
Measuring Uncertainty in Scientific

Computation Using Numerica 21’s Test Harness

Brian T. Smith

Numerica 21 Inc.
Angel Fire, NM, USA
carbess@swcp.com

Abstract. The test harness, TH, is a tool developed by Numerica 21 to
facilitate the testing and evaluation of scientific software during the de-
velopment and maintenance phases of such software. This paper describes
how the tool can be used to measure uncertainty in scientific computa-
tions. It confirms that the actual behavior of the code when subjected to
changes, typically small, in the code input data reflects formal analysis
of the problem’s sensitivity to its input. Although motivated by studying
small changes in the input data, the test harness can measure the impact
of any changes, including those that go beyond the formal analysis.

Keywords: testing, scientific application code, floating-point computa-
tion, data perturbation, computational sensitivity, test harness tool.

1 Introduction

An article on the website of the National Physical Laboratory on a Framework for
Uncertainty in Measurement, June 5th, 2007 [1] makes the following statement:

“A measurement is meaningless without a quantitative statement of its
quality in the form of an uncertainty.”

This statement is just as true about a scientific computation as it is about a
physical measurement. Software is useless unless the uncertainty in the com-
puted results due to changes in its input or instabilities in the way the results
are computed are measured or analyzed. To believe computational results, it
is essential to demonstrate that the sensitivity of computed results to changes
in input data, precision of computation, and other key data for the software is
consistent with what is predicted from the characteristics of the problem being
solved. Ideally, a measure of the uncertainty of the computed results as a con-
sequence of the uncertainty of data that the results depend upon needs to be
obtained.

In many cases, such a measure of uncertainty is difficult to obtain analytically.
However, uncertainty in software can still be measured by running the software
with perturbed data values to see whether the computed solution changes as
expected. With some thought, a measure can often be devised to indicate how

A. Dienstfrey and R.F. Boisvert (Eds.): WoCoUQ 2011, IFIP AICT 377, pp. 165–179, 2012.
c© IFIP International Federation for Information Processing 2012



166 B.T. Smith

the results change with small perturbations in the input and other key data. This
paper is about a tool to help provide an assessment of uncertainty in scientific
software and computation.

The tool is a general-purpose test harness modified to facilitate the measure-
ment of changes in results due to changes in input data and other values key to
the computation.

Presented in this paper is a brief description of the test harness, its design, its
features, and how it was modified to facilitate the measurement of uncertainty
of a computation with respect to changes in its input. A case study is provided
to show how this tool has been used to measure the uncertainty of the solution
of a 3-D magnetostatics computation for the vector potential and magnetic flux
or field. The solution technique used for this magnetostatics case study is a
boundary element package for 3-D magnetostatics problems from a software
firm Accurate Solutions In Applied Physics [2].

2 Motivation – Measuring Uncertainty in Software

Software is at the end of the development chain, depending on mathematical
models of physical problems that become the basis for the numerical computa-
tion. The solutions to these problems depend on the algorithms used and the
data used to drive those algorithms.

Software is the final step. As such, we want to determine if the software is
behaving as the mathematical and physical models are predicted to behave.
The approach proposed here is to provide a tool that allows one to measure
the sensitivity of computed results due to changes in input values or critical
parameters in the models, algorithms, and software. Such a measurement of
sensitivity indicates how uncertain the computational results are with respect to
the uncertainty in the values of such critical data.

3 What Is the Test Harness?

The test harness is a tool to evaluate software. In its initial form, it was a
change-detection tool that measured differences in results of two programs that
were supposed to create the same results. The applications for such a tool are
many: to give a few examples,

– the two programs may be actually the same program compiled by two dif-
ferent sets of compiler flags, such as optimization flags;

– the two programs may be the same but run on different machines;
– one program is an enhancement of one other, enhanced to improve perfor-

mance but compute the same results, enhanced to use different data struc-
tures or organized differently, or enhanced to add some new feature but the
developer wants to show that the other features remain unaffected by the
enhancements.



Measuring Uncertainty in Scientific Computation Using TH 167

The key to the test harness in its original form was to measure “significant”
differences in results, that is, differences that represent errors and not differ-
ences that can be traced to reordering of operations, changing results of stable
computations in minor ways. Therefore, it was essential to have the user provide
both the criteria for the comparison (say, relative or absolute difference) and a
threshold to indicate whether the difference was predicted and thus acceptable,
or unpredicted and thus not acceptable, indicating something was wrong. Also,
in scientific applications, arrays and other aggregates need to be compared and
criteria for them are needed and have in some cases to be specified by the user.

The test harness is designed to support large scientific codes. As such, these
codes involve large collections of data and with such programs, the writing,
reading, and comparisons of large volumes of data can be costly. Consequently,
the test harness allows the user to select which procedures are monitored, which
variables are monitored, which parts of arrays are monitored, how often they are
monitored or when the monitoring begins or ends. The test harness measures
and reports the volume of data it is monitoring so that the user controls how
much is monitored on a given run. It also gives execution counts and execution
times for each procedure monitored.

Without going into all the details, the test harness can address all these is-
sues, as described in a previous paper [3] and in its user’s guide [4]. Enhance-
ments made to the test harness to support uncertainty measurements are de-
scribed below. The test harness is currently written for scientific codes in Fortran
77/90/95/2003.

4 The Design of the Test Harness

The test harness is a collection of modules containing input/output procedures
to read and write the monitored data, a collection of generic INCLUDE files
modified by tools to create application-specific INCLUDE files that include ap-
plication specific source text into the application code, and a collection of proce-
dures to perform data comparisons and report differences in results. Either the
program terminates with the first significant difference or reports its results in a
tabular form for an entire program execution. In addition, described in the next
section, there are a series of tools that read and analyze the application code,
determine default places to monitor results, and build the test harness into the
application. The application code with the test harness installed into it can be
run in one of two modes described below.

The modes for the application code are: generate mode and check mode. In
generatemode, the application code runs to completion, creating data from the
run to be compared in check mode with another version of the application code.
In check mode, the data written into files in generate mode are read at the
point where the corresponding data in the second program is computed and a
comparison of the results is performed. In checkmode, there is the option to ter-
minate the execution at the end of the probe where the first unacceptable result
(difference or evaluation that indicates a problem) is encountered or to tabulate



168 B.T. Smith

the difference and continue execution until the application code completes. Upon
completion in the latter case, a summary of the unacceptable results is printed.

Four types of probes or monitoring can be specified; three of the types, namely
input, output, and specific, probe record data in a file when the test harness
is in generate mode and read recorded data and perform comparisons with
results recorded in generate mode. An input probe can be placed at any entry
point to a procedure; an output probe can be placed just before any exit point
from a procedure; and a probe of type specific can be placed at any place in
the execution part of the application code. The probes are different in what they
record; this enables them to make certain checks to ensure only corresponding
data is being compared. The fourth type of probe is a perturb probe which
perturbs specified data values in specified ways when the test harness is in check

mode, allowing the other probes, if present, to read and compare results between
the application code with the original data and results with perturbed data.

5 Building the Test Harness into an Application Code

Much like a debugger, monitoring probes must be placed into the application
code. The emphasis though with the test harness is to facilitate the comparison
and evaluation of results for floating point (although the test harness supports
the monitoring of any intrinsic type or derived type object). Besides addressing
the added complication of comparing floating point values, test harness must
ensure that the data being compared between the generate and check modes
are comparable values; to do this, it has to trace the execution flow by procedure
and order the data so that comparable values (values of the same entities) are
compared.

Tools have been created to accomplish these tasks and ensure the integrity
of the comparisons. Fig. 1 shows the use of the tools to produce a source code
file that represents the application code with the test harness build into it.
The analyzer tool first analyzes the application code, providing a complete
specification of all variables in all procedures in the application and performs
a simple usage analysis of each variable to determine if it is referenced for its
value before it is written into or is always written before it is referenced. Given
this analysis and a list of procedures to monitor, the installer tool creates a
file readable by the builder tool that specifies the input and output probes for
each entry and exit point for the listed procedures. Also, given the results of the
analyzer tool and a list of procedures, the probe tool creates a version of the
application code with INCLUDE lines inserted into it. The INCLUDE lines will
include source text that will be synthesized by the builder tool that represents
the test harness built into the application code.

At this point, the user is expected to modify both the files created by the
installer and probe tools. The reason is that these files specify default com-
parisons and thresholds, probably specify more probe variables than are appro-
priate for the goal of investigating the code, and may specify more probes than
are desirable or appropriate (the reference/definition analysis is only approxi-
mate and in general includes variables that need not be monitored). In the case



Measuring Uncertainty in Scientific Computation Using TH 169

The TH Tools 

Analyzer 

Application Code 

Installer Probe Generator Symbol Table Displayer 

Builder 

Compiler 

Formatted Symbol 
Tables 

Procedure List Procedures To Be 
Probed 

Application Code 
With Include 

Lines 

Modifiable Input 
Files 

Application 
Specific Include 

Files 

Compilable 
Application Code 
With TH Installed 

Executable Application Code 
With TH Installed 

Templates 

Fig. 1. The test harness tools showing their input and output connections to install
the test harness into an application code

of the files created by the probe and installer tools, these can be modified
and reused in subsequent runs without rerunning these tools. In the case of the
installer file, the only expected modification is the deletion of INCLUDE lines
that represent unwanted probes. One of the major modifications to the builder
monitoring specification files (created by the probe tool) is also the deletion of
inappropriate monitored variables; changing the default monitoring thresholds
to appropriate thresholds for the computation is unavoidable until further tools
are provided.

Once the builder input files are modified, the builder and includer tools
with the modified files complete the installation of the test harness into the
application code. The monitoring process proceeds by running the application
code with the test harness installed and often involves revisiting the choice of
thresholds and monitoring. The typical situation is that the analyzer and probe

tools are not rerun while investigating the behavior of the code. The user can
change what and how variables are monitored, even what procedures are mon-
itored, without rerunning the analyzer and probe tools. If variables that are
monitored are changed or their comparison criteria or thresholds are changed,
the test harness must be rerun in generate mode (including measurements of
uncertainty or code sensitivity to data).

Fig. 2 shows a typical scenario with the use of the test harness. The top
line represents versions of the code that are run in generate mode. In this



170 B.T. Smith

Usage Scenario 

Time 

Enhancements 

Runs in 
generate 
mode 

Runs in 
check 
mode 

Original 
Code 

Enhanced 
Code 

Monitoring … 

Change 
monitoring 

No monitoring … 

Monitoring … 

No monitoring 
Minimize this part 

… 

Fig. 2. A scenario for using the test harness to support code development. The top
line represents the original version of the code compared with the modified version on
the bottom line. The code is enhanced as time progresses to the right and the diagonal
lines down represent comparisons made between the original and enhanced versions
of the monitored variables. The line with the up arrow indicates the modified version
becomes the production version at certain points and the monitoring is changed.

mode, values of variables in procedures specified in the builder file are recorded
for later comparison. Many runs of the test harness in check mode (including
perturbing variables) can be run and compared with the monitoring data created
in the version run in generate mode.

The bottom line of Fig. 2 represents versions of the application with the test
harness built in the application run in check mode. Each of these runs may
have different criterion for comparison or different perturbations specified in the
builder input files but require the builder and installer tools to be rerun
to generate a version to run these different cases. Time progresses towards the
right. The slanted lines down from the same “generate” version indicate different
runs with typically different builder input files. Also, the application source files
with the probes inserted may also be changed as long as the variables that are
monitored or evaluated or the order in which they are generated are not changed.
At some point, it is desirable to use the code as it has been changed or monitor
different items. That process is indicated by the lines with the up arrows in Fig. 2
where the version from the lower line is run is generate mode to create anew
the monitored data file. The process of monitoring and changing codes continues
anew, until the user is satisfied with the results.



Measuring Uncertainty in Scientific Computation Using TH 171

The diagonal line with an up arrow indicates a jump in versions where the code
that is being monitored is changed in some substantial way and no testing of the
changes is made. Hopefully, these kinds of changes do not often occur because
they represent situations where code is enhanced and tests are not performed to
ensure that the existing code still performs the way it used to before the changes.

For uncertainty measurements, the process is much simpler, essentially de-
picted only by the downward arrows and the code is never changed. However,
the builder input files may be changed to measure the sensitivity of the computed
results caused by changes in different variables or combinations of variables. Us-
ing the test harness for uncertainty measurements is described in more detail in
Sect. 7.

6 Brief Summary of the Test Harness Features

When the execution of the application code with the test harness installed in it
is executed, the test harness reads files which specify several options:

– The mode, either generate or check;
– Whether execution performance for each monitored procedure is to be mea-

sured;
– Whether the sizes of the files containing the monitor data for each procedure

are recorded and printed at the completion of the application code, when in
generate mode;

– Whether the application code terminates or continues on the first occurrence
of a difference that violates the comparison threshold;

– Whether a summary report of all comparisons performed during the run
upon completion of the application code is printed;

– The Fortran logical units for diagnostics and for debugging output;
– The Fortran logical unit for the monitored data;
– The maximum number of monitored procedures;
– The name of the main program;
– The maximum number of routines to be monitored; if it is not provided, the

default is 100;
– The default value for the tabulate option. If it is not present, the default

value is no tabulation.

The builder input files allow the following attributes to be provided; if not pro-
vided, a default value is set in all cases:

– The lower bound for array subscripts, when such lower bounds cannot be
determined from the source code, for example, when the array is assumed-
size. The default is a vector of 1’s of the rank of the variable;

– The relative tolerance or threshold used to compare floating point data val-
ues. The default is zero, which implies the compared values must be identical.
For types other than floating point, the relative tolerance test is not made;



172 B.T. Smith

– The norm type, either element or global; the default is element. Element
means the comparisons for an array are element by element and for the
relative threshold, relative to each element. Global means the relative com-
parisons are element by element but relative to the norm of the array;

– The absolute tolerance or threshold used to compare arithmetic data values.
The default is zero, requiring the compared values to be identical;

– The scope of the comparison, either global for all variables of this name, or
local to this procedure. The default is local;

– The section of the array to be compared. The default is the whole array.
However, for assumed-size arrays, a section which specifies the final subscript
value or range is required because the analyzer cannot determine this value;

– Whether to tabulate the comparison results and print the tables at the end
of the execution of the application code when in check mode. The default
is the tabulate option specified in the test harness input file;

– The specification of “how” the perturbation is to be performed. The options
are a relative or absolute perturbation or by a specific value of the specified
variable with the random perturbation at most the size of a specified value,
selected from a uniform distribution. There is no default value; the option
must be specified;

– The name of a procedure that is to perturb the variable. If provided, the
procedure overrides all other specifications of how the variable is to be per-
turbed. The default is no procedure specified;

– The name of a procedure that is to perform the comparison of data values.
The default is no procedure specified.

The output generated when “tabulate=yes” is specified is printed on standard
output after the application completes execution. It is a large table with a col-
lection of lines for each probe for each procedure that is monitored. For each
procedure, there is a line for each variable. The information printed in the table
is:

– The name of the procedure;

– The kind of probe (1 for input probe, 2 for output probe, 3 for a specific
probe, and 4 for a perturb probe);

– The probe name;

– The variable name;

– The flag E or N; E indicates the threshold was exceeded; N indicates the
threshold was never exceeded;

– The type of comparison, when an array; elemental or global;

– Two sub-tables, one for absolute comparisons and one for relative compar-
isons. In each sub-table, 2 or 3 columns are provided for the first, maximum,
and average differences, indicating the value of the difference. Also provided
is the procedure call count for the reported difference and with the linear
position in the array, if an array, where the difference occurred.



Measuring Uncertainty in Scientific Computation Using TH 173

7 How Uncertainty Evaluation of Software Is Performed
with the Test Harness

First, the builder input file is modified to specify the variables to be moni-
tored and perturbed. This includes how they are to be perturbed and how the
results are to be compared. Then the application code with the test harness in
generate mode is executed to create a collection of monitored data. Next, the
application code is rerun with the test harness in check mode, tabulating the
results. Just before the test harness closes in the check mode run, it prints the
results, indicating how the perturbation changed the results.

8 A Case Study – Measuring Uncertainty by Perturbing
Data

The case study to demonstrate how to use the test harness to study uncertainty
of computed results due to changes in input is a package of double precision codes
to solve 3-D magnetostatics problems for the vector potential and magnetic flux
using the boundary element method developed by ASAP LLC [2]. The equations
solved are the 3-D Laplace equations with boundary conditions specified over
the surfaces of 3-D objects. The test problems use spheres, annular cylinders,
cubes, and tori.

The boundary element methods solve the Laplace equation by integrating
Green’s functions over boundary elements to produce a relatively large linear
system of equations. The size of the system is dependent on the number of
boundary elements. The integrands are singular in many cases and are trans-
formed in several ways to remove the singularities, but unless care is taken, the
matrix of the resulting linear system of equations may be near singular; how
singular depends on the shape of the object and the aspect ratio of the elements
as well as the techniques used to avoid the near singular integrands.

The goal of the study is to measure the uncertainty of the computed bound-
ary solutions for these test objects and to show that the uncertainty analysis
could be extended to objects for which the solutions are not known. The per-
turbations of interest were to the boundary conditions and to the weights and
points of the quadrature formulas used to perform the needed surface integrals.
The applications for this software are in cases where the boundary conditions
are likely known to a few digits (usually 3 digits), but we were interested to find
some quantity in the computation that might indicate or measure the sensitivity
of the solution to the boundary conditions that could be computed when the
solution was not known.

The package of software is approximately 50K lines and over 300 procedures.
The test harness has been installed in most of the computational components for
the regular testing of the package but for this study, the test harness was used
only in the solver routine and the procedures involved in the solution, represent-
ing approximately 15K lines and 100 procedures, of which only 24 procedures
and 168 variables were monitored.



174 B.T. Smith

8.1 Measurements

For this study, only the results for the sphere, annular cylinder, and torus are
reported here. In all cases the solution vector, consisting of either the Cartesian
coordinates of the vector potential or the tangential components of magnetic flux
at surface nodes, was examined to study its dependence on boundary data. Solu-
tion variation was measured using the maximum element norm of the difference
between the vector solution computed with the unperturbed and perturbed data.
The vectorial boundary condition data were perturbed by addition of uniform
random variables to their Cartesian coordinates. The magnitude of the pertur-
bations was scaled relative to coordinate value with a change up to 100 units
in the last place of double precision, 1 unit in the last place in single precision,
10,000 units in the last place in single precision (roughly a change in the third
digit), and 100,000 units (roughly a change in the second digit). The boundary
conditions are different for each problem; for the sphere and torus, the boundary
conditions were Dirichlet and for the annular cylinder, the boundary conditions
were mixed Dirichlet and Neumann. The element shapes were quadrilaterals for
the torus and annular cylinder and mixed quadrilaterals and triangles for the
sphere.

Also, measured as part of the case study were perturbations in the Gaussian
weights and points. For all formulas (formulas with more weights and points
are used when the integrand is determined to be near singular), the weights
and points were changed by random perturbations relative to themselves at the
same levels of 100 units in the last place of double precision and 1, 10,000,
and 100,000 units in the last place of single precision. Perturbations to both the
boundary conditions and Gaussian quadrature parameters at the same time were
not performed in the material for this demonstration although this is possible
with the test harness tool.

As a general practice, the Laplace solvers estimate the condition number of
the linear system [5]. The expectation was that the size of the perturbations of
the computed results would depend on the condition number, larger for larger
condition numbers of the linear system. The concern was that other commodities
might contribute, like how close to singularity were the integrands or how often
the higher order quadrature rules or the Telles transformations [6,7] were used
to handle very singular integrands.

8.2 The Results

Fig. 3 to Fig. 7 plot the sizes of the perturbation of the solution with respect to
the perturbations of the boundary conditions and the quadrature weights and
points, tested separately. The plots show that the effect of perturbations of ei-
ther of these quantities on the solution is relatively small in general, roughly
of the size of the perturbation but roughly proportional to and dependent on
the condition number. That is, for Fig. 3 (the sphere), the perturbations in the
solution follow closely the perturbations in the ”input”; for the sphere, the con-
dition number of the linear system is approximately 250. Similarly, in Fig. 5



Measuring Uncertainty in Scientific Computation Using TH 175

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Log10 Of 
 Change In 
 Solution 
 Vector 

Log10 of Magnitude Of Perturbation 

Sphere With Boundary Condition Perturbations 

Data

Straight Line

Fig. 3. For a sphere, measuring the perturbations of the solution where the boundary
conditions are perturbed by a relative amount of approximately 102, 109, 1013, and
1014 units in the last place of double precision. The solution is perturbed only slightly
more than the perturbation in the boundary conditions (that is, the lines are on top
of one another). The condition number of the linear system is approximately 250.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Log10 Of 
 Change In 
 Solution 
 Vector 

Log10 of Magnitude Of Perturbation 

Annular Cylinder With Boundary Condition Perturbations 

Data

Straight Line

Fig. 4. For an annular cylinder, measuring the perturbation of the solution where the
boundary conditions are perturbed by a relative amount of approximately 102, 109,
1013, and 1014 units in the last place of double precision. The solution is perturbed
more than the perturbation in the boundary conditions. The condition number of the
linear system is approximately 6000.



176 B.T. Smith

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Log10 Of 
 Change In 
 Solution 
 Vector 

Log10 of Magnitude Of Perturbation 

Torus With Boundary Condition Perturbations 

Data

Straight Line

Fig. 5. For a torus, measuring the perturbations of the solution where the boundary
conditions are perturbed by a relative amount of approximately 102, 109, 1013, and 1014

units in the last place of double precision. The solution is perturbed more than the
perturbation in the boundary conditions. The condition number of the linear system
is approximately 170.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Log10 Of 
 Change In 
 Solution 
 Vector 

Log10 of Magnitude Of Perturbation 

Torus With Quadrature Data Perturbations 

Data

Straight Line

Fig. 6. For a torus, measuring the perturbations of the solution where the Gaussian
quadrature weights and points are perturbed by a relative amount of approximately
102, 109, 1013, and 1014 units in the last place of double precision. The solution is
perturbed more than the perturbation of the Gaussian parameters and is more sensitive
to weights/points perturbations than boundary condition perturbations. The condition
number of the linear system is approximately 170.



Measuring Uncertainty in Scientific Computation Using TH 177

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

Log10 Of 
 Change In 
 Solution 
 Vector 

Log10 of Magnitude Of Perturbation 

Annular Cylinder With Quadrature Data Perturbations 

Data
Straight Line

Fig. 7. For an annular cylinder, measuring the perturbations of the solution where
the Gaussian quadrature weights and points are perturbed by a relative amount of
approximately 102, 109, 1013, and 1014 units in the last place of double precision. The
solution is perturbed more than the perturbation of the Gaussian parameters and is
more sensitive to weights/points perturbations than boundary condition perturbations.
The condition number of the linear system is approximately 6000.

(the torus), the perturbations follow the perturbations in the input; the condi-
tion number approximately 170. However, in Figure 4 (the annular cylinder),
the perturbations in the solution magnify those of the boundary conditions but
still follow the perturbations in the boundary condition; the condition number of
the linear system for the annular cylinder is approximately 6000, 25 to 40 times
larger than that for the sphere and torus, but the perturbation in the solution is
approximately 10 times larger, slightly smaller for the small perturbations and
the factor increasing to slightly more than 10 times for the larger perturbations.
The line labeled “Straight Line” (using square points) plots the perturbation in
the solution as if the perturbation of the input data created the same perturba-
tion in the solution. The line labeled “Data” (using diamond points) plots the
measured perturbation in the solution.

Fig. 6 and Fig. 7 show similar behavior as a consequence of perturbations
in the quadrature parameters for the torus and cylinder, with the magnifica-
tion of the perturbations in the solutions being smaller for the torus where the
condition number is smaller than that for the annular cylinder by a factor of
approximately 40.

9 Conclusions

For this case study, it was relatively straightforward to make perturbations in the
data and to measure the changes in the computed solution. The results of these



178 B.T. Smith

measurements are consistent with the conjecture that the condition number of
the linear system will indicate the sensitivity of the solution to changes in the
input boundary conditions. Further experiments not reported here continue to
confirm the significance of the condition number of the linear system when other
boundary conditions are selected.

The test harness has provided a convenient tool to measure uncertainty due
to data changes. It is conjectured that by changing the application code so that
a version run in generate mode uses a slightly different model than the appli-
cation code run in check mode would allow measurements to be made of the
uncertainty in the solution caused by using a different model. The only require-
ment is that the perturbations in the model can be computed by specifying a
user-supplied procedure to make the perturbations and a second user-supplied
procedure can be written to measure the effect of the perturbations on the com-
puted results.

Acknowledgements. The design of the test harness was supported in part by
a DOE Phase 1 SBIR award DE-FG-02-04ER84028, July 14, 2004 – April 12,
2006.

References

1. National Physical Laboratory, UK: A Framework for Uncertainty in Measurement
(2010), http://www.npl.co.uk/mathematics-scientific-computing/
mathematics-and-modelling-for-metrology/measurement-uncertainty-

framework/a-framework-for-uncertainty-in-measurement

(accessed November 17, 2011)
2. Accurate Solutions In Applied Physics LLC, Albuquerque, New Mexico (2011),

http://www.manta.com/c/mtvfjt3/

accurate-solutions-in-applied-physics-llc (accessed November 17, 2011)
3. Smith, B.T.: A Test Harness TH For Numerical Applications and Libraries. In:

Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based Problem Solving Environments. IFIP,
vol. 239, pp. 227–241. Springer, Boston (2007)

4. Smith, B.T.: The Test Harness User’s Guide, Version 0.6.9, Numerica 21 Incorpo-
rated (2010)

5. Anderson, E., et al.: LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999),
http://www.netlib.org/lapack/lug

6. Telles, J.C.F., Oliveira, R.F.: Third Degree Polynomial Transformation for Bound-
ary Element Integrals: Further improvements. Eng. Anal. BEM 13, 135–141 (1994)

7. Baltz, B., Mammoli, A.A., Ingber, M.S.: Incremental Improvements to the Telles
Third Degree Polynomial Transformation for the Evaluation of Nearly Singular
Boundary Integrals. In: Chen, C.S., Brebbia, C.A., Pepper, D.W. (eds.) Boundary
Element Technology XII, pp. 459–473. WIT Press, Southampton (1999)

http://www.npl.co.uk/mathematics-scientific-computing/mathematics-and-modelling-for-metrology/measurement-uncertainty-framework/a-framework-for-uncertainty-in-measurement
http://www.npl.co.uk/mathematics-scientific-computing/mathematics-and-modelling-for-metrology/measurement-uncertainty-framework/a-framework-for-uncertainty-in-measurement
http://www.npl.co.uk/mathematics-scientific-computing/mathematics-and-modelling-for-metrology/measurement-uncertainty-framework/a-framework-for-uncertainty-in-measurement
http://www.manta.com/c/mtvfjt3/accurate-solutions-in-applied-physics-llc
http://www.manta.com/c/mtvfjt3/accurate-solutions-in-applied-physics-llc
http://www.netlib.org/lapack/lug


Measuring Uncertainty in Scientific Computation Using TH 179

Discussion

Speaker: Brian Smith

William Kahan: What if the tool’s INCLUDEs insert statements that should
not, but do, change the arithmetic because of over-agressive compiler optimiza-
tions triggered or inhibited by the INCLUDEs?

Brian Smith: The short answer is that this situation of the included text
disturbing the optimization is very unfortunate but certainly possible. I have
tried to minimize the likelihood of this happening for the default probe insertion
locations where I have some expectation that the included text will not disturb
the optimization. The included text is, in most cases, a CALL statement and
typically the impact of a CALL statement on compiler optimization is predictable
at an entry point or exit point of a procedure. However, when the user inserts
a probe to monitor or change program variable values, the user must be aware
of what impact the probe is having on optimization; the documentation in the
users guide warns the user of this issue. For example, placing a probe in the
middle of a loop will likely change the optimization and the user needs to be
aware of this impact and how it affects the computed results.

John Reid: It looks as if you are working in Fortran 95 and do not support
nested procedures. Is this true?

Brian Smith: No. The test harness supports nested procedures as restricted
by Fortran 90/95/2003; that is, these versions of Fortran prohibit internal pro-
cedures nested in internal procedures so that the installation of a monitoring,
evaluation, or uncertainty probe in an internal procedure must not create an
internal procedure within an internal procedure. This is mainly an annoyance
and inconvenience in that INCLUDE lines representing a probe are replaced by
a CALL statement to an internal procedure that is created and inserted at the
end of the procedure unit in all procedures except an internal procedure. For an
internal procedure, the INCLUDE line is replaced by many lines of code that
implements the probe.

If a version of Fortran removes this restriction, then the test harness code
installer will be modestly modified to replace the INCLUDE line for a probe
with a CALL statement to an internal procedure in all cases in the same way it
treats all other procedures.

So the bottom line is the test harness currently supports nested procedures
in all ways allowed by the Fortran 90/95/2003 standards.


	Measuring Uncertainty in Scientific
Computation Using Numerica 21’s Test Harness
	Introduction
	Motivation – Measuring Uncertainty in Software
	What Is the Test Harness?
	The Design of the Test Harness
	Building the Test Harness into an Application Code
	Brief Summary of the Test Harness Features
	How Uncertainty Evaluation of Software Is Performed with the Test Harness
	A Case Study – Measuring Uncertainty by Perturbing Data
	Measurements
	The Results

	Conclusions
	References




