite)
range of Ω. We leave further details to the reader.
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3.3 Dependent Coalgebras

We now develop a kind of dependent behavioural equivalence. Behavioural equiv-
alence depends on observations on states. In our setting, observations are in turn
states of another system. Dependent behavioural equivalence dictates that these
observations are behavioural equivalent in turn, instead of just equal. This no-
tion is captured by coalgebras in a category where objects are not merely sets,
but rather two-sorted structures.

Let 2 be the two-elements set {1, 2} considered a discrete category. The cat-
egory Set2 is the category of functors from 2 to Set and their natural transfor-
mations. In other words, an object X can be represented as a pair (X1, X2). We
shall call the sets X1 and X2 the first and second sorts. An arrow f : X → Y is
a pair of functions f1 : X1 → Y1, f2 : X2 → Y2.

Consider two functors T1, T2 : Set → Set. We define the dependent functor
T1 � T2 : Set2 → Set2.

Definition 11 (T1 � T2). The functor T1 � T2 is defined on objects as

(T1 � T2X)1 = (T1X1)×X2 (T1 � T2X)2 = T2X2

The action on arrows is

(T1 � T2(f : X → Y ))1 = T1f1 × f2 (T1 � T2f)2 = T2f2

A T1 � T2-coalgebra is nothing but a pair of sets (X1, X2), together with a T1-
coalgebra on X1, a T2-coalgebra on X2, and a map from X1 to X2. To see this
formally, note that a functor X : 2 → Set is just a pair of sets (X1, X2). For
(X, f) a T1�T2-coalgebra, f is a natural transformation, therefore a pair of maps
(f1 : X1 → (T1X1)×X2, f2 : X2 → T2X2). Moreover, f1 can be decomposed (by
the universal property of the product) in the pairing of f1

1 : X1 → T1X1 and
f2
1 : X1 → X2.
A coalgebra morphism h : (X, f)→ (Y, g) is in turn a pair of functions (h1, h2)

giving rise to two separate commutativity requirements

((T1h1)× h2) ◦ f1 = g1 ◦ h1 T2h2 ◦ f2 = g2 ◦ h2

As f1 and g1 are pairings, we see that h being a coalgebra morphism amounts
to commutativity of the three diagrams in Figure 1

X1

f1
1

��

h1 �� Y1

g11

��
T1X1

T1h1 �� T1Y1

X1

f2
1

��

h1 �� Y1

g21

��
X2

h2 �� Y2

X2

f2

��

h2 �� Y2

g2

��
T2X2

T2h2 �� T2Y2

Fig. 1. Commutativity requirements of dependent behavioural equivalence
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Throughout the paper, we are mostly interested into equivalence in the first
sort of a coalgebra in Set2. However, we remark that behavioural equivalence
in Set2 is a two sorted relation, which we denote by 	i for i ∈ {1, 2}. We shall
omit the index i when clear from the context.

Definition 12 (Final T1�T2-coalgebra). Assume that T2 has a final coalgebra
(Z2, z2). Suppose that the functor F(X) = T1(X) × Z2 has a final coalgebra
(Z1, z1) in turn. Define the T1 �T2-coalgebra (Z, z) as Z = (Z1, Z2), z = (z1, z2).

Proposition 3 (The final coalgebra is final). Assume the coalgebras from
Definition 12. For (X, f) a T1 � T2-coalgebra, define a morphism h : (X, f) →
(Z, z) as follows. The arrow h2 is the unique morphism from (X2, f2) to (Z2, z2).
The arrow h1 is the unique morphism from the F-coalgebra (X1, f

′
1) to (Z1, z1),

where f ′
1(x) = (f1

1 (x), h2(f
1
2 (x))). Such h is unique as a coalgebra morphism.

Proof. First, observe that h fulfils the requirements in Figure 1. The rightmost
diagram commutes since h2 is a coalgebra homomorphism. The leftmost and
middle diagrams commute simultaneously since h1 is an F-coalgebra homomor-
phism.

3.4 Regular Languages of Non-empty Words

As we discussed, Loop(x) is a regular language in C+. To describe DMAs as
coalgebras, we need a precise characterisation of such regular languages of non-
empty words. This can be done by a variant of the coalgebraic description of
classical DFAs. In doing so, one omits the initial state in the spirit of coalgebraic
presentations of automata, where one speaks of the language of a given state
instead of the language of an automaton.

Definition 13 (DFAs accepting non-empty words). Consider the endo-
functor in Set D(X) = (X × 2)C . Let (X, γ, F ) a DFA having unspecified initial
state, with states in X, transition function γ : X → XC and final states F ⊆ X.
Define the D-coalgebra (X, fγ), where fγxc = (γxc, 1) if γxc ∈ F , fγxc = (γxc, 2)
otherwise.

States of finite D-coalgebras are intended to represent regular languages of non-
empty words; thus it is sensible to define acceptance on them.

Definition 14 (Language of x). For u ∈ C+, (X, f) a D-coalgebra and x ∈ X,
define the language LD(x), by induction on the length of u. If u = c has length
one, we let u ∈ LD(x) ⇐⇒ π2(fxc) = 1. If u = cv, with v ∈ C+, we let
u ∈ LD(x) ⇐⇒ v ∈ LD(π1(fxc)).

The following proposition is easy to prove.

Proposition 4 (Languages of non-empty words). Given an uninitialised
DFA D and the corresponding coalgebra C, a non-empty word u is is accepted
from x in C if and only if it is accepted from x in D.
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Corollary 2. Each regular language of non-empty words is accepted by some
state in a finite D-coalgebra.

A construction in the reverse direction, obtaining a DFA accepting non-empty
words from a finite D-coalgebra is possible. This proves that the states of the final
coalgebra, that are images of states of finite D-coalgebras, are isomorphic to the
regular languages of non-empty words. We omit the details of the construction.
It is worth noting that, just like in the standard case, the structure map of
the final D-coalgebra computes a form of “derivative” of a language; however,
since the languages in question are of non-empty words, the derivative behaves
accordingly, thus being equal to the standard derivative of languages, where,
in addition, the empty word is excluded from the result. In the following we
will sometimes blur the distinction between DFAs of non-empty words and the
corresponding D-coalgebras.

3.5 Deterministic Muller Automata as Coalgebras

The characterization of language equivalence given by Section 3.1 can be re-
fined, by incorporating in the definition of coalgebraic bisimilarity the ability
to check that two looping languages are the same. This can be done using the
characterisation of languages of non-empty words in Section 3.4.

First, we define the functor Ω, using the construction for dependent functors
(Definition 11) and the functor D for DFAs of non-empty words (Definition 13).

Definition 15 (Functor Ω). We define the functor Ω : Set2 → Set2 as

Ω = (−)C � D.

For an intuition about Ω-coalgebras, recall that a T1�T2-coalgebra f is composed
of of a T1-coalgebra (X1, f

1
1 ), a T2-coalgebra (X2, f2), and a map f1

2 from X1 to
X2. Roughly, in our case, the T1-coalgebra can be thought of as the structure of
a DMA, while the T2-coalgebra can be used to represent the DFAs that accept
Loop(x) for x ∈ X1. The map f1

2 provides a link between the two.
Before showing our first result, we give a characterisation of behavioural equiv-
alence in an Ω-coalgebra (X, f).

Proposition 5 (Dependent bisimilarity). For (X, f) an Ω-coalgebra, x, y ∈
X1 are behaviourally equivalent if and only if:

1. LD(f2
1 (x)) = LD(f2

1 (y));

2. For all c ∈ C, f1
1xc and f1

1 yc are behaviourally equivalent in turn.

Proof. Two states x and y are behaviourally equivalent if and only if there is a
coalgebra (Y, g) and a morphism h : (X, f)→ (Y, g) obeying to the requirements
in Figure 1. The leftmost square is turned into the usual coinductive back-and-
forth condition on the transition function f1

1 (Condition 2). The middle square
imposes that f2

1 (x) and f2
1 (y) are identified by h2. By the rightmost square, this
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is equivalent to behavioural equivalence of these two states. By Proposition 4
we know that behavioural equivalence in the second sort is language equivalence
(Condition 1).

In Definition 16 below, we introduce the Ω-coalgebra that corresponds to a
given DMA. The correspondence is then made precise by Theorem 1, show-
ing that the proposed translation turns language equivalence into behavioural
equivalence.

Definition 16 (Ω-coalgebra of a DMA). Let A = (X1, δ,M) be a DMA. For
x ∈ X1, let (Tx, γx, Fx, t

0
x) be the DFA1 for x from Definition 10. Let (Tx, fx) be

the D-coalgebra of (Tx, γx, Fx) (from Definition 14). We define the Ω-coalgebra

C(A) = ((X1, X2), f) with X2 =
∐

x∈X1

Tx

where the natural transformation f = (f1, f2) is defined by

f1(x) = (δ(x), t0x) f2 = fx.

As we discussed, an Ω-coalgebra is a two-sorted structure. In the first sort of
C(A) the structure of the DMA A is replicated. The second sort corresponds to
a DFA accepting non-empty words, having initial states that accept the looping
languages of the states of A. The map f2

1 associates to each state x in the main
sort precisely the initial state of the DFA for Loop(x). Thus, Proposition 1 is
recovered in coalgebraic form.

Theorem 1 (Language equivalence is dependent bisimilarity). Let A be
a DMA. Behavioural equivalence in the first sort of C(A) coincides with language
equivalence in A. That is, for every two states x, y in X1 we have that

x 	 y ⇐⇒ L(x) = L(y).

Proof. Consider two states x and y in X1. By Proposition 5, they are be-
haviourally equivalent if and only if the usual back-and-forth condition holds,
where the “observations” x′ = π2(f1(x)) and y′ = π2(f1(y)) are not required
to be equal, but rather to be bisimilar (then, coinductively, this is extended to
all states reachable from x and y). By Proposition 4, x′ and y′ are bisimilar
if and only if they are language equivalent. By Proposition 2, x′ and y′ accept
respectively Loop(x) and Loop(y). By Proposition 1 we get the thesis.

1 Even though only the accepting states depend on x, it is convenient in Definition
16 to consider the DFA for each x as a distinguished structure. We consider all the
Tx as non-intersecting sets to simplify the notation for elements of their coproduct.
This can be concretely achieved by letting e.g. Tx = {x} × T .
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4 A Characterising Property

Ω-coalgebras can be considered acceptors of lasso languages. We call balanced
those whose states accept lasso languages corresponding to ω-regular languages
(in a sense made precise in the following). In this section we show that these
form a proper subclass, and provide a characterising property.

We have seen that Muller automata can be encoded as Ω-coalgebras, and the
encoding turns language equivalence into behavioural equivalence. Thus, each
ω-regular language can be represented as a state in the first sort of some Ω-
coalgebra. Such a state represents a set of lassos, according to Definition 17
below, where we use the notation for the pairing from Remark 1.

Definition 17 (Loops and Lassos in a Coalgebra). Given an Ω-coalgebra
(X, f), for x ∈ X1, we define the language of lassos

Lasso(x) = {(s, l) | ∃x′.̂f1
1xs = x′ ∧ l ∈ LD(f2

1x
′)}

and the regular language of non-empty words

Loop(x) = LD(f2
1x).

The lasso language of a state x is the set of pairs (s, l) such that one may
consume s starting from x and staying in the first sort of the coalgebra, then
follow l from the corresponding state in the second sort, and reach an accepting
state. The overloading of notation is justified, as Lasso(x) (respectively, Loop(x))
is the same when x is considered a state of a DMA A, or of the corresponding
coalgebra C(A). Consider states x and y belonging to the first sort of possibly
distinguished Ω-coalgebras. Clearly, the image of states x and y along the final
morphism coincides if and only if Lasso(x) = Lasso(y). In an Ω-coalgebra, for
x ∈ X1, it is not necessary that Lasso(x) is obtained from the ultimately periodic
fragment of some ω-regular language, as shown by the following example.

Example 1. Consider c ∈ C , and a DFA (T, γ, F, t0) accepting the language {c}.
Let (X, f) be an Ω-coalgebra with X1 = {x}, X2 = T , f1

1xc = x for all c ∈ C ,
f2
1x = t0, f2 obtained from γ and F . Then (ε, c) belongs to Lasso(x), but (ε, cc)
does not. However, both lassos represent the ultimately periodic word cω. There
is no ω-regular language L such that Lasso(x) = Lasso(L), since cω belongs to
L if and only if both (ε, c) and (ε, cc) belong to Lasso(L).
We shall call balanced those Ω-coalgebras whose states correspond to ω-regular
languages in the following sense.

Definition 18 (balanced coalgebra). An Ω-coalgebra (X, f) is balanced if,
for all x ∈ X1, there is an ω-regular language Lx such that Lasso(x) = Lasso(Lx).
Clearly, for each DMA A, C(A) is a (sort-wise) finite balanced coalgebra. How-
ever, not all finite balanced coalgebras are equal to C(A) for some DMA A, as
illustrated by the following example.
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Example 2. Let C = {a, b}. Consider the language of infinite words L = {uα|u ∈
C ∗∧(α = aω∨α = bω)}. L is ω-regular, as it is accepted by the two states DMA
A = ({x1, x2}, δ,M) with δx1a = x1, δx1b = x2, δx2a = x1, δx2b = x2, M =
{{x1}, {x2}}. Notice that UP(L) = L. Consider a D-coalgebra (Y, g) accepting
{a}+ ∪ {b}+ from state t0. Define the Ω-coalgebra (X, f) where X1 = {x},
X2 = Y . For c ∈ C , we let f1

1 (x)(c) = x. We let f2
1 (x) = t0, and f2 = g. We have

that Lasso(x) = Lasso(L), but there is no DMA B such that C(B) = (X, f):
by construction, the structure defined by the set of states X1 and transition
function f1

1 has to be the structure of B. But the only choice for an accepting
condition isM = {{x}}. Obviously, such an automaton accepts the whole Cω .

The relation between DMAs and balanced Ω-coalgebras is slightly more subtle
than expected. Example 2 shows that there are DMAs having language equiv-
alent states that can not be quotiented. Thus, DMAs (set aside finiteness con-
straints) do not admit a universal model, or at least not one which is “minimal” in
the traditional sense. Similar considerations apply to parity and Büchi automata.
In contrast, each Ω-coalgebra has a quotient with respect to behavioural equiva-
lence (its image in the final coalgebra). Moreover, as DMAs give rise to balanced
coalgebras, the subobject of the final Ω-coalgebra, where all DMAs are mapped
into, must be balanced. This coalgebra does not correspond to any DMA, as it
has infinite states (there are infinitely many distinct ω-regular languages). How-
ever, we easily get the following statement, which paves the way to Proposition
6, explaining the relationship between DMAs and balanced coalgebras.

Lemma 3 (Quotients are balanced). If (X, f) is a balanced Ω-coalgebra,
and h : (X, f)→ (Y, g) is an epimorphism of coalgebras, then (Y, g) is balanced.

Proof. Consider y ∈ Y1; since h is epic, there is x ∈ X1 such that h(x) = y. Being
unique, the final morphism from (X, f) factors trough h. Then, by finality, x and
y accept the same lasso language.

By construction, the coalgebra corresponding to a given DMA is sort-wise fi-
nite. Proposition 6 below clarifies that finiteness plays a key role in representing
DMAs; however, it is not necessary that a coalgebra has a finite number of states,
but rather it is sufficient that the equivalence classes induced by bisimilarity are
in a finite number, that is, the image in the final coalgebra is sort-wise finite.

Proposition 6 (DMAs and balanced coalgebras). For each balanced coal-
gebra whose image (X, f) in the final coalgebra is finite, there is a DMA A such
that the image in the final coalgebra of C(A) coincides with (X, f).

Proof. Since (X, f) is balanced (Lemma 3), for each state x ∈ X1, there certainly
is a DMA Ax having a state y such that Lasso(y) = Lasso(x). In a DMA, it is
obvious that only the states reachable from y concur to the construction of L(y),
thus we assume w.l.o.g. that all the states of Ax are reachable from y. When y
is seen as a state in the first sort of C(A) = (Yx, gx), x and y are equated by
the final morphism, and the image in the final coalgebra of C(A) coincides with
the subcoalgebra of (X, f) reachable from x. The disjoint union of all the Ax
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for x ∈ X1 is then a witness DMA that proves the thesis. Such DMA exists by
finiteness of X1.

A lasso (s, l) can be interpreted as a finite, pointed coalgebra having finite car-
rier, for the functor C × (−). The formal definition is useful, since coalgebraic
bisimilarity precisely corresponds to equality of the represented word slω.

Definition 19 (Coalgebra of a lasso). Consider a lasso (s, l) and define a
coalgebra (X, f : X → C × X) where X is the finite cardinal |s| + |l|, and f
is the pairing of f1 and f2. We let f1(i) = si if 1 ≤ i ≤ |s|, f1(i) = li−|s| if
|s| < i ≤ |s|+ |l|, f2(i) = i+1 if 1 ≤ i < |s|+ |l|, f2(|s|+ |l|) = |s|+1. Call the
state 1 initial in (X, f), making it a pointed coalgebra.

Remark 4. Consider the coalgebras corresponding to two lassos (s, l) and (s′, l′).
Their initial states are bisimilar if and only if they denote the same infinite word,
that is slω = s′(l′)ω. We will just call (s, l) and (s′, l′) bisimilar.

Proposition 7 (Invariance). Consider L = Lasso(x) for x a state in a coalge-
bra whose image in the final coalgebra is finite. There is an ω-regular language L
such that L = Lasso(L) if and only if L is invariant under bisimilarity: whenever
(s, l) and (s′, l′) are bisimilar, (s, l) ∈ L if and only if (s′, l′) ∈ L.

Proof. The languages of states in finite subobjects of the final coalgebra are in
one to one correspondence with the regular languages in C ∗$C+, with $ /∈ C .
A proof can be sketched as follows. For each such coalgebra (X, f), view it as a
DFA over C ∪ {$} by letting f2

1 be the derivative with respect to $. Conversely,
define a coalgebra from a DFA by letting the first sort coincide with the structure
of the DFA, excluding the $-labelled transitions; the second sort is defined by
the derivatives w.r.t. $ of the languages of states in the DFA. This established,
observe that there certainly is a state z in the final coalgebra whose language
is L. Its reachable part is also finite, hence it is a regular language in C ∗$C+.
The thesis is obtained by direct application of the following result from [4]: a
regular language in C ∗$C+ is {s$l|slω ∈ L} for some ω-regular L if and only if
it is bisimulation invariant.

An obvious question at this point is to find a “structural” characterisation of
bisimulation invariance for Ω-coalgebras. An answer is provided by Theorem 2.

Theorem 2 (Circular and coherent). An Ω-coalgebra (X, f) is bisimulation
invariant if and only if it is:

Circular: ∀x ∈ X1.∀k > 0.∀u ∈ C+.u ∈ Loop(x) ⇐⇒ uk ∈ Loop(x)
Coherent: ∀x ∈ X1.Loop(x) = {cu | uc ∈ Loop(f1

1 (x)(c))}

Proof. First, assume bisimulation invariance. To prove circularity, notice that for
all u and k, uω = (uk)ω; then use bisimulation invariance. To prove coherence,
suppose cu ∈ Loop(x). Then (ε, cu) ∈ Lasso(x); by bisimulation invariance, since
(cu)ω = c(uc)ω, we have (c, uc) ∈ Lasso(x). Then uc ∈ Loop(f1

1xc). For the
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other direction, assume circularity and coherence. Suppose (s, l) is bisimilar to
(s′, l′). We can define a lasso bisimilar to both of them, and having “longer spoke
and loop”. Formally, there are a lasso (t, v), integers k, h, k′, h′, and finite words
l1, l2, l

′
1, l

′
2, such that: slω = tvω = s′(l′)ω; l = l1l2; l

′ = l′1l
′
2; t = slkl1 = s′(l′)k

′
l′1;

v = (l2l1)
h = (l′2l

′
1)

h′
. We now prove (t, v) ∈ Lasso(x) ⇐⇒ (s, l) ∈ Lasso(x). A

similar argument can be used to prove (t, v) ∈ Lasso(x) ⇐⇒ (s′, l′) ∈ Lasso(x),
obtaining the thesis.
We have (t, v) ∈ Lasso(x) ⇐⇒ (slkl1, (l2l1)

h) ∈ Lasso(x) ⇐⇒ (l2l1)
h ∈

Loop(̂f1
1 (sl

kl1)) ⇐⇒ {by circularity} l2l1 ∈ Loop(̂f1
1 (sl

kl1)) ⇐⇒ l2l1 ∈
Loop(̂f1

1 (s(l1l2)
kl1)) ⇐⇒ {by coherence} l1l2 ∈ Loop(̂f1

1 (s(l1l2)
kl1l2)) ⇐⇒

l ∈ Loop(̂f1
1 (sl

k+1)) ⇐⇒ {by coherence} l ∈ Loop(̂f1
1 (s)) ⇐⇒ (s, l) ∈

Lasso(x).

Corollary 3. Consider an Ω-coalgebra C whose image in the final coalgebra is
finite. C is balanced if and only if it is circular and coherent.

Remark 5. The definition of a balanced coalgebra has been formulated in terms
of the lasso languages it accepts (taking each of its respective states as initial),
and the conditions of circularity and coherence are also phrased in terms of lan-
guages (here, languages of finite words). One may wonder whether these notions
can be defined more directly, in terms of the structure of the coalgebra and its
associated DFAs. We leave this as a question for further research.

5 Decision Procedures

Two-sorted coalgebras provide a natural model for lasso languages. In this sec-
tion, we spell out decision procedures for computing language equivalence (Sec-
tion 5.1) and boolean operations (Section 5.2), on finite Ω-coalgebras. By Fact
1, when acting on balanced coalgebras, these procedures actually compute with
(presentations of) ω-regular languages. By Proposition 6, the results we present
yield an alternate proof of closure of DMAs under boolean operations.

5.1 Equivalence Checking

Using Ω-coalgebras, language equivalence is reduced to behavioural equivalence.
In coalgebras, whenever a final coalgebra exists, this relation can be computed
by a generalised form of partition refinement that exploits the final sequence and
finiteness. Therefore, the coalgebraic formulation by itself, and the fact that the
states in C(A) for a DMA A are finite, already prove decidability of language
equivalence in DMAs.

Deciding behavioural equivalence in an Ω-coalgebra corresponds to comput-
ing the kernel of the final morphism. This is done by a fixed point iteration,
roughly described as follows. Consider a coalgebra (X, f). Consider a morphism
h : X → Y for some object Y in Set2; notice that h is not necessarily a homo-
morphism of coalgebras, but assume that it satisfies x 	i y ⇒ hi(x) = hi(y), for
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i ∈ 2; that is, the kernel of h includes behavioural equivalence. If, in addition, h
happens to be a coalgebra homomorphism for some coalgebra over Y , then the
reverse inclusion holds, since hi(x) = hi(y) ⇒ x 	i y by definition of 	, mak-
ing the kernel of h coincide with behavioural equivalence. Coalgebraic partition
refinement uses this fact and finiteness of X to approximate the kernel of the
final morphism “from above”, starting from an arrow h whose kernel includes
behavioural equivalence. In subsequent steps, h is refined, maintaining the prop-
erty, until a coalgebra morphism is obtained. In the reminder of this section, we
give a formal specification of this procedure for finite Ω-coalgebras.

Briefly, the definition is based on the idea of “refining” an approximation
of the unique morphism in the final coalgebra until one reaches a fixed point.
The starting approximation is the unique morphism from the object of states
into the final object of the base category. This morphism equates all the states,
thus its kernel includes bisimilarity. Each refinement preserves this property; the
termination condition of the algorithm implies that the computed morphism is
a coalgebra homomorphism, making it the desired bisimilarity quotient.

Definition 20 (Kernel). The kernel kerh of a morphism h : X → Y is the

pullback object of the diagram X
h→ Y

h← X, thus it is a subobject of the product
X×X. In Set2, limits are computed point-wise, and kerh is the pair of relations
(kerh1, kerh2), where each component is just the set theoretical notion: kerhi =
{(x, y) ∈ Xi ×Xi|hi(x) = hi(y)}.
Definition 21 (Refinement). Given an Ω-coalgebra (X, f) and an arrow h :
X → Y in Set2, call (Ωh) ◦ f the refinement of h with respect to f .

Proposition 8 (Partition refinement). Given an Ω-coalgebra (X, f), define
the sequence of morphisms, indexed by ω, where h0 : X → 1 is the unique mor-
phism into the final object, and hi+1 is the refinement of hi with respect to f . Then
define the sequenceKi = kerhi. If bothX1 andX2 are finite, thenKi converges at
some finite step j. In that case, let X̄ denote the target of hj. There is a coalgebra
structure f̄ : X̄ → ΩX̄ such that hj is a coalgebra homomorphism from (X, f)
to (X̄, f̄), and Kj is behavioural equivalence in (X, f). More precisely, (X̄, f̄) is
(up-to isomorphism) the image of (X, f) in the final coalgebra.

The algorithm starts from the unique morphism from X into the final object of
Set2 (which is not required to be a homomorphism of coalgebras). Recall that
in Set2 colimits are computed point-wise. Thus the final morphism from X is
the pair of final morphisms from X1 and X2 in Set. Its kernel is the two sorted
relation (X1 ×X1, X2×X2) making all the states equivalent. The kernel of this
morphism necessarily includes behavioural equivalence; the two are equal only
if all states are (sort-wise) equivalent; thus it is an approximation of the unique
morphism into the final coalgebra. The approximation is refined in subsequent
steps, obtaining at most the identity function (up-to isomorphism). This limit
case is reached (in a finite number of steps), only if no states are equivalent.
Correctness and convergence of the algorithm comes from convergence of the
terminal sequence (see [6]). Convergence in a finite number of steps is just a
consequence of finiteness of the state space.
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5.2 Boolean Operations

Boolean operations on Ω-coalgebras are particularly simple and reminiscent of
the corresponding operations on classical DFAs. First recall that the set 2 has
the structure of a boolean algebra, with the obvious definition of the boolean
operations ¬, ∧, ∨ denoting complementation, conjunction and disjunction, re-
spectively. In order to be coherent with Definition 10, we assume 1 to denote the
truth value true and 2 to denote false. In the following, let (X, f) and (Y, g) be
Ω-coalgebras.

Definition 22 (Complement). Define the complement coalgebra

(X, f̄)

where
f̄1 = f1 f̄2xc = (π1(f2xc),¬π2(f2xc)).

Definition 23 (Union). Define the union coalgebra

(X × Y, f ∪ g)

where

(f ∪ g)11(x, y)(c) = (f1
1xc, g

1
1yc) (f ∪ g)21(x, y) = (f2

1x, f
2
1 y)

(f ∪ g)2(x, y)c = ((π1(f2xc), π1(g2yc)), π2(f2xc) ∨ π2(g2yc)).

Definition 24 (Intersection). Define the intersection coalgebra

(X × Y, f ∩ g)

where

(f ∩ g)11(x, y)(c) = (f1
1xc, g

1
1yc) (f ∩ g)21(x, y) = (f2

1x, f
2
1 y)

(f ∩ g)2(x, y)c = ((π1(f2xc), π1(g2yc)), π2(f2xc) ∧ π2(g2yc)).

The operations we define actually implement boolean operations on lasso lan-
guages, as shown in Proposition 9 below. Furthermore, boolean operations on
balanced coalgebras yield balanced coalgebras. This fact is proved in Proposition
10, and is a direct application of Theorem 2. Thus, by Proposition 6, we get a
simple proof that ω-regular languages are closed under boolean operations. We
state this fact in Corollary 4, concluding the section.

Proposition 9 (Boolean algebra). For x ∈ X1 and y ∈ Y1, let Lx = Lasso(x)
and Ly = Lasso(y) in the coalgebras (X, f) and (Y, g), respectively; let Lx̄ =
Lasso(x) in (X, f̄); let Lx∪y = Lasso(x, y) in (X×Y, f∪g); let Lx∩y = Lasso(x, y)
in (X×Y, f∩g).We have Lx̄ = C ∗×C+\Lx,Lx∪y = Lx∪Ly andLx∩y = Lx∩Ly.
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Proof. Recall that for x ∈ X1 and y ∈ Y1, f
2
1 (x) and g21(y) are initial states

of DFAs. For complementation, observe that (s, l) ∈ Lasso(x) ⇐⇒ l ∈
LD(f2

1 (
̂f1
1 (x). For all x ∈ X1, the construction complements the DFA of non-

empty words rooted at f2
1 (x). Binary operations are also simple. Notice that

the structure of (X × Y, f ∪ g) is that of their parallel composition, thus it also
includes the parallel composition of the DFAs rooted at f2

1 (x) and g21(y) for all
(x, y) ∈ (X2 × Y2). The obtained DFA is rooted at (f ∪ g)21(x, y), and it accepts
Loop(x)∪Loop(y) by construction. A similar argument holds for (X × Y, f ∩ g).
Proposition 10 (Boolean operations are balanced). If (X, f) is balanced
and image-finite in the final coalgebra, then so is (X, f̄). If, additionally, (Y, g)
is in the same conditions, then also (X×Y, f ∪g) and (X×Y, f ∩g) are balanced
and image-finite along the final morphism.

Proof. By construction, boolean operations preserve finiteness, thus also image-
finiteness along the final morphism. We prove that circularity and coherence
are preserved in turn. Suppose (X, f) is circular, and consider x ∈ X1, k > 0,
u ∈ C+. Call Loop(x̄) the language Loop(x) in the complement coalgebra. We
have u ∈ Loop(x̄) ⇐⇒ u /∈ Loop(x) ⇐⇒ uk /∈ Loop(x) ⇐⇒ uk ∈
Loop(x̄), thus the complement coalgebra is circular. For the union, we have u ∈
Loop(x, y) ⇐⇒ u ∈ Loop(x) ∪ Loop(y) ⇐⇒ u ∈ Loop(x) ∨ u ∈ Loop(y) ⇐⇒
uk ∈ Loop(x)∨uk ∈ Loop(y) ⇐⇒ uk ∈ Loop(x, y). Similarly for the intersection
(or just by de Morgan laws). Coherence is dealt with in the same way.

Corollary 4. Deterministic Muller automata, thus also ω-regular languages,
are closed under boolean operations.

Proof. By Proposition 10, Proposition 6, and the fact that the coalgebra of a
DMA is finite and balanced.

As a final remark, we notice that the combination of boolean operations and
equivalence checking allows one to derive many set-theoretical operations on
lasso languages; as a fundamental example, it yields a proof of decidability of
language inclusion.

6 Future Work

In [4], the authors hoped “that a number of constructions which are presently out-
wardly performed on Büchi automata can be performed on simple DFAs”. Their
goal is somewhat obfuscated by the fact that DFAs do not precisely characterise
lasso languages; thus, for example, bisimulation invariant lasso languages are
not closed under complementation of DFAs. This hints at the possibility of more
precise structures, that characterise ω-regular languages better. Ω-coalgebras
are perfectly fitted: in Section 5 we see that typical operations on automata be-
come fairly standard using them; still, they maintain the definitional simplicity
of DFAs, and their accepting condition is local to states.
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Lasso languages provide a finite syntax for ω-regular languages. We expect
that a deeper study of balanced coalgebras may help understanding the issues of
finite memory in the realm of (languages of) streams, which are infinite structures
by their own nature. In this respect, the study of pumping lemmas for lasso and
ω-regular languages seems an interesting research direction to take.

The importance of circularity and coherence should not be underestimated: it
allows the proof of Proposition 10 to be carried out directly, without assuming
closure under boolean operations of ω-regular languages. In combination with
Proposition 6, this yields a “lasso-language-theoretical” alternate proof of clo-
sure of ω-regular languages under boolean operations. The definition of the two
properties also suggests that circular and coherent coalgebras may be treated as
a covariety. The impact of such a statement has to be framed in the more gen-
eral question of what can the theory of coalgebras add to the theory of stream
automata.

Future work in this sense may be directed in at least three ways. First, the
theory of Ω-coalgebras has just been introduced. Many results in coalgebras
have not been explored yet in conjunction with them (covarieties, coalgebraic
modal logics, and trace semantics come to mind). Second, as it is typical in
coalgebras, one could seek for generalisation of lasso languages and ω-regular
languages, as it has been done for the case of DFAs. An interesting case study is
that of automata over infinite alphabets. Similarly to [5,2], one could use coal-
gebras in the category of nominal sets, which are then finitely represented using
a categorical equivalence. Third, lassos can in turn be seen as coalgebras, of
which Ω-coalgebras are classifying structures. Coalgebra automata [10] enhance
streams by making them elements of the final coalgebra for a certain functor
which can be varied, providing a general notion of modal fixpoint logics for infi-
nite structures. The relationship between stream languages and their ultimately
periodic fragments should be investigated in this more general setting.
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