
A Precise Description of the S-BPM
Modeling Method 12

12.1 To Go

A. Fleischmann et al., Subject-Oriented Business Process Management,
DOI 10.1007/978-3-642-32392-8_12, # The Author(s) 2012

227



This chapter presents a precise formulation of the S-BPM constructs discussed

in the preceding chapters. We express them in the form of an abstract SBD-

interpreter,1 which yields a precise, controllable definition of the subject behavior

in SBDs, the so-called semantics of SBDs. Furthermore, this definition establishes a

solid scientific foundation for the S-BPM method to support a guarantee of the

implementation correctness of the interpreter by the Metasonic modeling tool.2 The

correctness of the interpreter model concerns two levels: correctness of the inter-

preter with respect to the intended meaning of the modeling constructs (ground
model correctness) and correctness of the interpreter implementation by the tool

with respect to the interpreter (refinement correctness). Thus, the interpreter model

represents a blueprint of the system and the double-faced correctness guarantees

that the user understanding of processes and the result of their machine executions

match, a feature that is crucial for reliable computer supported modeling systems.

Due to the survey character of this chapter, we only review here the main S-BPM

modeling constructs and refer for a complete version of the interpreter model to the

appendix.

12.2 Abstract State Machines

A precise definition of the meaning of business process modeling constructs

provides a reliable basis for successful communication between the different

stakeholders, namely designers and analysts on the management, development,

and evaluation level, IT-specialists and programmers on the implementation

level, and users on the application level. This needs a language that is common

to the involved parties and allows to avoid the well-known problems of ambiguity

of natural languages. This holds in particular for the S-BPM approach whose

fundamental concepts—actors, which perform arbitrary actions on arbitrary

objects and communicate with other actors—require most general heterogeneous

data structures: sets of various elements with various operations and predicates

(properties and relations) defined for them and agents, which execute those

operations.

1 SBD stands for subject behavior diagram.
2 Such a guarantee must come in the form of a mathematical verification of appropriate interpreter

and implementation properties, which is made possible by the precise character of the interpreter.

This issue is not treated in this book.

228 12 A Precise Description of the S-BPM Modeling Method



The language of the so-called Abstract State Machines (ASMs) represents such a

language. It uses only elementary If-Then-Else-rules, which are typical also for rule

systems formulated in natural language, i.e., rules of the (symbolic) form

if Condition then ACTION

with arbitrary Condition and ACTION. The latter is usually a finite set of

assignments of form f (t1, . . ., tn) :¼ t. The meaning of such a rule is to perform

in any given state the indicated action if the indicated condition holds in this state.3

The unrestricted generality of the used notion of Condition and ACTION is

guaranteed by using as ASM-states the so-called Tarski structures, i.e., arbitrary
sets of arbitrary elements with arbitrary functions and relations defined on them.

These structures are updatable by rules of the form above. In the case of business

processes, the elements are placeholders for values of arbitrary type and the

operations are typically the creation, duplication, deletion, or manipulation (value

change) of objects. The so-called views are conceptually nothing else than

projections (read: substructures) of such Tarski structures.

An (asynchronous, also called distributed) ASM consists of a set of agents each

of which is equipped with a set of rules of the above form, called its program. Every

agent can execute in an arbitrary state in one step all its rules which are executable,

i.e., whose condition is true in the indicated state. For this reason, such an ASM, if it

has only one agent, is also called sequential ASM. In general, each agent has its own

“time” to execute a step, in particular if its step is independent of the steps of other

agents;4 in special cases multiple agents can also execute their steps simultaneously

(in a synchronous manner).

This intuitive understanding of ASMs suffices to understand the definition of an

SBD-interpreter given in this chapter. The subjects acting in an SBD are interpreted

as agents, which at each diagram node execute their associated rules.

Without further explanations, we adopt usual notations, abbreviations, etc., for

example:

if Cond then M1 else M2

instead of the equivalent ASM with two rules:

if Cond then M1

if not Cond then M2

Another notation used below is

let x ¼ t in M

3 Usually, we write ASMs in capital letters as in ACTION, predicates beginning with capital followed

by lower case letters as in Condition, and functions and terms with lower case letters as in f, ti, t.
4 This means that technically speaking a run of an asynchronous ASM is not a sequence of steps of

an agent, but a set of such sequences defined by the involved agents, where steps m of an agent

which depend on steps m0 of another agent are in an order relation m before m0 or m after m0.

12.2 Abstract State Machines 229



for M(x/a), where a denotes the value of t in the given state and M(x/a) is obtained
from M by substitution of each (free) occurrence of x in M by a.

For details of a mathematical definition of the semantics of ASMs which justifies

their intuitive (rule-based or pseudo-code) understanding, we refer the reader to the

AsmBook (Börger and Stärk 2003). It contains also an explanation of the so-called

refinement method which we use here to define the components of the SBD-

interpreter in steps—a didactical concern adopted already in the preceding chapters

of this book.

12.3 Interaction View of SBD-Behavior

An S-BPM process (short process) is defined as set of agents each of which is

equipped with an SBD so that the process behavior can be defined by the SBD-

behavior of its subjects (see Sect. 5.5.5). Thus, the definition of an S-BPM process

interpreter as asynchronous ASM is reduced to the definition of a sequential ASM,

which represents the interpreter BEHAVIORsubj (D) of an arbitrary subject subj in an

arbitrary SBD-diagram D. For the interpretation of a process, this interpreter can

then be replicated (read: instantiated) with each corresponding SBD.

A subject walks from node to node along the edges of D, beginning at the start

node, and executes at each node the associated service until it reaches an end state.

Therefore, the total behavior of the subject in D can be defined as set of each local

BEHAVIOR(subj, node) of the subject at this node of D:
BEHAVIORsubj (D) ¼ {BEHAVIOR(subj, node) | node 2 Node(D)}
In this way, one can define SBD-computations of subj in the usual way as

sequences S0,. . ., Sn of (data) states of subj in the diagram which begin with an

initial state S0, i.e., a data state which has an initial SID-state,
5 lead to a state Snwith

a final SID-state and where each state Si+1 is obtained from Si with SID-state statei
by a step of BEHAVIOR(subj, statei).

Thus, the construction of an interpreter is decomposed into the definition of the

behavior of a subject in a given state, represented in the diagram by a node, for each

type of state. This directly supports the intuitive operational understanding of the

single S-BPM constructs and simplifies the interpreter definition. Before proceed-

ing to this definition in Sect. 12.3.2, we list in Sect. 12.3.1 the assumptions we make

for the diagrams.

12.3.1 Diagrams

An SBD is a directed graph. Each node represents a state where a subject which is

in this state performs the associated action service(node). We call such a state an

5 SID stands for Subject Interaction Diagram.

230 12 A Precise Description of the S-BPM Modeling Method



SID-state (Subject Interaction Diagram state) and denote it by SID_state (subj)
since the abstract interpretation of service (node) refers only to the role the state

plays with respect to other subjects with which subject communicates from within

D. We speak without distinction about states as nodes.

Each SID-state has one of three types corresponding to the type of the associated

service: function state (also called internal function or action state), send state, or
receive state. Each SID-state is implicitly parameterized with the SBD in which it

occurs, sometimes denoted by an index as in SID_stateD (subject) and SID_state
(subject, D). Each SID-state is part of the encompassing so-called data state or

simply state (read: the underlying Tarski structure of the SBD).

The edges which enter or exit a node represent the SID-state transitions from the

source node source(edge) to node resp. from node to the target node target(edge).
Therefore, we call the target(outEdge) of an outEdge (an element of OutEdge
(node)) also a successor state of node (in the diagram an element of the set

Successor (node)) and source (inEdge) of an inEdge 2 InEdge (node) a predeces-
sor state (an element of the set Predecessor(node)). A transition from a source to a

target node is permitted only if the execution of the service associated to the source
node is Completed so that each outgoing edge corresponds to a termination condi-

tion of the service and is typically indicated on the edge as ExitCond. We write

ExitCondi for the ExitCond of the i-th outgoing edge if there is more than one.

Each SBD is finite and has exactly one initial and one end state. Each path is

required to lead to at least one end state. It is permitted that an end state may have

outgoing edges; a process terminates only if each of its subjects is in an end state.

12.3.2 SID-View of State Behavior

For the definition (of the SID-view) of BEHAVIOR (subject, state), see Fig. 12.1.

It describes the transition subject has to perform from a SID_state with associated

service A to a next SID_state with associated service Bi once the execution of A
(using an abstract machine PERFORM) is Completed, where subject upon entering a

state must START the associated service. The successor state target(outEdge
(state, i)) with its associated service Bi is determined via a function selectEdge; it
can be defined by the designer or at runtime by the executing subject.

Fig. 12.1 SID-transition

graph structure

12.3 Interaction View of SBD-Behavior 231



The following ASM-rule provides a compact textual description where the else-
case expresses that it may take many steps until the execution of PERFORM for A by

the executing subject is terminated.

BEHAVIOR(subj, state) ¼
if SID_state (subj) ¼ state then
if Completed, (subj, service (state), state) then

let edge ¼
selectEdge ({e 2 OutEdge (state) | ExitCond (e)(subj, state)})

PROCEED(subj, service (target (edge)), target (edge))
else PERFORM (subj, service (state), state)

where
PROCEED(subj, X, node) ¼

SID_state (subj) :¼ node
START (subj, X, node)

Remark. BEHAVIOR (subj, state) is a scheme which comes with abstract machines

PERFORM, START, and an abstract termination criterion Completed as components.

It describes the interaction view of an SBD—that a subject upon entering a node

STARTS the associated action and PERFORMS its steps until Completed becomes true—

without providing details on how the component machines work and how they

satisfy the termination criterion. The three constituents can and must be specified

further to make the meaning of the performed action concrete. We do this in the

next two sections for the S-BPM communication actions. The extension for the

additional behavioral S-BPM constructs is given in the appendix.

12.4 Choice of Alternative Communication Steps

In this section, we define what it means to bring one step out of a set of so-called

alternative communication steps to its execution. In this description, the meaning of

a single such step still remains abstract and is refined in Sect. 12.5 by details of their

multiprocess communication capabilities. In Sect. 12.4.1, we define the elements of

the characteristic S-BPM input pool concept and formulate in Sect. 12.4.2 the

first refinement of START, PERFORM, and Completed for sending and receiving; here

the multiprocess communication capability still remains abstract. Since many

definitions are symmetric in sending and receiving, we formulate them using a

parameter ComAct for the corresponding Communication Action.

12.4.1 Basics of the Input Pool Concept

To support asynchronous communication, which is typical for distributed systems,

each subject has an inputPool(subj) where other subjects in the sender role may

deposit messages and where subject in the receiver rule “expects” messages (i.e.,

looks for messages when it is ready to receive some).

232 12 A Precise Description of the S-BPM Modeling Method



Each inputPool can be configured by capacity bounds for the maximal number

of messages it may contain of a specific or an arbitrary type and/or from a specific or

arbitrary sender. All four possible cases (read: parameter pairs of arbitrary or

specific type and sender) are considered (see Sect. 5.5.5.2).

To obtain a uniform description also for synchronous communication, 0 is

allowed as value for the capacity parameters of an input pool. It is interpreted as

requiring that the receiver expects to receive messages of the indicated type and/or

from the indicated sender only via a rendezvous with the sender.

Asynchronous communication is determined by positive natural numbers for the

input pool capacity parameters. Two strategies are contemplated for the case that a

sender tries to deposit a message in an input pool that has reached already its

corresponding capacity:

• Canceling send where either (a) a message is deleted from the input pool to

enable the insertion of the incoming message or (b) the incoming message is

thrown away (not inserted into the input pool).

• Blocking send where sending the message is blocked and the sender must repeat

the attempt to send this message until either (a) an appropriate place has become

free in the input pool, or (b) a timeout interrupts the attempt to send the message,

or (c) the sender decides to abrupt the attempt to send the message.

For the first case, two versions to cancel are contemplated, namely to delete from

the input pool the message which is Present there for the longest resp. shortest time,

as described by two functions oldestMsg and youngestMsg defined in the appendix.
Whether an attempt to send is treated by an input pool P of the receiver as

canceling or blocking is a question of whether in the given state the capacity

condition of P would be violated by inserting the incoming message. These

conditions are given by a constraintTable(P) in which the i-th row indicates for a

combination of senderi and msgTypei the allowed maximal number sizei of

messages of this kind, together with the actioni to be performed in case of a capacity

violation:

constraintTable (inputPool) ¼
. . .
senderi msgTypei sizei actioni (1 � i � n)

. . .
where

actioni 2 {Blocking, DropYoungest, DropOldest, DropIncoming}
sizei 2 {0,1, 2, . . .,1 }
senderi 2 Subject
msgTypei 2 MsgType

When a sender attempts to deposit a msg in P the first row ¼ s t n a in

constraintTable(P) is identified (if there is one) whose capacity bound is relevant

for msg and would be violated by inserting msg:

12.4 Choice of Alternative Communication Steps 233



ConstraintViolation(msg, row) iff6

Match (msg, row) ∧ size ({m 2 P | Match (m, row)}) + 1 > n
where

Match(m, row) iff
(sender(m) ¼ s or s ¼ any) and (type(m) ¼ t or t ¼ any)

If there is no such row, the message can be inserted into P. Otherwise the action
indicated in the identified row is performed so that either this attempt to send is

blocked or the message is accepted via a cancellation action (possibly by directly

throwing away the message).

It is required that each row with sizei ¼ 0 satisfies actioni ¼ Blocking and that if

maxSize(P)<1 holds, then the constraintTable contains the following default-row:
any any maxSize Blocking

Similarly, a receiver tries to transfer from its input pool into its data space an

“expected” message (i.e., a message of the indicated (msgType, sender)) as we will
see when interpreting a receive step.

In a distributed process at a given moment, multiple subjects may try to deposit a

message in the input pool P of a same receiver, but only one subject can obtain the

access to the resource P. Therefore, a selection mechanism is needed to determine

this subject. We use a function selectP which allows one to define the access

predicate as follows:

CanAccess(sender, P) iff
sender ¼ selectP ({subject | TryingToAccess(subject, P)})

12.4.2 Iteration Structure of Alternative Communication Steps

In an alternative communication state, a subject performs the requested communi-

cation action ComAct by executing, until the communication succeeds (see Sects.

5.5.4.3 and 5.5.4.4), the following three steps, where Alternative(subj, node) is the
set of all ComAct-alternatives the subject finds in the given state node:

• Selection: Choose from Alternative (subj, node) an alternative communication

kind.

• Preparation: Prepare a msgToBeHandled which corresponds to the chosen alter-
native, that is in case of ComAct ¼ Send a concrete msgToBeSent and otherwise

a concrete expectedMsg kind.

• ComAct-attempt: TRYALTERNATIVEComAct, i.e., try—synchronously or involving

the input pool—to send the concrete msgToBeSent resp. to accept a message

that Matches the expectedMsg kind.

The first two steps (choice and preparation of the alternative) are done by a

component CHOOSE&PREPAREALTERNATIVEComAct which represents the first step of

TRYALTERNATIVEComAct and is defined in Sect. 12.5.1.

6 iff stands for: if and only if.

234 12 A Precise Description of the S-BPM Modeling Method



If the third step fails for the chosen alternative, that is if msgToBeHandled
cannot be sent resp. received neither asynchronously nor synchronously, the subject

repeats the three steps for the next alternative until:

• Either ComAct succeeds for some alternative and the subject can set the predi-

cate Completed for the ComAct (i.e., the service) in the given state node to true.

• Or TryRoundFinished holds, that is all alternatives have been tried without

success.

In the second case, after this first so-called nonblocking round, further rounds

of ComAct-attempts are started which are blocking in the sense that they can be

terminated, besides by being normally Completed, also by a Timeout or by a

UserAbruption. Timeout has higher priority than UserAbruption.
The set RoundAlternative of still to be tried alternatives must be initialized for

each round to Alternative (subj, node). This happens:

• For the nonblocking-round in START.

• For the first blocking-round in INITIALIZEBLOCKINGTRYROUNDS, where also the

Timeout-clock is set.

• For each further round in InitializeRoundAlternatives.

Since the blocking rounds can be interrupted, to continue the computation via

PROCEED the SBD must contain at least three edges leaving node to be taken after a

normal or a forced ComAct-termination. Three predicates NormalExitCond,
TimeoutExitCond, and AbruptionExitCond determine the outgoing edge which

must be taken to reach the next SID-state if COMACT is normally Completed or

ends by a Timeout or a UserAbruption. These three predicates are initialized in

START, namely to false.
The following definition of PERFORM (subj, ComAct, state) synthesizes the pre-

ceding explanations in symbolic form. We write it down in the form of a traditional

flowchart in Fig. 12.2. Such diagrams represent ASMs and thus have a precise

semantics [see Börger et al. (2003, p. 44) and the equivalent textual definition in the

appendix, where also the other more or less obvious and therefore here not listed

component machines are defined].

Macros and Components of PERFORM(subj,ComAct, state). We define here

START(subj, ComAct, state), INTERRUPT, and ABRUPT and refer for the other

components to the appendix.

START(subj, ComAct, state) ¼
INITIALIZEROUNDALTERNATIVES(subj, state)
INITIALIZEEXIT&COMPLETIONPREDICATESComAct(subj, state)
ENTERNONBLOCKINGTRYROUND(subj, state)

where
INITIALIZEROUNDALTERNATIVES (subj, state) ¼
RoundAlternative (subj, state) :¼ Alternative (subj, state)

INITIALIZEEXIT&COMPLETIONPREDICATESComAct (subj, state) ¼
INITIALIZEEXITPREDICATESComAct (subj, state)

INITIALIZECOMPLETIONPREDICATEComAct (subj, state)
INITIALIZEEXITPREDICATESComAct (subj, state)¼

12.4 Choice of Alternative Communication Steps 235



NormalExitCond (subj, ComAct, state) :¼ false
TimeoutExitCond (subj, ComAct, state) :¼ false
AbruptionExitCond (subj, ComAct T, state) :¼ false

INITIALIZECOMPLETIONPREDICATEComAct (subj, state) ¼
Completed (subj, ComAct, state) :¼ false

ENTER[NON]BLOCKINGTRYROUND (subj, state) ¼
tryMode (subj, state) :¼ [non]blocking

INTERRUPT ComAct (subj, state) ¼
SETCOMPLETIONPREDICATEComAct(subj, state)
SETTIMEOUTEXITComAct (subj, state)

SETCOMPLETIONPREDICATEComAct (subj, state) ¼
Completed (subj, ComAct, state) :¼ true

SETTIMEOUTEXITComAct (subj, state) ¼
TimeoutExitCond (subj, ComAct, state) :¼ true

ABRUPTComAct (subj, state) ¼
SETCOMPLETIONPREDICATEComAct (subj, state)
SETABRUPTIONEXITComAct (subj, state)

12.5 MultiProcess-Communication

In this section, we refine TRYALTERNATIVEComAct (and thereby by one more level of

detail also PERFORM (subj, ComAct, state)) by a definition of the elements which

enable this component for multiprocess communication in S-BPM (see Sect. 5.6.4).

As said in Sect. 12.4.2, the first TRYALTERNATIVEComAct step consists in calling the

CHOOSE&PREPAREALTERNATIVEComAct component, followed by a call of the component

Fig. 12.2 PERFORM (subj, ComAct, state)

236 12 A Precise Description of the S-BPM Modeling Method



TRYComAct to execute the ComAct for the chosen alternative and the corresponding

prepared message(s) (if this ComAct is possible for the message(s)). This is

synthesized in symbolic form by the following definition:7

TRYALTERNATIVEComAct (subj, state) ¼
CHOOSE&PREPAREALTERNATIVEComAct (subj, state)
seq TRYComAct (subj, state)

The two components define the multiprocess character of S-BPM communica-

tion. Multiprocess communication means to communicate a bundle of mult(alt) >1

messages belonging to the chosen multialternative. Bundling means that to suc-

cessfully execute a multiComAct a subject must successfully execute the ComAct
for exactly the bundled messages that is mult(alt) many, without executing in

between any other communication. Thus, executing a multiComAct is a multiround

of single ComActs and appears as detailing one iteration step TRYALTERNATIVEComAct

of the TryRound described in Fig. 12.2.

A further characteristics of a multiComAct in S-BPM consists in the requirement

that (a) all relevant messages (those in the setMsgToBeHandled) must be prepared

together before for each of them the execution of the ComAct-step is attempted and

that (b) when the multiComAct fails—that is if the ComAct fails for at least one of
the bundled messages—the information on which ComAct-executions were suc-

cessful resp. unsuccessful is available so that in case of failure the procedure

HANDLEMULTIROUNDFAILComAct for error handling and possibly some compensation

can be called.

We define CHOOSE&PREPAREALTERNATIVEComAct in Sect. 12.5.1 und TRYSend and

TRYReceive in Sect. 12.5.2.

12.5.1 Selection and Preparation of Messages

A subject can choose a communication alternative among those possible in a state
in a nondeterministic manner or following a priority scheme. We express this by

abstract functions selectAlt and priority which can be refined as soon as a concrete

state and the selection scheme intended there become known.

For each chosen communication alternative, the corresponding message to be

sent resp. the kind of the to be received message (in case of a multicommunication

the elements of the set MsgToBeHandled) must be prepared. This is done by the

component PREPAREMSGComAct described below.

Additionally a MANAGEALTERNATIVEROUND-component must guarantee that (a)

each possible communication alternative in Alternative (subj, state) is selected in

each TryRound exactly once and that (b) in case of a multicommunication alterna-
tive the multiround is initialized. For (a) in each round, the static set Alternative
(subj, state) is copied into a dynamic set RoundAlternative.

7We use the seq operator [see Börger and Stärk (2003)] to describe sequential execution order for

ASMs.

12.5 MultiProcess-Communication 237



This description is synthesized in symbolic form by the following definition

whose component PREPAREMSG is defined below:

CHOOSE&PREPAREALTERNATIVEComAct (subj, state) ¼
let alt ¼ selectAlt (RoundAlternative (subj, state), priority (state))

PREPAREMSGComAct (subj, state, alt)
MANAGEALTERNATIVEROUND (alt, subj, state)
where

MANAGEALTERNATIVEROUND (alt, subj, state) ¼
MARKSELECTION (subj, state, alt)
INITIALIZEMULTIROUNDComAct (subj, state)

MARKSELECTION (subj, state, alt) ¼
DELETE (alt, RoundAlternative (subj, state))

Before sending a message, a subject will composeMsg from the relevant data,

that is from the values of the underlying data structures, which are accessed via an

abstract function msgData. Similarly in a given state, a receiver chooses one

message kind out of those which are possible in this state for to be expected

messages, using a selection function selectMsgKind. The abstract functions used

here represent the interface to the underlying data states and can be refined as

soon as the data structures become known. We assume only that there are functions

sender (msg), type (msg), and receiver (msg) to extract the indicated information

from a message; thus, composeMsg has to insert this information. Similarly for

expectedMsgKind and selectMsgKind.

The preceding description defines the component PREPAREMSGSend and is symbol-

ically synthesized as follows:

PREPAREMSGComAct (subj, state, alt) ¼
forall 1 � i � mult(alt)
if ComAct ¼ Send then
let mi ¼ composeMsg (subj, msgData (subj, state, alt), i)

MsgToBeHandled (subj, state) :¼ {m1,.. ., mmult (alt)}
if ComAct ¼ Receive then
let mi ¼ selectMsgKind (subj, state, alt,i)(ExpectedMsgKind (subj, state, alt))

MsgToBeHandled (subj, state) :¼ {m1,.. ., mmult (alt)}

12.5.2 Sending and Receiving Messages

TRYSend is defined by the flowchart in Fig. 12.3, TRYReceive by the analogous only

slightly different flowchart in Fig. 12.4.

Both diagrams describe for multicommunication nodes the multiround of a

TryRound-ComAct-step: once a communication alternative has been selected and

the corresponding set MsgToBeHandled has been prepared, during the multiround

successively for each m 2 MsgToBeHandled an attempt is made to send resp.

receive m performing the steps described below. After concluding the ComAct for
an m (with success or failure), the subject continues the multiround for the next

available m 2 MsgToBeHandled; at the end of the multiround in case of failure of

238 12 A Precise Description of the S-BPM Modeling Method



Fig. 12.3 TRYALTERNATIVESend

Fig. 12.4 TRYALTERNATIVEReceive

12.5 MultiProcess-Communication 239



the ComAct, the subject proceeds to the next alternative, resp., in case of success, it
sets Completed for this ComAct in this state to true.

Here are the steps in the order of their execution:

1. A sender checks whether it can access for m the input pool of the receiver. If the

check outcome is negative, this attempt to send m fails. Otherwise, the sender

proceeds to the next step.

2. Sender and receiver try to communicate m asynchronously. If sending m is not

Blocked resp. if a message matching m is Present in the input pool of the

receiver, ComAct succeeds for this m. Otherwise, the sender proceeds to the

next step resp. the attempt to receive m fails.

3. Sender and receiver try to communicate m synchronously. If it succeeds,

ComAct is successful for this m; otherwise, it fails for this m.

The meaning of the here not furthermore specified predicates and component

machines (like passing a message to the input pool resp. to the local data space or

transferring a message from the input pool to the local data space of the receiver)

should be intuitively clear so that we refer for their detailed definition to the

appendix, not to disrupt the synoptic character of this chapter.

12.6 Refinement for Internal Functions

Communication yields no deadlock even in the presence of communication

alternatives (TryRound) and/or multicommunication (MultiRound) if one

introduces a Timeout systematically for each communication node. This can be

done also for internal functions by introducing Timeout and/or UserAbruption there
too (see Sect. 5.7.6). It comes up to refine the SID-transition scheme in the else-
clause as follows:

if Timeout (subj, state, timeout (state)) then
INTERRUPTservice(state) (subj, state)

elseif UserAbruption (subj, state)
then ABRUPTservice(state) (subj, state)
else PERFORM (subj, service(state),state)

Reference

Börger, E., Stärk R. Abstract State Machines. A Method for High-Level System Design and

Analysis. Springer, 2003.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution

Non-commercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

240 12 A Precise Description of the S-BPM Modeling Method


	12: A Precise Description of the S-BPM Modeling Method
	12.1 To Go
	12.2 Abstract State Machines
	12.3 Interaction View of SBD-Behavior
	12.3.1 Diagrams
	12.3.2 SID-View of State Behavior

	12.4 Choice of Alternative Communication Steps
	12.4.1 Basics of the Input Pool Concept
	12.4.2 Iteration Structure of Alternative Communication Steps

	12.5 MultiProcess-Communication
	12.5.1 Selection and Preparation of Messages
	12.5.2 Sending and Receiving Messages

	12.6 Refinement for Internal Functions
	Reference


