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Abstract. We have proposed a new concept of “safety region” which
we use to measure the position of the defense robots[5]. It is defined as a
region that the teammate robot(s) can defend the goal when an opponent
robot shoots the ball from the inside of the safety region while teammate
robots are positioned according to their defense strategy.

Since it is difficult to obtain the accurate safety region in a short time,
we need an algorithm that computes an approximate safety region in real
time. We proposed such algorithm in the previous paper[5]. However, the
safety region obtained by the algorithm is not accurate enough. There-
fore, in this paper, we propose an improved algorithm to compute the
approximate safety region. We have achieved 95% accuracy and less than
1 msec of computation time, which is adequate for our RoboCup appli-
cation. We also propose a defense strategy based on the safety region
considering the positions of the opponent robots and the pass direction.
The achieved results indicate accurate performance for determining the
positions of the defense robots.

1 Introduction

In the recent RoboCup Small Size Robot League(SSL), strategies for attacking
and defending are growing higher, and the strategy that dynamically changes
the number of defense robots depending on the game’s situation is often used.
In a typical SSL strategies, the potential field[2] and the playbook[3] are used
for the action selection and deciding the number of defense robots. Furthermore,
cooperative plays such as a direct play [0] are commonly used in recent SSL
games. To defend such plays, it is necessary to compute the situation of the
game in real time and to determine the positions of the defense robots.

There are some measures for determining a mark robot[d] and deciding a
passing robot[7]. We need such a measure for defense robots. We proposed a
new concept of “safety region”[5]. It can be used as a measure for determining
the positions of the defense robots. We described an algorithm to compute the
safety region in real time when defense robots are placed according to the team’s
defense algorithm, and also we showed an algorithm to place a new (adding)
defense robot robot under the measure of safety region[5]. However, the safety
region computed by the algorithm is less accurate than the true one. Therefore,
improved algorithm is desirable.
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In this paper, we propose an improved algorithm to calculate the approximate
safety region. It achieves 95% accuracy with respect to true safety region and
less than 1 msec of computation time for SSL applications, which is adequate
for our purpose. We also propose an improved defense strategy. This is based on
the safety region considering the positions of the opponent robots and the pass
direction. The results show that it works well for determining the positions of
the defense robots.

2 Safety Region

In this section, we define the “safety region” and describe the algorithm to
compute the safety region.

2.1 Definition

A concept of “safety region” is simple. It is defined as a region that the teammate
robot(s) can defend the goal when an opponent robot shoots the ball from the
inside of the region while teammate robots are positioned according to their
defense strategy. Remaining region of the field given by removing the safety
region is called “unsafety region”.

In the following discussion, we do not consider the chip and curved shots.

2.2 Calculation of Safety Region

The calculation of the safety region depends on how the shot action is taken, i.e.
a single or assisted shot, and how the team keeps the goal, i.e. defense strategy
and the number of defense robots. It takes much time to compute the accurate
safety region. Therefore, we describe procedures to compute the approximate
safety region. In the following, we discuss the computation model of the safety
region for a direct play, which is a play that the first robot kicks the ball to the
second robot and the second robot kicks it directly toward the goal. The single
shot by the first robot is modeled as well.

Computation Model

Defense robots will move according to their strategy so that we assume the right
positions of the defense robots are given at any time. Let b and e be the positions
of the ball and the shooting robot at time ¢, respectively, and r; be the position
of each defense robot 7 at time ¢. Let L, and L; be the lines connecting e and the
right goalpost and e and the left goalpost, respectively. (See Fig. [[l) We assume
the goalkeeper stands in the defense area and moves along the border line of the
defense area while other defense robots stand outside of the defense area and
move along the border line. Then, let d; be the distance between r; and border
line (, usually equal to the radius of the robot), and let A; be the curve along
with the border line with distance d; (dotted line in Fig.[l). Let p,; and p;; be
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the cross-points between L, and A;, and L; and A;, respectively. Let D, ; and

Dy ; be the distance along A; between r; and p,; , and r; and p;,;, respectively.
Assume that the passing robot holds the ball at time ¢t and makes the direct

play. Then following equation is obtained for computing the safety region.
Let’s define,
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where ¢, and ¢; ; are the times for the ball to move from b to e with velocity vy,
and from e to p;,; with velocity v, respectively, and ¢; is the time for the robot
1 to get to its maximal velocity v; under the condition of maximal acceleration
a; and initial velocity 0.

If t; > t; s, then compute

1 .
Dji < jai(ty + tjs)?+Ri  (j=r1) (2)
otherwise compute
1 .
D;; < 2ait1‘2 + Ui(tp + s — ti) + R; (] =7, l) (3)

where, R; is the sum of radii of the defense robot i and the ball.

If Eq. @) or (@) is satisfied for 7 = r and [ or there is no pass line between b
and e, e is a point in the safety region. In case there are more than one defense
robot, e is a point in the safety region if at least one of them satisfies Eq. (@) or
@) for j =r and I.

For each point on the field, we compute the above equations and obtain the
safety region. However, computation time for this process is high and more
optimal solutions is desirable for real time performance.
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2.3 Reduction of Computation Time

To reduce the computation time, we use the coarse-to-fine method. The algo-
rithm to compute the safety region using the coarse-to-fine method is shown
below. First, assume that the field consists of W x H grids. We assume W and
H are 2’s powers here. Prepare an array F[W]|[H] corresponding to the field.
The suffix(Z, j) of F[4][i] represents the field position. Let N be a given number
(N =2m).

Algorithm. Computing the safety region based on the coarse-to-fine method

1. Put a ball on a given point b.(See Fig.[Il)

2. Set j=0,i=0.

3. Set N to 2". Compute the algorithm shown in section 22 for (j,4) position,
where (j,4) is a position e in Fig. [l Set F[j][{] to 1/0 according to the
computation result (safety /unsafety). Also compute the algorithm for (5, +
N-1),(j+N—-1,7) and (j + N — 1,2+ N — 1), respectively, and set the
corresponding F'.

4. If all four points are in the same region (safety /unsafety), then all the points
F[k][l] between j <k < j+ N,i <l <i+ N are set to the safety/unsafety
value. Otherwise, set N to N/2 and compute steps 3 and 4 recursively for
four divided parts until IV comes to 1.

5. Set i to i+ N.If i < H, then goto step 3.

6. Set i to 0and jto j+ N.If j < W, then goto step 3, otherwise, computation
finishes.

3 Experiment

In this section, we show the experimental results of the safety region computation
for the direct play[6]. We use the defense strategy of RoboDragons[l] since we
know all its details.

3.1 Method of Experiment

The safety region should be calculated analytically. However, it is hard to do
the analytical computation, therefore, we calculate it on each of the grid points
which are given by dividing the field every 40 mm. We compute the approximate
safety region using the model discussed in section

To evaluate the correctness or preciseness of the approximate safety region,
we need a true safety region. It will be given by the experiment using the real
robots. However, it requires (ultra) heavy use of the real robots, causing the
breakdown of robots. It is not a good strategy to do such experiments. Instead,
we use the simulator of the RoboDragons system which simulates the behavior
of the Robots based on the physical law. (Final evaluation should be done in the
competition using the system implemented by the proposed algorithm, although
has not been conducted in this paper. ) The simulation procedure for the direct
play is given as followings:
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1. Divide the field into n grid points, where n = 14888 in this experiment.
Put the ball on the initial position b, one of the grid points. Also put the
attacking robots on the grid points, one around the ball and the other on
a given point e;, a shooting positio. Place defense robot(s) on defending
position(s) according to the strategy algorithm of the RoboDragons system.

2. At time ¢, move the ball from b to e with the passing velocity v,.

3. Move the ball on one of two shooting lines, L, or L; in Fig. [Il, which is the
farthest line to the defense robots at time t., the time that the ball arrives
at shooting position e.

4. Simulate the movement of the defense robots and judge whether a goal is
achieved or not. If the goal is achieved, then the point e is a point in the
unsafety region, otherwise a point in the safety region.

5. Repeat steps 2 ... 4 for each grid point e.

We call a safety region obtained by the above procedure a simulated safety
region.

The initial position of the ball used in the simulation is selected from the
logged data of the 8 games held in RoboCup Japan Open 2009 and RoboCup
2009. Kick off points, and direct and indirect free kick points are the candidates
of the initial position of the ball. The initial position is randomly selected from
the candidates. Passing velocity and shooting velocity of the ball are 4.0 m/sec
and 8.0 m/sec, respectively, which are the typical values of the robots used in
the SSL. The acceleration and velocity of the defense robots are 2.0 m/ sec” and
0.6 m/sec, respectively, which are the measured values.

3.2 Experimental Results

Coincidence Rate
We compared the approximate safety region with the one obtained by the sim-
ulation for the two defense robots under the RoboDragons’s defense strategy.
Figs. @ and Bl show the examples of the experimental results. In the figures,
an approximate safety region is placed on a simulated safety region, and the red
region is an unsafety region in simulation (simulated safety regin) but not in
calculation (approximate safety region), the green an unsafety region in calcula-
tion but not in simulation, the blue and white an unsafety region and a safety
region, respectively, both in simulation and in calculation. From the view of the
fail-safe computation, it is desirable that the red area is 0 and the green area to
be smallest. To evaluate these areas, we define the following rates:

_Ab+Aw
= A ,

A A,
Agv Ry = s A:Ab+Aw+Ag+Ar (4)

R. A

R, =

where Ay, Ay, Ay and A, are the area of blue, white, green, and red region,
respectively. We call R, the correspondence rate. R, and R, are the rate of green
and red regions, respectively. Table[Il shows the result of those rates which are

! We assume that the robot can kick the ball toward any direction.
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Fig. 2. Safety region: example 1

489

Fig. 3. Safety region: example 2

the average of 10 trials under the condition of 2 defending robots. From Table
[ we think we obtained a considerably accurate algorithm for safety region
computation. However, there are still room for improving the algorithm as can

be seen in Fig. Bl

Table 1. Rate of the area of blue+white, green and red region

R.

0.951

Computation Time

0.013

0.036

Using the two typical computers, we measured the computation time for the
proposed method. Table 2lshows the computation time and the coincidence rate
R. which is the average of 10 trials under the condition of 2 defending robots

and using coarse-to-fine algorithm.

Table 2. Computation time and coincidence rate : Coarse-to-fine method

N

don’t use
1
2
4
8
16
32

computation time(msec) coincidence rate
Athron64 X2 Xeon 3.3GHz

10.8
8.5
3.1
1.4

0.94

0.84

0.78

6.6
4.5
1.4
0.56
0.37
0.32
0.30

R,
0.950
0.951
0.951
0.951
0.951
0.951
0.951
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3.3 Discussion

Judging from our experience to have developed the RoboDragons system, the
computation time of the safety region should be less than 1 msec. From Ta-
ble B we can greatly reduce the computation time by using the coarse-to-fine
algorithm. We can achieve the time of less than 1 msec without reducing the
coincidence rate if 8 < N < 32.

Table 2 shows that there are no differences in coincidence rate R, for various
values of N. This is because the initial position of ball is taken from the free kick
positions or kick-off positions as described in section B.Il Note that we should
pay attention to the value of N when the initial ball position is around the goal
area. Figs. Mland Blare examples of resulting safety region. In this case, we cannot
get a correct safety region if N > 8. This fact should be considered when we
construct a defense algorithm.

Fig. 4. Safety region obtained by using Fig.5. Safety region obtained by using
coarse-to-fine method: N = 2 coarse-to-fine method: N = 8

4 Defense Algorithms Using the Safety Region

4.1 A Defense Algorithm Considering the Position of the Opponent
Robot

A defense algorithm (or an algorithm for positioning the defense robots) is pro-
posed in the reference[5]. In the algorithm the unsafety region is weighted by
the position of the opponent robots. Example is shown in Figs. [6l through
Fig. [l shows an unsafety region (gray area) where 3 opponent robots (yellow)
and 2 defense robots (blue) are placed. Fig. [ shows a weighted unsafety region.
The darker the area, the higher the weight. Then, we would like to add one
defense robot. Where should it be placed? The algorithm proposed in [5] gives
its position. As a result, Fig[§ is obtained and the unsafety region is reduced
considerably. However, is the proposed algorithm good if the shooting robot is
the one at upper-left corner? We must consider the pass direction of the passing
robot. In the next section, we define such an algorithm.
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Fig. 6. Safety/Unsafety region Fig. 7. Weighted unsafety region

ball

Fig. 8. Safety region: After 3rd defense robot (red circle) is placed

4.2 A Defense Algorithm Considering the Position of the Opponent
Robot and the Pass Direction

In a real game, a pass direction is an important factor to evaluate the situation.
Therefore, we propose a new algorithm to calculate the safety region considering
both the pass direction and a weight function. In the following, we call a line
connecting the center of the passing robot and the center of the ball a “pass
line”.

First, compute safety/unsafety region for already placed defense robots and
then compute the weighted unsafety region employing a similar way used in the
reference[5]. The weight function w(e) is defined as the following equation for
each point e in the unsafety region.

[Ir; —e|
max(M,t, x v;)

w(e) = Zmax(l, 100 x (1 — (5)

where, r; and v; are a position and a moving speed of the opponent robot i,
respectively, and ¢, is a time given by Eq.(d)). M is a threshold value to keep the
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weighting area wide when the value of ¢, x v; is small. We use M = 270 in the
experiment. The value of w(e) takes the range between 1 and 100.

Next, the pass line is considered. Let L be the line connecting the ball and
the point e. Then, compute the angle # that the pass line and the line L make.
If the angle is small, the value of weight function w(e) should be high. So, we
define the following modified weight function w’(e).

/ w(e) x (maz(1,10 x cos (3 x 6))) (0] < 7/6)
w(e) = {w(e) (16] > /6) ©)

The Eq. [6] shows that the weight is higher if the angle |6] is less than 7/6 radian.
The weight in Eq. [f ranges from 1 to 1000. The closer the point e goes to r. or
the pass line, the higher weight is gained.

We propose the following algorithm that decides the position of (n+1)th de-
fense robot.

Algorithm. Defense robot placement

1. Let r; be a position of the defense robot ¢ (i = 1...n). Calculate safety and
unsafety regions. Number each connected component of unsafety region. Let
it be N (k=1...).

2. For each point e in the unsafety region, compute the weight w’(e).

3. For each connected component N ,; of the unsafety region, add up all weights
of the points in that connected component.

4. Calculate a center of gravity G’ of the connected component N;n which has
the biggest summation given by step 3.

5. Place the (n+1)th robot at the cross-point T;H of the line Ly and the
border line of the defense area (a bit outside of the defense area), where L,
is a bisector line of the maximal free angle from G’ toward the goal.

4.3 Discussion

For the same initial positions of robots and the ball as in Fig. [6 the proposed
algorithm in section [ 2lis applied. As a result, the weighted safety region shown
in Fig. @lis obtained. In Fig.[d the pass line goes toward the robot at the upper-
left corner. After placing the 3rd defense robot, which is shown in the red circle
in Fig. [0l computation gives a new safety region shown in Fig. The figure
shows that the shooting robot is in the safety region.

In Fig. Bl even if the pass line goes toward the other opponent robot, the
proposed algorithm provides good placement of the defense robot. Examples are
shown in Figs. [T and

In Fig. [Il the passing robot next to the ball is facing the robot at bottom
near G’. The defense robot placement algorithm gives the 3rd defense robot
position and resulting safety region is shown in Fig.[IIl When the passing robot
turn to face the robot at upper middle of the field, the algoritnm obtains the
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Fig. 9. Weighted unsafety region using Fig.10. Safety region: After 3rd defense
the proposed algorithm robot (red circle) is placed by the pro-
posed algorithm

Fig. 11. Safety region: in case the passing Fig. 12. Safety region: in case the passing
robot faces the robot at bottom robot faces the robot at upper middle

3rd defense robot position as shown in Fig. Resulting safety region is also
shown in Fig.

It is important to note that this algorithm decide the position of the defense
robot depending on the G’. For example, assume that, at first, 3rd defense robot
(red circle) is placed on the position shown in Fig. [Tl and then the passing robot
turns toward another robot shown in Fig. In this case, the 3rd defense robot
can move to the position in Fig. 2 in a short time since the moving distance is
short because of the gravity center comes between two opponent robots in the
connected component of the unsafety region. This is a greate advantage of this
algorithm.

5 Concluding Remarks

We proposed the safety region as an index for evaluating the situation of the
game in the SSL. The safety region is a region that the defense robots kept the
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goal when an opponent robot shoots in that region. We proposed an improved
algorithm that computes the approximate safety region. We have achieved 95%
accuracy and less than 1 msec of computation time, which is adequate for our
RoboCup application. We also proposed an improved defense strategy using
the safety region index considering the positions of the opponent robots and
the pass direction. The results indicates accurate determination of the defense
robots position.
Future works are

1. to improve the accuracy of the approximate safety region,

2. to reduce the computation time of approximate safety region,

3. to implement the proposed defense strategy into the RoboDragons system
and evaluate the algorithm using the real robots.
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