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Abstract. An efficient object perception is a crucial component of a
mobile service robot. In this work we present a solution for visual cat-
egorization of objects. We developed a prototypic categorization sys-
tem which classifies unknown objects based on their visual properties
to a corresponding category of predefined domestic object categories.
The system uses the Bag of Features approach which does not rely on
global geometric object information. A major contribution of our work is
the enhancement of the categorization accuracy and robustness through
a selected combination of a set of supervised machine learners which
are trained with visual information from object instances. Experimen-
tal results are provided which benchmark the behavior and verify the
performance regarding the accuracy and robustness of the proposed sys-
tem. The system is integrated on a mobile service robot to enhance its
perceptual capabilities, hence computational cost and robot dependent
properties are considered as essential design criteria.

Keywords: object categorization, Bag of Features, feature extraction,
clustering, machine learning, classifier combination.

1 Introduction

Due to the social phenomenon of a greying society it can be expected that
elderly people will be assisted by service robots in their everyday activities at
home more and more. In many cases objects play a central role in these activities
and thus a service robot must be able to detect and classify known and unknown
objects in such domestic environments. Most of the current approaches for object
recognition have two characteristics, namely firstly the perception is instance
based and secondly the instances of the objects have to be known in advance via
some teach-in process. Yet the identification of a particular object instance is not
necessarily required or sometimes even not feasible, e.g. serving and delivering
drinks require the detection of glasses as such, the recognition of a particular glass
is often not needed. It would be very wasteful or even infeasible to teach this large
set of individual glass instances in the individual home when just any element
from the category glass will do the job. This shift of focus may also be illustrated
in the development of the current rule set in the RoboCup@Home competition,
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which is a well-established international benchmark for service robots in domestic
environments [9]. For instance, in the recently established supermarket scenario,
the service robot should fetch e.g. a cup – as a missing item of a shopping list –
from a shelve of the supermarket. Here a object categorizing capability is needed
since any cup will resolve the problem.

The presented work develops an object perception system that categorizes un-
known domestic object instances like cups, glasses, bottles or cell-phones in their
respective category. Our system addresses robustness and reliability in several
ways. It can cope with object categorization challenges like perspective varia-
tions due to object-rotation-angle and robot-object-distance variations or intra
category variations i.e. deformations of object instances of a common category.
The system extracts expressive visual properties of example objects and general-
izes these visual properties according to their respective object category in order
to categorize unknown objects. In the remaining paper we discuss the related
work and our contribution, followed by the requirements and assumptions we
made. Further on the components of the system are explained followed by the
evaluation. Finally, a discussion and conclusion are given.

2 Related Work and Contribution

The presented work is grounded on 2D image information. Two common
approaches are available, geometric- and geometric-free based approaches.
Geometric-based approaches work on the global geometric appearance of ob-
jects. These approaches rely e.g. on shape models or shape descriptors. They
show robustness to strong shape deformations. Hence, they provide the capa-
bility to make a reliable decision about a corresponding shape class; however a
reliable decision about the shape class of an object is not sufficient for object cat-
egorization purposes, since objects from different object categories with similar
shapes might fall into the same shape class and thus become indistinguishable.
Geometric-based approaches demand a precise image segmentation algorithm,
since precisely extracted object boundaries are required as input for an optimal
performance. Sophisticated image segmentation algorithms are often computa-
tionally expensive (�1sec), and therefore unattractive to be applied to a mobile
service robot where a short-response-time is required.

Consequently, our work relies on a geometric-free approach (see Fig. 1): called
Bag of Features(BoF ) [1,6,8]. This approach has shown its reliability and ro-
bustness to object occlusions, illumination changes and especially to geometric
deformations of objects which belong to a common category, since the BoF ap-
proach does not rely on global geometric information; instead it relies on the
extraction of local invariant features. Categories which are hardly distinguish-
able by shape-based approaches, become distinguishable (e.g. cups and glasses)
since the extracted features provide information about the structure and tex-
ture of objects. The BoF approach is based on the assumption that each object
category is distinguishable by its individual independent statistical appearance
of salient-invariant-local features which are extracted from images. The idea is
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by comparing the features of a query object to the distribution of those features
from previously analyzed objects, to infer the category of the query object. A so-
called visual dictionary of generalized features is generated based on extracted
features from a training set. These generalized features are expressive features
which provide a high discriminability regarding the categories. The extracted
features of a query object are mapped to these generalized features; the general-
ized features can be seen as visual words in the visual dictionary whose presence
or absence lead to a decision about the actual category.

In the first step of the BoF -based object categorization process, an extrac-
tion of invariant features from images is exploited to transform the visual image
information into a compact representation, which provides rich recallable infor-
mation of the image, i.e. if the image content is transformed by scale, shift or
rotation, similar information are extracted. Commonly Scale-Invariant-Feature-
Transform (SIFT ) has been often successfully applied [5]; however our experi-
ments have shown that Speeded-Up-Robust-Features (SURF ) performs a better
feature extraction, due to its feature recallability and computational cost. Next,
the visual dictionary is created, which analyzes the feature frequencies for a set
of images that have passed the feature extraction process. Therein, the features
are grouped by similarity, in order to generate clusters of similar features. Based
on a cluster, a generalized feature is constructed which represents a visual word.
Mostly k -means-based algorithms are applied for clustering due to its simplicity
and low computational cost [5,8,1]. Other contributions group the features e.g.
by randomized cluster trees [7] or mean-shift clustering [6]. After the dictionary
is generated, the extracted features of a query image are assigned to the nearest
visual words by, e.g. nearest-neighbor-search. The comparison between the vi-
sual word frequencies, i.e. distribution of the visual words, of a query image and
of labeled example images leads to a decision about the corresponding category
of the query image. Often supervised machine learning approaches like Support
Vector Machines(SVM ) are applied [1,8], since they have shown an enhanced
robustness to discriminate sets of categories. The learners are trained with the
visual word frequencies of examples objects to generate a prediction model.

In our work we do not rely on the decision of a single classifier, since a single
classifier provides a certain accuracy and also a high risk of a misclassification
bias for specific categories. To enhance the accuracy and to reduce the influences
of those biases, a set of classifiers is trained and their outcomes are combined to
make a more robust and reliable decision about a category. Additionally the per-
formance of each classifier is improved by different feature-selection algorithms.
Moreover our approach does not completely neglect the object shape informa-
tion, since it provides a useful indication about a corresponding category. We
combine the set of feature-based classifiers with an additional shape-based clas-
sifier in order to support an appropriate final decision. An appropriate number
of clusters (dictionary size) is a crucial factor which influences the categoriza-
tion performance. The discriminability is decreased if a too small or too large
dictionary is used; in both cases the efficiency of the dictionary is negatively in-
fluenced. Most approaches heuristically examine the dictionary size or they set
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the dictionary size to a fixed number [8,7]. In contrast, we systematically analyze
the dictionary size by the examination of structure and relation of the generated
visual words to each other, in order to generate a discriminative dictionary; also
the importance and relevance of each visual word is analyzed with respect to
the object categories. In many approaches[1,8,5] the entire image is examined
as a single entity. Image distortions like cluttered backgrounds, which do not
contribute meaningful information, influence the categorization result; moreover
multiple object occurrences are generally not considered. We show a basic, but
sufficient approach which allows to detect multiple objects in an image by an
image segmentation algorithm; afterwards the detected objects are classified by
the feature- and shape-based classifiers. Most object categorization approaches
are stationary and less concerned about the response time. Our system is inte-
grated on a mobile service robot, hence issues like the computational cost or the
robustness towards the large variety of perspective variations to objects have to
be considered in the development of the system. Further a monocular camera is
applied, rather than a cost intensive Time-of-Flight- or Stereo-Vision-Camera.

3 Requirements and Assumptions

The object categorization system acquires 2D images from the camera as input.
The camera is mounted on the top of the robot and provides images from a typ-
ical service-robot-height of about 100-120 cm in a resolution of 640×480 pixels.
The system is trained for a robot-object distance of about 30-40 cm. The robot
camera has to be focused on a plane surface, as for instance a table. The system
is supposed to perceive the objects on the table top and to classify them to a
supported object category; up to four different object categories (cup, cell-phone,
bottle, glass) are supposed to be classifiable. We verify the system performance
and behavior using these four categories in certain constellations; however our
system can easily be extended with additional categories. Due to the current ob-
ject detection approach (see section 4.4), the background is assumed to be less
cluttered and the objects are mainly present on a uniformly colored surface. The
objects are positioned – completely visible and not occluded – in a reasonable
distance from the camera and to each other. The system is applied under artifi-
cial light conditions. Further on, an object database is required in order to supply
the system with sufficient object-related-information for an efficient prediction-
model generation. It consists of a set of images of each category which is used
as training set. Each image contains a single object, thereby different images are
taken from different randomly chosen positions and orientations, and on varying
uniform backgrounds. Also a test set of images for each category is provided.
Both sets are mutually exclusive in terms of particular object instances.

4 Object Categorization with Bag of Features

The system is divided into two phases, namely training phase and evaluation
phase. These phases and the involved components with their parameters are
depicted in Fig. 1 and discussed in the remaining section.
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Fig. 1. Illustration of the system design. The components shown, are involved during
training- and evaluation phase.

4.1 Image Feature Extraction

Firstly, during training phase features are extracted from images of the provided
object database. Note that, only object-related features are extracted since a
single object is positioned on a uniform background. During evaluation phase
the features are extracted of a query image which is acquired of the robot camera.
In this case, object detection has to be applied to find features related to each
presented object in the query image (see section 4.4).

The extraction (detection and description) of the features is performed by
SURF : in the given conditions of our application SURF shows a up to 4% lower
classification error and it tends in average to a faster feature extraction than
SIFT. Each (SURF-)feature is described by a vector of 64 elements, moreover
up to 120 features per object are extracted since they have proofed to provide
sufficient object-related-information for further processing purposes. After the
extraction of the features from each object of the object database and the query
image, the extracted feature set of each object and query is called BoF.

4.2 Visual Dictionary Generation and Employment

During training phase the visual dictionary is generated from the set of BoFs of
the training set. The visual dictionary provides a representation which is able to
describe - in a compact and efficient way - the visual information. The dictio-
nary contains a set of visual words, which are generated through grouping the
features from the BoFs by similarity. The fast k -means clustering algorithm is
applied to group and find similarities in the extracted features. In succession of
the grouping of the features, the center of each group represents a visual word.
The goal is to find a discriminative dictionary: the appropriate k(dictionary
size) is determined by the Dunn-validity-Index [3]. Thereby in our experiments
the dictionary size is varied from 100 (min) to 1000 (max) visual words with an
increment of 10 ; the validity value and the classification accuracy of each dictio-
nary size is examined. An indication of an appropriate dictionary size which leads
to an enhanced classification performance, is found by the identifications of local
maxima of the global validity values. That local maximum whose corresponding
dictionary size leads to the lowest classification error is selected. In addition, a
modified soft-assignment weighting scheme[5] based on the examination of the
feature frequency related to particular visual words is applied, in order to give
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particular visual words less or more importance in the categorization process.
Also a filtering scheme of less informative visual words is applied by first ranking
ascendingly the visual words according to their frequency proportions to each
object category, and later neglecting the lower ranked words.

After the generation, the dictionary is employed to the BoF of objects from
the object database (training and test set) and of query objects. Through the dic-
tionary employment, each BoF is represented as a composition of the previously
generated visual words in a histogram which is also denoted as feature-vector.
Thereby the visual word occurrences in each BoF are examined by the nearest-
neighbor-search: the nearest visual word to each feature is determined.

4.3 Supervised Classifier Generation and Employment

Through the representation of each object as a feature-vector, the categorization
problem has been converted to a pattern matching problem which we handle as
a machine learning problem. Hence, efficient and powerful techniques from the
machine learning field are exploited.

As a preprocessing step to enhance the quality of the feature-vectors, feature-
selection algorithms [4] are applied to identify discriminative features of the vec-
tors during training phase and filter out those features during evaluation phase.
Three filters are applied, based on Principle Component Analysis (PCA), En-
tropy and Iterative Adaptive Feature Selection (IAFS ); IAFS iteratively adds a
feature from a ranked set of features1 and trains accordingly a classifier; if an
improvement is achieved, a new feature from the set is selected, else the last
added feature is removed, and replaced with a new feature.

We experimented with two popular supervised machine learning techniques,
namely SVM and AdaBoost which we combined with the feature-selection al-
gorithms in order to generate a pool of classifiers. Six (base-)classifiers2 were
defined which are independently trained during the training phase by the gen-
erated feature-vectors of the training set in order to learn a prediction model.
The accuracy is verified by a 10-fold cross validation and the test set. Since
the categorization problem is a multi-class problem, we decided to apply the
majority-voting-strategy-basedOne-vs.-One multi-class concept, due to its mis-
classification recovery property.We also experimented with one extra shape-based
base-classifier to support the final category decision. It is trained with feature-
vectors which are based on shape descriptor results[10] of extracted contours3 of
objects from the object database: to each object contour descriptors are applied
as statistical moments, Hu-moments, direction, eccentricity, normalized central
moments, spatial moments, contour area, contour length, and Fourier descriptor.

During the evaluation phase, a set of the trained base-classifiers is employed to
a feature-vector of a query image; the constellation of the set is evaluated regard-
ing its classification accuracy (see section 5). The classification outcomes of the

1 The features are ranked by their discriminability through feature-selection algo-
rithms like PCA or Entropy.

2 In Table 1 of section 5 the actual set of base-classifiers is listed.
3 The contours are extracted during the object detection process (see section 4.4).
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base-classifiers are combined with an extended sum-rule[2], in order to classify
reliably the feature-vector to an appropriate category and to be robust to misclas-
sification of base-classifiers. The sum-rule is extended with four weighting-factors
which are applied to the outcomes: firstly, the outcome of each base-classifier is
weighted by the base-classifier’s classification accuracy(self-confidence), which
is gathered during training phase. Secondly, each outcome is weighted by the
confidence in the actual outcome of the base-classifier. Thirdly, biases of correct
classifications and misclassifications towards particular categories of each base-
classifier are considered. Hence, a penalty to each outcome is applied according
to the biases of the base-classifier. Fourthly, classification majorities of the cate-
gories from the outcomes are weighted in order to overcome misclassifications by
base-classifiers. The sum-rule involves two factors: an implicit voting to the most
probable outcome and giving a higher importance - by weighting - to accurate
base-classifiers and less importance to less accurate base-classifiers.

4.4 Multiple Object Detection

During the evaluation phase a query image of the robot camera is acquired.
The system has to classify single or multiple occurrences of object instances.
Initially the features of the entire image are extracted. However the entire set
of features cannot be classified like a single object as during the training phase,
because of the probable presence of cluttered background or multiple object oc-
currences. Hence, the detection of potential objects in the given image and the
correspondence of features to the respective object is needed to be determined.
An accurate image segmentation algorithm is not the scope of our work and is
not necessary, since only regions of interests of potential objects are required
to be found. A sufficient segmentation algorithm based on contour extraction is

Fig. 2. Left: object detection result is shown at a distance of ≈30cm to the robot
with the extracted object boundaries and detected features. Right: 3D depth-based
detection result is shown (point cloud is randomly colored for each detected object).

applied to gather the boundaries of potential objects in the image and to map the
corresponding features to the object boundaries as shown in Fig. 2(left). Alter-
natively, a detection based on 3D depth information is under development. This
approach segments objects on different planes in cluttered and occluded envi-
ronments with a higher reliability compared to the contour-based approach, see
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Fig. 2(right). The single plane extraction is based on surface normals extraction
and RANSAC (Random Sample Consensus) plane fitting. Afterwards, a hierar-
chy of different heights of overlapping planes is created. Potential objects are
extracted via grouping points above each plane by euclidean clustering. Due to
the infancy of this approach the following results are based on the contour-based
approach.

Afterwards the visual dictionary is employed to the extracted features from
each object boundary. So, the content of each object is projected to a feature-
vector which is classified to an appropriate category by the employment of the
trained classifiers whose outcomes are combined to a final decision.

5 Experimental Evaluation

The following first part of the evaluation is based on the training- and test set of
the object database. Our experiments have shown that 190 images as training set
and 55 images as test set, deliver sufficient object category related information
for an efficient prediction model generation.

The identification of an appropriate dictionary size leads to an enhanced clas-
sification accuracy: Fig. 3 shows the visual word dedications with respect to
the categories, if an appropriate dictionary size is chosen. The top-ranked 20%

Fig. 3. The top discriminative visual words with their proportions of frequency regard-
ing each category (16 selected visual words of each category). The visual words are
sorted in ascending order of their proportion in the respective dedicated category. E.g.
in case of the cup category: the most discriminative visual word is the one with ID-136
which has a proportion of 97.7% in the cup category, 0.8% in the cell-phone category
and 1.4% in the bottle category.

visual words (16 selected visual words of each category) are shown of a dictio-
nary which contains in total 325 words and supports the four categories (cup,
cell-phone, bottle, glass). The selected set of 16 visual words for each category
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does not intersect with the sets for the other categories; also the top 20% vi-
sual words are strongly dedicated to a specific category. Even lower ranked visual
words from the top 20% show a dedication of ≈50% to a certain category, which
is still discriminative, since this proportion has the majority; in that case not a
single proportion of another category reaches a level of more than 30% – with
one exception: visual word with ID-251.

Further on, Table 1(green) shows that dictionary sizes indicated by the local
maxima of the Dunn-validity-index values provides in average a lower classifi-
cation error than randomly chosen dictionary sizes: an appropriate dictionary
size with the lowest classification error has been found for 2 -categories with
270 words, respectively for 3 -categories 400 words and for 4 -categories 325
words. These dictionary sizes are chosen as the base-classifiers return the lowest

Table 1. The average classification error (%) regarding the test set is shown of each
base-classifier which is trained with randomly chosen and Dunn-validity-index indicated
dictionary sizes. The classification error in the brackets shows the error if an appropriate
dictionary size is chosen: 2-cat.=270 words, 3-cat.=400 words, 4-cat.=325 words.

Base-classifier approach
Number of supported object categories

2 3 4
Rand. Dunn. Rand. Dunn. Rand. Dunn.

SVM 1.91 0.23(0) 5.14 2.04(2.4) 8.01 6.65(5.9)
SVM+Entropy 1.71 0.45(0) 4.84 2.29(1.2) 7.38 6.28(2.7)
SVM+PCA 1.91 0.67(0.9) 3.93 2.78(1.2) 6.73 5.87(4)

AdaBoost 5.34 5.65(3.6) 7.78 7.50(9) 15.1 13.17(12.7)
AdaBoost+PCA 3.62 2.49(2.7) 7.27 7.59(7.8) 10.98 9.30(9)
AdaBoost+PCA+IAFS 4.23 3.17(2.7) 6.66 6.18(6) 10.37 9.85(9.5)

classification error compared to other dictionary sizes of their respective number
of supported categories. Note that, the dictionary size does not increase propor-
tionally with the increase of supported categories: the discriminability between
categories is a decisive factor that affects the dictionary size.

In the following, the combination of the feature-based base-classifiers is eval-
uated. In the experiment, all 63 4 combinations of the six base-classifiers are
analyzed (see Fig. 4). The plot in Fig. 4 illustrates that the addition of base-
classifiers generally improves the classification accuracy, in other words the av-
erage classification error of four supported categories has dropped from 8.7%
(single classifier) to 3.1% (six combined classifiers). Further, in this case of a 4-
category trained system, the combination of three base-classifiers, namely SVM,
SVM+Entropy and the AdaBoost+PCA leads to the lowest classification error of
2.2% (see in Fig. 4 right-side), i.e. the application of a particular sub-set of the
six base-classifiers leads to a -0.9% decreased classification error compared to the
classification error if all six base-classifiers are combined. Also the combination
of those three classifiers shows a lower classification error than the most accurate
single base-classifier (SVM+Entropy=2.7% – see Table 1 in brackets). The same
behavior is observed for 2- and 3-category trained systems. However in case of the

4 In total 63 combinations of 6 base-classifiers: summed by the number of combina-
tions of one(6 ), two(15 ), three(20 ), four(15 ), five(6 ) and six(1 ) applied classifiers.
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Num. of Base-classifier comb. Error(All

supported with the lowest classifiers

categories classification error combined)

2

SVM, S.+Entropy,

0(0)S.+PCA, AdaBoost,

A.+PCA+IAFS

3
S.+Entropy, S.+PCA,

0.6(1.8)
AdaBoost

4
SVM, S.+Entropy

2.2(3.1)
A.+PCA

Fig. 4. Left: average classification error according to the number of base-classifiers
which are combined and the number of supported categories. Right: combinations of
base-classifiers which result to the lowest classification error(%) of test set.

2-category trained system the combination of all six classifiers has been chosen,
which lead to the same accuracy than the most accurate single classifier(0%); this
combination has been chosen, due to the robustness against misclassifications.
It is worth to mention, that the single AdaBoost base-classifier which has the
lowest accuracy, still contributes to the combination with the lowest combined
classification error in case of 3-categories (see in Fig. 4 right-side). These results
show that our method of combining sets of particular base-classifiers, effectively
reduce the classification error.

The shape-based classifier has shown reasonable results for distinctive cate-
gories regarding the object shape, e.g. in system configurations where cups and
cell-phones (5% ) or cups, cell-phones, and bottles (10% ) are categorized; when
additionally glasses are involved (4-categories), the classification error increases
(27.5% ) due to shape similarities between instances of the categories like of cups
and glasses. We conclude, that this classifier is helpful to support the combined
classification but it is a matter of future work to enhance it.

In the following evaluation, the trained system is treated as a black-box:
images of the robot camera are acquired and evaluated. The Table 2 presents

Table 2. The classification accuracy (%) regarding the four categories. The system is
trained to support 2-, 3-, and 4-categories. 10 objects of each category are involved in
this experiment. (x=category is not applied in respective system configuration).

Number of supported object categories
Actual 2 3 4

Category Cup Cell-ph. Bot. Gla. Cup Cell-ph. Bot. Gla. Cup Cell-ph. Bot. Gla.

Cup 95 5 x x 92.2 5.6 2.2 x 96.7 1.7 0.8 0.8

Cell-phone 3.3 96.7 x x 4.4 95.6 0 x 3.4 95.8 0.8 0

Bottle x x x x 7.8 0 92.2 x 8.3 0 91.7 0

Glass x x x x x x x x 2.5 7.5 0 90

the classification accuracy regarding the four categories: certain misclassification
biases for particular categories are observed. Further we investigated the cate-
gorization behavior depending on the robot-object-distance and object-rotation-
angle – see Fig. 5. The classification accuracy among the supported categories
behaves differently under the same experimental setup i.e. object-robot-distance
and object-rotation-angle. Several factors are responsible for this behavior:
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Fig. 5. The classification error results of each category with respect to object-robot-
distance and object-rotation-angle. 10 objects of each category are involved in this
experiment. The system is trained to support 4 categories.

robot-object-distance implies that the farther the object is positioned the fewer
descriptive features are extracted which lead to an increase of the classification
error; the object-material with respect to the contrast between the object and
the background, can increase the classification error because of a weak object de-
tection in farther distance like in the case of glasses (partial transparency). Also
the object-rotation-sensitivity of object influences the classification accuracy. A
sensitivity to the absence of descriptive features due to the object-rotation-angle
is observed for cups (e.g. cup-handle is not visible). Bottles and glasses show less
rotation sensitivity due to the symmetry of the extracted features from different
rotation angles. In case of cell-phones mostly all possibly available features are
extracted – regardless the object-rotation-angle – due to its general flat shape
and the upper robot-camera-perspective.

6 Discussion and Conclusion

The evaluation has shown that the number of extracted features and especially
the presence and absence of descriptive features due to the distance and viewing
angle to the objects from the robot have an important impact on the classifica-
tion result. Also it was observed that categories have biases for being misclas-
sified to particular categories. The construction of an efficient visual dictionary
is a crucial factor for the classification performance: the determination of an
appropriate number of visual words (dictionary size) plays an important role
in order to generate discriminative visual words which show a bias for certain
categories. The evaluation of an appropriate dictionary size by exploiting the
Dunn-validity-index as an indicator for the size plus visual word weighting and
filtering have shown in the experiments reasonable results. The choice of an ap-
propriate machine learning technique and feature-selection algorithm is impor-
tant: it is observed that a more accurate classification is achieved if additionally
a feature-selection algorithm (e.g. PCA or Entropy) is applied than the applica-
tion of basic AdaBoost or SVM learning approaches. Moreover the combination
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of a certain number of base-classifiers for a combined classification has shown in
the evaluation reasonable improvements compared to the application of a single
classifier. Also the evaluation has shown that a combination has to be determined
of particular base-classifiers, rather than to combine the top-n base-classifiers;
even less accurate base-classifiers (i.e. AdaBoost) can contribute to an efficient
combination of base-classifiers. The object detection based on an basic image
segmentation has shown a satisfying trade-off between computational cost and
accuracy of the extracted object boundaries. However, the detection has shown
its limitation in the evaluation. As mentioned previously we are working on an
enhanced detection based on 3D depth information which can provide more re-
liable indications of object candidates compared to purely image intensity based
approaches; we focus on the detection of objects on multiple planes in varying
constellations as for instance on shelves in a supermarket. Additionally in the
future work, we focus on to increase the number of supported object categories.

Further experiments have shown an average execution time of ≈2.6s for the
categorization of six concurrently present objects (≈802ms for a single object).
This execution time provides the feasibility of the system to be applied on service
tasks, which require occasional to frequent categorization of objects.

In this paper a prototypic object categorization system has been described
which is based on BoF. The presented evaluation has shown the behavior and
the competitive categorization performance. This system equips a service robot
with an ability which supports the application of advanced object-related tasks.
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