
Combining Relational and Semi-structured

Databases for an Inquiry Application

Marius Ebel and Martin Hulin

University of Applied Sciences Ravensburg-Weingarten, 88250 Weingarten, Germany
{ebelma,hulin}@hs-weingarten.de

Abstract. The popularity of NoSQL databases keeps growing and more
companies have been moving away from relational databases to non-
relational NoSQL databases. In this paper, the partitioning of a relational
data model of an inquiry system into semi-structured and relational data
for storage in both SQL and NoSQL databases is shown. Furthermore,
the CAP theorem will be applied to categorize the storing of the correct
parts of the model into their corresponding databases. As a result of
these reorganizations and the introduction of additional histogram data,
overall performance improvements of about 93% to 98% are achieved.

Keywords: NoSQL, Document Stores, MongoDB, semi-structured data,
inquiry system.

1 Introduction

Not Only SQL (NoSQL) – reintroduced by Evans in 2009 [7] – stands for a
variety of new data stores which now are gaining population on the market [10].
Long time fully relational data stores have been sufficient for most purposes. But
since companies and organizations have started to collect huge amounts of data,
such as customer, sales and other data for further analysis, several types of non-
relational data stores are preferred over the relational ones [10]. Traditional SQL
databases come with the need of a fixed schema organized in tables, columns and
rows, which cannot handle the changed needs for today’s database applications.

NoSQL does not necessarily mean schema-free. There are also NoSQL data-
bases for structured data like Google’s Bigtable [4]. Among the schema-free
NoSQL databases there are numerous data stores like the key-value-stores Redis
[11] and the document stores like Amazon SimpleDB [15], Apache CouchDB
and MongoDB. NoSQL data stores themselves provide a variety of sophisticated
techniques like MapReduce [6] and better mechanisms for horizontal scalability
[3] among others.

NoSQL document stores form only one group of this large variety of NoSQL
data stores. These databases store and organize data as collections of documents,
rather than as structured tables with uniformsized fields for each record. With
these databases, users can add any number of fields of any length to a docu-
ment [10, p. 13]. They organize data in—as the name indicates—documents.
Documents are treated as objects with dynamic properties, which means that a

G. Quirchmayr et al. (Eds.): CD-ARES 2012, LNCS 7465, pp. 73–84, 2012.
c© IFIP International Federation for Information Processing 2012

74 M. Ebel and M. Hulin

document can be interpreted as a dynamic list of key-value pairs. The approach
described in this paper makes use of the absence of schemas in document-oriented
NoSQL databases to store dynamic, semi-structured data.

SQL databases mostly use proprietary connection drivers to handle commu-
nication with the server, where data transfer is just a “black box”. NoSQL
databases are different in this case. Many of them use Representational State
Transfer (REST) [8,14] where often a community-developed connection driver
has to be used (Redis, Apache CouchDB), but some also come with a propri-
etary connection driver (MongoDB). In most projects there is either no time for
developing a connection driver or it is unsafe to rely on community projects.
Therefore, the presence of a proprietary connection driver can be a very impor-
tant factor for choosing the appropriate NoSQL database.

The approach to use semi-structured data structures is basically not new. For
instance, the database system CDS/ISIS is a type of semi-structured NoSQL
database, which is used since the 1980’s by a vast amount of academic libraries
[13]. But the way of using semi-structured data described in the following section
focuses on reorganizing previously relational data into semi-structured record
sets and on the optimization of computational effort of statistical data.

Furthermore, we will show an approach to affect data organization through
dynamic semi-structured data and the subsequent querying, which is also applied
in the inquiry system INKIDU1.

2 Methodology

The use case of the methods described in the sequel is the online inquiry platform
INKIDU. INKIDU provides the user with the ability to design questionnaires,
which can be statistically evaluated after completing the inquiry. Questionnaires
in INKIDU are user-defined sequences of questions. Each question can be of a
different type such as rating questions, single and multiple choice questions, free
text questions, etc. After submitting a questionnaire, the submitted data has to
be stored for further result analysis. A questionnaire therefore has two factors
affecting the possible amount of data, which can be produced by each user: The
number of questions and for each question its subsequent type. The effective
structure and amount of answers of an answer set is finally determined by the
questions, which the user decided to give an answer for. Hence, there is no way
to predict the exact amount and structure of data, which will be produced by
each user. Conclusively only a rough estimate of the structure is known: A list
of key-value-pairs, i.e. the key is the question identifier and the value is the user-
given answer. Considering the variable length of such a list and not knowing the
data type of each value, only semi-structured data is given. In a system meant
for strictly structured relational data, the presence of just semi-structured data
leads to a conflicting situation of storing a set of semi-structured data with an
unpredictable number of fields and data types.

1 http://www.inkidu.de/

http://www.inkidu.de/

Combining Relational and Semi-structured Databases 75

2.1 Current Data Organization

The current way of organizing answer sets is shown in Figure 1, where answer
sets are organized vertically. An answer set containing all of an user’s answers
belonging to a questionnaire is split into tuples consisting of the mandatory
primary key, the inquiry this answer belongs to, the answered question, and a
field referencing the first primary key value of all answers belonging to the same
answer set. The last field is created by the need of making the assignment of
answers reconstructable, e.g. for data export and for allowing further statistical
cross-analysis. As the data model shows, the redundant reference to the inquiry
is not necessary, but is held to eliminate the need of a table join and therefore
to keep query times at a reasonable level, when e.g. retrieving all answer sets
belonging to a certain inquiry. These bottlenecks such as redundant foreign keys,
complex queries and huge index data, arise from the RDBMS’ need of a fixed
table schema, which requires a predefined and therefore predictable structure of
the data.

Fig. 1. Excerpt from the current fully relational data model of INKIDU being reorga-
nized

In order to demonstrate the current data organization and the approaches
described in the following, a questionnaire with one rating question and one
multiple choice question with three options is taken as a reference example.
There are two answer sets to be shown in different manners of data organization:

(rating=1, multiple choice=[option 1, option 2])

(rating=4, multiple choice=[option 1, option 2, option 3])

Applying the fully relational approach on the reference example data, answer
sets, shown in Table 1, are produced.

76 M. Ebel and M. Hulin

Table 1. Answer sets which result from storing the above described example data in
the fully relational data model. The values of the column answers for option 1 – 3 are
foreign keys referencing record sets of the the table questionoptions.

id inquiry question answers assign remarks

3042397 18722 366519 1 3042397 rating value 1

3042400 18722 366519 4 3042400 rating value 4

3042398 18722 366520 203648 3042397 option 1

3042399 18722 366520 203649 3042397 option 2

3042401 18722 366520 203648 3042400 option 1

3042402 18722 366520 203649 3042400 option 2

3042403 18722 366520 203650 3042400 option 3

2.2 Organizing Answer Sets

In the following, the approach of reorganizing the above data structure is de-
scribed. With the emergence of schema-free databases that do not depend on a
predefined structure of data records, the data reorganization can be done not
only much more intuitively, but also more efficiently. This means that the con-
struction of the data records requires less effort such as data redundancies and
index data and produces a structure which is easy to read for machines and
humans as well.

Semi-structured data is often explained as “schemaless” or “self-describing”,
terms that indicate that there is no separate description of the type or structure of
data. Typically, when we store or program with a piece of data, we first describe
the structure (type, schema) of that data and then create instances of that type
(or populate) the schema. In semi-structured data we directly describe the data
using a simple syntax [1, p. 11].

In this case we use JavaScript Object Notation (JSON) to describe an answer
data set, e.g. in terms of NoSQL a document such as the following record sets,
which result from the reference example data.

{ // first answer set:

// (rating=1, multiple choice=[option 1, option 2])

inquiry: 18722,

data : {

366519 : 1

366520 : [203648, 203649]

}

}

{ // second answer set:

// (rating=4, multiple choice=[option 1, option 2, option 3])

inquiry: 18722,

data : {

Combining Relational and Semi-structured Databases 77

366519 : 4

366520 : [203648, 203649, 203650]

}

}

The use of JSON notation is proposed by MongoDB, which is used for this
project. Binary JSON (BSON) is the format used by MongoDB to store docu-
ments and to transfer them via network [12,3]. As shown above an answer set,
formerly to be divided into several records, can now be grouped into one sin-
gle, semi-structured record, which uses a key-value list mapping question ids
to the user-given answers. Hence, a convention of a basic loose structure of an
answer set can be decribed as the following: a reference to the inquiry the user
participated and n key-value pairs of the data mapping as described before.

The advantage of a non-structured NoSQL-Database is now clearly visible:
All the data belonging to the same answer set can be kept in one single record
that can be easily queried by the inquiry field and still does not need to fulfill the
requirement of a predefined number of fields or data types. This way of storing
data simplifies data management and is easier to understand.

2.3 Data Condensation

The approach described above can be refined to group all answer sets into a
single record, i.e. to condense data from multiple record sets into a single one.
The reference example data would result in a record set shown below.

{

inquiry: 18722,

data : [

{ // first answer set:

// (rating=1, multiple choice=[option 1, option 2])

366519 : 1

366520 : [203648, 203649]

},

{ // second answer set:

// (rating=4, multiple choice=[option 1, option 2, option 3])

366519 : 4

366520 : [203648, 203649, 203650]

}

]

}

Such a condensed record set can grow very large, which is a disadvantage espe-
cially for real-world applications. It increases the memory consumption of answer
processing outside the database resulting in severe scalability problems for the

78 M. Ebel and M. Hulin

whole application. But with smaller amounts of data or less strict scalability re-
quirements, such approach is still a better way of data modeling with comfortable
handling.

Databases use B-Trees for indexing data [5]. The previously fully relational
data model required three fields per answer record set (i.e. for every answer to
every question) to be indexed in order to keep query times at a reasonable level.
The B-Trees indexing only the answer sets of INKIDU consume more storage
space than the data itself. Using the semi-structured approach the index data
is minimized, because only one field per collection (inquiry) and less record sets
have to be indexed. This is true whether the answer sets are stored in multiple
records or are condensed to one record.

2.4 Histograms

The price to pay for less index data and easier queries is that some functions for-
merly used in SQL queries aren’t available anymore. Examples for some of these
functions are minimum/maximum, average, standard deviation, etc. Keeping in
mind that an inquiry application also includes the statistical analysis of the re-
trieved answers, the absence of these functions is fatal. These functions have to
be regained and unfortunately have to be implemented outside the database. Us-
ing the situation to our benefit, the computation of statistical data can be done
more efficiently by introducing another semi-structured dynamic data structure,
which is described in the following. For better understanding the formula of the
arithmetic mean has to be considered first:

x̄naive =
1

n

n∑

i=1

xi =
x1 + x2 + x3 + . . .+ xi

n
(1)

This naive formula implies that every element x ∈ X has to be processed for
calculating x̄naive. This means that the computations of the arithmetic mean and
the standard deviation result in severe scalability problems for larger or growing
amounts of answers. The computational effort for e.g. the average grows linearly
by O(n) with n as the number of record sets. Therefore these calculations have to
be optimized, which is now done by storing additional data. The linear growth of
computational effort by the number of record sets is—especially in the described
scenario—a bottleneck. To tackle the challenge of reducing the computational
effort, data is reorganized to histograms.

Per definition, a histogram is a graphical representation of the distribution of
data. In the above described scenario, a histogram represents the distribution of
answers to a single question holding the absolute frequency of every option. An
option can be either a foreign key referencing a question option of a multiple/s-
ingle choice question or a rating value of a rating question. Hence, the histogram
can be represented as a set of option-frequency pairs, which can be used to do
a much more efficient calculation of the arithmetic mean and the standard de-
viation. The following schema shows a representation of a histogram, which can
be easily projected onto a semi-structured NoSQL document. In this schema

Combining Relational and Semi-structured Databases 79

o stands for option and f stands for frequency, where a list of these option-
frequency mappings is the actual data part of a histogram, Hinquiry, question,
without the inquiry and question information.

data(Hinquiry, question) =

⎡

⎢⎢⎢⎢⎢⎣

o1 , f1
o2 , f2
o3 , f3
... ,

...
ok , fk

⎤

⎥⎥⎥⎥⎥⎦

e.g.
=

⎡

⎢⎢⎢⎢⎣

1 , 594
2 , 453
3 , 203
4 , 134
5 , 43

⎤

⎥⎥⎥⎥⎦
(2)

As shown in Eqns. 2+3, every option is “weighted” by its absolute frequency,
which means that the set of data is not iterated over every record set, but over
every question option instead. This makes the computational effort still grow
linearly by O(k) where k is the number of available question options (revise
following sentence), but rather by the number of available question answers than
by the number of given record sets.

x̄hist =
1

n

k∑

i=1

(oi · fi) = o1f1 + o2f2 + o3f3 + . . . okfk
n

(3)

The correctness of Eqn. 3 is given by the fact that the sum of all frequencies
is equal to the number of given answers:

∑k
i=1 fi = n. Now the number of

different question options is a predefined number, which is independent from the
growing number of incoming answers and therefore makes the computational
effort predictable and as small as possible: It is independent of the number of
users taking part in a questionnaire. Of course, the complete computation time
for calculating the mean remains the same. However it is moved from a time
critical part of the application (statistical analysis) to an uncritical part (storing
new answer sets). Additionally the computational effort is distributed over every
user submitting answers to the system, which results in shorter processing times
for visualizing and displaying statistical analysis reports (see Section 3.3).

The disadvantage of storing redundant frequency values is justified by the
performance gain of the statistical analysis, a core feature of inquiry applica-
tions. As mentioned above a document in terms of a document-oriented NoSQL
database is a list of nestable key-value pairs. The semi-structure of a histogram
data set now can be modeled as follows; consisting of a fixed and a dynamic part.
The fixed part is the identifying header, which includes the inquiry id and the
associated question id. The dynamic part is the actual mapping from question
option onto absolute frequency.

3 Software Architecture

In this section the realization of the above concepts is described. The application
is, as already mentioned, the online inquiry platform INKIDU, which allows the
user to create and evaluate user-defined questionnaires.

80 M. Ebel and M. Hulin

Fig. 2. Structure of a semi-structured histogram record. The upper part (“header”) is
the fixed part, which can be found in every histogram record. The lower part (“pay-
load”) is the dynamic part, which is variable in its number of key-value-pairs.

3.1 System Overview

The concept of integration in case of INKIDU includes the parallel usage of a
traditional SQL database and a NoSQL document store. The NoSQL document
store is provided by MongoDB2 while MySQL3 is used as the data store of the
relational data model.

Fig. 3. Excerpt of the data model of INKIDU showing which parts belong to the
relational and non-relational data model

2 http://www.mongodb.org/
3 http://www.mysql.de/

http://www.mongodb.org/
http://www.mysql.de/

Combining Relational and Semi-structured Databases 81

Consistency and referential integrity are important features in relational data
models. With the features of mass data storage, database scalability and high
availability NoSQL databases often do not provide native support for ACID
transactions. NoSQL databases are able to offer performance and scalability
and keep strong consistency out of their functionalities, which is a problem for
several types of applications [10]. For instance, in case of INKIDU there are
parts of the data model which do require ACID transactions and strong con-
sistency as well as parts which do not require this functionality. Therefore, as
Figure 3 shows, the data model is distributed over the two different databases.
So the decision to make it a hybrid system consisting of relational and non-
relational databases is explained by two different factors. The first factor is, that
the approach of increasing system performance by reorganizing data works also
on single server setups. Other mechanisms increasing performance by scaling a
system horizontally (e.g. load balancing) need a multiple server setup to work.
The second factor is defined by the different requirements towards consistency
and referential integrity. However, there are approaches to ensure consistency
within a non-relational data model [16], which for now exceeds the resources of
this project.

The hierarchy consisting of inquiries, questions, questionoptions, etc.
has to be consistent at any time. This includes on one hand ACID transactions
and on the other hand referential integrity, such that e.g. no orphaned records
can exist. This means that the absence of foreign key checking and the presence
of eventual consistency as achieved by MongoDB is not sufficient. Therefore
MySQL is still used to store these structured data. NoSQL database manage-
ment systems can store data, which change dynamically in size much better
than relational ones; for instance nodes can be added dynamically to increase
horizontal scalability. Considering the three guarantees consistency, availability
and partition-tolerance of the CAP theorem [2,9], consistency and availability
are most important for the relational part. Availability and partition-tolerance
are most important for the non-relational of INKIDU due to the fact that it is
not tolerable that data is not accessible or gets lost in case of a database server
node crashing.

3.2 Implementation

There exist a variety of different NoSQL database concepts and implementations:
key-value stores, document stores and extensible record stores [3]. To choose
the appropriate NoSQL database management system for INKIDU three key
requirements were considered:

– Extensibility:The possibility to migrate the full data model into the NoSQL
database has to be preserved. This means the database has to be capable of
storing objects of higher complexity than histograms and answer sets.

– Indexing: Besides the unique ID of every record set a second additional
field has to be indexed.

– Reliability: The database itself and the driver have to work well with PHP.
Especially the driver has to be well-engineered for simple and reliable use.

82 M. Ebel and M. Hulin

The requirements to store more complex objects and indexing more than one field
led to the decision to use document stores. In order to find the right document
store fulfilling all of the above key requirements Apache CouchDB and Mon-
goDB were investigated. CouchDB offers some drivers developed by community
projects, but without support. MongoDB offers one well developed proprietary
driver, which is known to work well with PHP. Therefore MongoDB was chosen
for this project.

A point not linked to the key requirements but still notable is the presence of
atomic operations in MongoDB. Atomic operations allow changes to individual
values. For instance to increment a value the modifier $inc can be used in an
update command, $push adds a value at the end of an array and $pull removes it.
These updates occur in place and therefore do not need the overhead of a server
return trip [3]. This is especially of advantage for the updating of histograms,
where often only one single value has to be increased.

3.3 Performance Results

In order to measure the performance of the reconstructed system the fully re-
lational and the hybrid implementation were compared against each other in
two different scenarios: Firstly, the generation of the visualized histograms. This
includes the querying of the histogram, the calculation of the average and the
standard deviation and the rendering of a histogram image displayed to the user.
Secondly, the export of all answer sets of an inquiry, which includes the query-
ing of all answer data belonging to an inquiry and formatting it into a CSV file.
These scenarios were chosen, because they are the most affected parts of the re-
construction. The test procedures were supplied with 100 different anonymized
real-life inquiries with one to 200 questions. The inquiries itself had participants
within the range from 10 to 1000. During the test scenarios the following two
values were measured:

– Query Timings: The time needed to query the database itself.
– Processing Timings: The time the whole process needed to complete in-

cluding the query time.

The reason to distinguish between querying and processing timings is that we
also have to take into account the time consideration for the optimization of the
computation processes outside the database. Table 2 shows the query timings and
Table 3 shows the processing timings. The measurements show that the average
querying time was reduced by about 30% to 95% and the average processing
time by about 93% to 98%.

Histograms could have also been realized using a relational database. However
all reasons of Section 2.2 to store answer sets in a NoSQL database are true
for histogram data as well. These data are also semi-structured and change
in size dynamically. Therefore the overall performance improvements are the
result of the combination of the relational database with a NoSQL database.
Another possible approach - using an object database - was not investigated in
this project.

Combining Relational and Semi-structured Databases 83

Table 2. Query timings for histogram and data export querying

Histogram Querying (µs)
Min Avg Max

Relational 12 36 279
Hybrid 2 24 (–30%) 167

Data Export Querying (µs)
Min Avg Max

Relational 14 4423 83699
Hybrid 3 200 (–95%) 8791

Table 3. Processing timings for histogram generation and data export

Histogram Generation (µs)
Min Avg Max

Relational 179 166695 2355661
Hybrid 113 3983 (–98%) 116779

Data Export (µs)
Min Avg Max

Relational 155 114837 2617227
Hybrid 141 8380 (–93%) 193134

4 Conclusion

This paper illustrates an approach to distribute a fully relational data model into
a relational and a non-relational part in order to deal with different requirements
concerning consistency, availability and partition-tolerance. Before partitioning
a relational data model into multiple parts, the choice of the database(s) has to
be made carefully. Especially with regard to NoSQL databases, there is a large
variety of different types of data stores available. In this project, the decision
to select MongoDB as NoSQL database management system has been strongly
influenced by the presence of a reliable driver for database connection and atomic
operations, which provide the ability to make simple update operations as fast
as possible.

The data model of the INKIDU inquiry application is separated in two parts:
The structured part is still stored using the relational DBMS MySQL, which
guarantees ACID transaction control. The semi-structured part, the answer sets
of a questionnaire, is stored in the document store MongoDB. This reduces the
amount of stored data by more than 50% because three of the four indexes can
be omitted.

In a second step histograms are stored to increase the performance of a ques-
tionnaire’s statistical analysis - a core feature of an inquiry application. Mon-
goDB is used to store histogram data because they are semi-structured, too. The
time the queries take to retrieve the histogram and export data has been reduced
by about 30% and 95%. The overall performance for the processes of generating
histograms and exporting data has increased by 98% and 93% respectively.

84 M. Ebel and M. Hulin

Acknowledgements. We gratefully acknowledge Wolfgang Ertel for collabo-
ration and Michel Tokic for his valuable feedback on this paper.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From relations to
semistructured data and XML. Morgan Kaufmann Publishers Inc., San Francisco
(2000)

2. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2000, p. 7. ACM, New York (2000)

3. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Record 39(4), 12–27
(2010)

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. In: Proceedings of the 7th Conference on USENIX Symposium on
Operating Systems Design and Implementation, vol. 7, pp. 205–218 (2006)

5. Comer, D.: The Ubiquitous B-Tree. ACM Computing Surveys 11, 121–137 (1979)
6. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.

In: Proceedings of the 6th Symposium on Opearting Systems Design & Implemen-
tation. USENIX Association (2004)

7. Evans, E.: Eric Evans’ Weblog (May 2009),
http://blog.sym-link.com/2009/05/12/nosql_2009.html (retrieved March 03,
2012)

8. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. Ph.D. thesis, University of California (2000)

9. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33, 51–59 (2002)

10. Leavitt, N.: Will NoSQL Databases Live Up to Their promise? Computer 43, 12–14
(2010)

11. Lerner, R.M.: At the Forge - Redis. Linux Journal 2010 (197) (September 2010),
http://www.linuxjournal.com/article/10836 (retrieved February 27, 2012)

12. MongoDB: BSON, http://www.mongodb.org/display/DOCS/BSON
(retrieved February 26, 2012)

13. Ramalho, L.: Implementing a Modern API for CDS/ISIS, a classic semistructured
NoSQL Database. In: Todt, E. (ed.) Forum Internacional Do Software Livre, XI
Workshop Sobre Software Livre, Porto Alegre, vol. 11, pp. 42–47 (2010)

14. Riva, C., Laitkorpi, M.: Designing Web-Based Mobile Services with REST. In: Di
Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907, pp. 439–450. Springer,
Heidelberg (2009)

15. Robinson, D.: Amazon Web Services Made Simple: Learn how Amazon EC2,
S3, SimpleDB and SQS Web Services enables you to reach business goals faster.
Emereo Pvt. Ltd., London (2008)

16. Xiang, P., Hou, R., Zhou, Z.: Cache and consistency in NOSQL, vol. 6, pp. 117–120.
IEEE (2010)

http://blog.sym-link.com/2009/05/12/nosql_2009.html
http://www.linuxjournal.com/article/10836
http://www.mongodb.org/display/DOCS/BSON

	Combining Relational and Semi-structuredDatabases for an Inquiry Application
	Introduction
	Methodology
	Current Data Organization
	Organizing Answer Sets
	Data Condensation
	Histograms

	Software Architecture
	System Overview
	Implementation
	Performance Results

	Conclusion
	References

