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Abstract. We consider the client-server setting for the concurrent
composition of secure protocols: in this setting, a single server interacts
with multiple clients concurrently, executing with each client a specified
protocol where only the client should receive any nontrivial output. Such
a setting is easily motivated from an application standpoint. There are
important special cases for which positive results are known – such as
concurrent zero knowledge protocols – and it has been an open question
whether other natural functionalities such as Oblivious Transfer (OT)
are possible in this setting.

In this work:

• We resolve this open question by showing that unfortunately, even
in this very limited concurrency setting, broad new impossibility
results hold, ruling out not only OT, but in fact all nontrivial finite
asymmetric functionalities. Our new negative results hold even if the
inputs of all honest parties are fixed in advance, and the adversary
receives no auxiliary information.

• Along the way, we establish a new unconditional completeness
result for asymmetric functionalities, where we characterize func-
tionalities that are non-interactively complete secure against active
adversaries. When we say that a functionality F is non-interactively
complete, we mean that every other asymmetric functionality can
be realized by parallel invocations of several copies of F , with
no other communication in any direction. Our result subsumes a
completeness result of Kilian [STOC’00] that uses protocols which
require additional interaction in both directions.

1 Introduction

Consider the following scenario: Goldman Sachs, which has collected in-depth
market research and analysis on various companies, wishes to offer a paid service
to high-profile investors who are interested in using this market research. For this
purpose, it has set up a large server to which potential clients can connect in
order to obtain answers to queries of an authorized kind (for which they have
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paid). Potential investors, however, are wary of Goldman Sachs learning about
their business plans, and would want to hide the queries from Goldman Sachs
– indeed, Goldman Sachs should learn nothing at all except that the client
performed an authorized query. On the other hand, Goldman Sachs would like
to ensure that in one session, a client can only learn the answer to a single query
of a kind that it is authorized to ask. In particular, it would like to ensure that
multiple clients who may connect to the server simultaneously, cannot perform
a coordinated attack to learn more information than what each of them paid for
(or even carry out an unauthorized query).

Can we satisfy these requirements? While well-known two-party computation
protocols (e.g., [35,14]) offer remarkably powerful simulation-based security
guarantees, these guarantees hold only in the stand-alone model, where only
one protocol execution takes place. Our scenario is slightly more complex, as
it has some mild concurrency in that multiple clients may interact with the
server concurrently. At the same time, we are making the plausible assumption
that the server is programmed only to interact with clients using the prescribed
protocol, and we do not seek to guarantee security of any other protocols that
the clients may be engaged in while they are communicating with the server1.
Arguably, such a client-server setting (formally, asymmetric functionalities in a
“fixed-role concurrent self composition” setting) is of great practical relevance.
But apart from the practical significance, from a theoretical point of view, it is
an important question as to whether restricting to such a model of concurrent
executions of a single protocol, allows us to recover strong security guarantees
for two-party computation (at least for some functionalities).

In this work, we consider secure computation in the client-server setting, and
show that, even in this highly restricted concurrency setting, broad impossibility
results for secure computation hold.

• We establish new and broad impossibility results for achieving security
under fixed-roles concurrent self composition, ruling out all finite function-
alities (except “trivial” ones which have universally composable protocols),
including many natural functionalities such as oblivious transfer. Our results
hold even if the inputs to the parties in all sessions are fixed before the
protocols commence.

• Along the way, we establish a new unconditional completeness result
for asymmetric functionalities, where we characterize functionalities that
are non-interactively complete2 for secure computation against active adver-
saries. This subsumes a result of Kilian [22] that used a protocol which had
additional interaction and, for its security, relied on the properties of a Nash
equilibrium of a zero-sum game.

1 If we did consider the security of other protocols that the clients were engaged in,
then known sweeping impossibility results would apply. See further details below.

2 We say that a functionality F is non-interactively complete if every other asymmetric
functionality can be realized by parallel invocations of several copies of F , with no
other communication in any direction.
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Background: Security under Concurrent Composition.With the prolifer-
ation of the network setting, in particular the Internet, the last decade has seen a
push towards constructing protocols that have strong concurrent composability
guarantees. For example, we could require security under concurrent self-
composition (which is the focus of this work): a protocol should remain secure
even when there are multiple copies executing concurrently. The framework of
universal composability (UC) [4] was introduced to capture the more general
setting of concurrent general composition, where a protocol may be executed
concurrently with not only several copies of itself but also with other arbitrary
protocols.

General positive results for UC secure computation have been obtained
based on various trusted setup assumptions such as a common random string
[6,9,1,10,20,25]. Whether a given set of players is actually willing to trust an
external entity, however, is debatable. Indeed a driving goal in cryptographic
research is to eliminate the need to trust other parties. Ideally, we would like to
achieve security under concurrent composition in the plain model (which is the
main focus of this work).

The Dark Side of Concurrency. Unfortunately, in the plain model, by
and large, most of the results have been negative.3 UC secure protocols for
most functionalities of interest were ruled out in [6,7,32]. (Recently, these were
extended to various public key models in [21].) These impossibility results were
extended to the setting of general composition by Lindell [26] who proved that
security under concurrent general composition implies UC security. Later, Lindell
[27] established broad negative results even for the setting of concurrent self-
composition by showing equivalence of concurrent self-composition and general
composition for functionalities where each party can “communicate” to the
other party via its output (referred to as bit transmitting functionalities). Barak
et al. [2] (and more recently, [16]) obtained negative results for very specific
functions in the “static-input” setting (i.e., where the inputs of honest parties
are fixed in advance for all the protocol sessions).

On the positive side, there has been much success in obtaining construction for
zero-knowledge and related functionalities, with security in similar models (e.g.,
[11,34,23,31,2,28]). Very recently, Goyal [16] has been able to obtain positive
results for a large class of functionalities in this setting with the restriction
that an honest party uses the same, static input in all of the sessions. However
these results do not translate to the more general setting where the server may
choose different inputs in different sessions. Indeed, in a scenario such as the
one discussed earlier, if the server is required to use the same static input in all
sessions, it will have to allow all clients the same level of access, and further use
its entire database in every computation (which may be impractical).

3 We remark that several works have obtained positive results for “non-standard”
simulation-based security, in which the simulator, for example, has access to super-
polynomial computational power [30,33,3,29,18,8,12]. In this work, we will focus on
security w.r.t. standard (polynomial time) simulation.
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OurQuestion: Static-Input, Fixed-Roles Concurrent Self-composition?
In this work, we study the (im)possibility of achieving secure two-party
computation with respect to a very weak notion of concurrency as occurs in
the client-server setting: one server interacts with many clients using the same
protocol, always playing the same role, while each (honest) client interacts only
with the server. Further, the functionalities being computed are asymmetric,
in that only the client gets any output.4 The adversarial model is that either
the clients or the server may be adversarial – this is referred to as the fixed
roles setting in the literature [27].5,6 We note that this is a very natural setting
and captures several important functionalities such as oblivious transfer.
However, despite extensive prior work on concurrent security, this setting has
remained largely unstudied for general secure two-party computation (with the
exception of [2,16] as discussed above). Indeed, concurrent security of oblivious
transfer under (unbounded) concurrent composition was left was an explicit open
problem by Lindell (see [28, pg. 6]).

The importance of the above question stems from the fact that if the answer
is positive, then it would enable security of many application scenarios, such as
the one discussed at the beginning. On the other hand, if the answer is negative,
then the situation would indeed be quite stark, and reaffirm the need for relaxing
the standard security definitions. The recent positive results of Goyal [16] may
give hope that the answer is positive. Unfortunately, in this work, we show that
the latter case holds. We now proceed to describe our results.

1.1 Our Results

We obtain negative results regarding two-party computation with security under
concurrent self-composition in the fixed-roles setting, along with positive results
on UC-secure reductions that were used to get the negative results. (These are
formally stated in Section 5.)

• We give a full-characterization of security under concurrent self-
composition for deterministic asymmetric finite functionalities (in which
only one party receives output). (Theorem 4.) Specifically, we prove that no
non-trivial deterministic asymmetric finite functionality can be computed
securely under concurrent self composition, while trivial ones can be com-
puted UC securely against active adversaries. (A deterministic asymmetric

4 Functionalities in which both parties receive output (which is not entirely a function
of their local input) are more “complex” and already ruled out by Lindell [27], when
the inputs could be adaptively chosen.

5 One could consider the corruption model where one or more clients and the server
are corrupted. We note that if communication pattern is “bipartite” (i.e., honest
clients do not talk to each other), then this is also covered in the fixed roles setting.

6 Note that in the setting of inter-changeable roles (i.e., where parties may
assume different roles in different protocol executions), essentially all non-trivial
functionalities allow bit-transmission, and hence the negative results of Lindell [27]
are applicable.



New Impossibility Results for Concurrent Composition 447

functionality is said to be non-trivial if there does not exist a single input for
the receiver that “dominates” all other inputs.) Our results are unconditional
and hold in the static-input setting, and thus also rule out the more general
case where a party may choose its input in a session adaptively, based on
the outcomes of the previous sessions. Further, our results are “robust” in
the sense that the impossibility is not because honest parties could choose
their inputs by reacting to signals sent by corrupt parties over subliminal
channels.

In particular, our results rule out concurrent security of 1-out-of-2 obliv-
ious transfer and thus settle the open question of Lindell [28]. Furthermore,
to the best of our knowledge, these are the first broad impossibility results
in the static-input setting. (In contrast, prior works which considered static
inputs [2,16] only ruled out very specific functionalities.)

• To prove the above, we first construct a new UC-secure asynchronous non-
interactive protocol for 1-out-of-2 oblivious transfer (FOT) using any given
non-trivial deterministic asymmetric functionality F , thereby subsuming a
result of Kilian [22]. By a non-interactive protocol we mean that the only step
in the protocol is to invoke, in parallel, several copies of the given functionality
F ; we say that the protocol is asynchronous if it remains secure even if the ad-
versary can adaptively schedule the different invocations of F . (Theorem 1.)
– Combining the above protocol with a UC-secure non-interactive protocol

from [19, Full version] for any asymmetric functionality F given FOT,
we obtain a full characterization of completeness among deterministic
asymmetric functionalities with respect to non-interactive reductions.
(Theorem 6.)

• We further devise a composition theorem for static-input fixed-role concur-
rent security. (Theorem 3.) This theorem holds only for asynchronous non-
interactive protocols.Given this theoremand our asynchronous non-interactive
OT protocol, we complete the proof of our main result by establishing the
impossibility of static-input, fixed-role concurrently secure protocols for FOT.
(Theorem 2.)

Independent Work. Independent of our work, exciting results concerning the
impossibility of concurrently secure computation have been obtained recently
by Garg et al. We refer the reader to [13], in these proceedings, for more details.

1.2 Our Techniques

Asynchronous Non-interactive Protocol for FOT. As mentioned above,
the first ingredient in our main result, and a contribution of independent
interest, is an asynchronous non-interactive protocol for FOT given any non-
trivial deterministic asymmetric functionality F . To obtain the impossibility
result in the static-input setting it is vital that this protocol is non-interactive
and asynchronous.

Let F be a non-trivial asymmetric functionality that takes inputs x and y from
Alice and Bob respectively, and outputs f(x, y) to Bob. The intuitive reason why
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such a functionality F can yield FOT is that Bob has no input which will let it
learn Alice’s input to F exactly (up to equivalent inputs), where as Alice does
not learn anything about Bob’s input to F . In particular, one can find two inputs
ŷ0 and ŷ1 for Bob, such that if Alice chooses her input x at random, the only
way Bob can learn f(x, ŷ0) with full certainty is if he chooses ŷ0 as his input;
similarly, unless he deterministically chooses ŷ1 as his input, Bob will be left
with some entropy regarding f(x, ŷ1). Thus Bob can choose to learn at most one
of f(x, ŷ0) and f(x, ŷ1) exactly. There are two main challenges in turning this
idea into an implementation of FOT:

• Bob learns some information about f(x, ŷ0) when he uses ŷ1 as an input,
and vice versa, whereas in FOT, he should not learn any information about
one of Alice’s two inputs (and learn the other one completely).

• Alice and Bob may deviate from the prescribed distributions when choosing
their inputs to F . In particular, any solution to the above issue should work
even if Bob uses an input other than ŷ0 and ŷ1.

Kilian [22] handles the issue of active adversaries using properties of a Nash
equilibrium of an appropriate zero-sum game. However, this approach (apart
from being not asynchronous) appears suitable only for constructing an erasure
channel, and does not permit Bob to use an input. (Converting the erasure
channel to FOT requires interaction.) The way [24] handles active corruption
using cut-and-choose checks is highly interactive and again inadequate for our
purposes.

One natural approach one could consider is to use an extractor to amplify
the uncertainty Bob has about f(x, ŷ0) or f(x, ŷ1) from many invocations of F
(with x independently randomly chosen each time). That is, if Bob has some
uncertainty about at least one of the strings, R0 and R1 where R0 (respectively,
R1) is defined as the string of outputs Bob would have received if he chose ŷ0

(respectively, ŷ1) as his input in all invocations of F , then Alice can choose
two seeds for a strong extractor and obtain two masks r0 and r1 as the strings
extracted from R0 and R1 respectively, using these seeds. Unfortunately, this
is not secure in an asynchronous protocol. Alice must transmit the extractor
seeds she picked to Bob (for which she can use instances of F). However, in
an asynchronous non-interactive protocol, a corrupt Bob can first receive the
extractor seeds before picking its inputs for the other instances of F ; hence the
seeds are not independent of the information Bob obtains about R0 and R1, and
the guarantees of extraction no more hold.

We get around this by avoiding using the full power of extractors, and in
fact using a deterministic function in its place. For instance, when f is a
boolean function, consider defining r0 as simply the XOR of all the bits in R0

(and similarly r1). Since Alice picks her input x to F independently for each
invocation, this still guarantees that if Bob has uncertainty about sufficiently
many bits in R0, then he has almost no information about r0.
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But using a linear function in place of the extractor will not suffice when Bob
can use inputs other than ŷ0 and ŷ1. In particular, for boolean functions again,
if there is an input ŷ2 such that f(x, ŷ2) = f(x, ŷ0) ⊕ f(x, ŷ1), then using this
input in all invocations, Bob can learn R0 ⊕ R1, and r0 ⊕ r1. Our solution to
this is to use a simple “quadratic” function, after appropriately mapping Bobs
outputs to a field. This lets us ensure that one of the two “extracted” strings r0
and r1 remains almost uniformly random, even given the other string.

Impossibility for FOT. As the next step towards our final impossibility result,
we rule out a protocol for concurrent OT even for the case where both parties
have fixed roles. The basic idea behind this impossibility result builds on the
techniques from [2,16]. The proof proceeds in the following high-level steps; we
refer the reader to Section Section 4 for details. Suppose, towards contradiction,
we are given a protocol ΠOT that securely realizes OT in our setting.

1. First, we will construct an instance of the chosen protocol attack for this
protocol. More precisely, we will construct a protocol ̂ΠOT such that the
protocols ΠOT and ̂ΠOT are insecure when executed concurrently. We will
have three parties in the system: Alice and Eve running ΠOT (as sender and

receiver respectively); Eve and David running ̂ΠOT (as sender and receiver
respectively). In our chosen protocol attack, Eve will be the corrupted party
acting as man-in-the-middle between Alice and David and violating security
of ΠOT (see Section 4 for more details of this step).

2. Next, we will use one time programs (OTPs) [15] to eliminate David. In more
detail, Eve simply gets a set of one-time programs implementing the next
message function of David.

3. To execute these one-time programs, the (possibly adversarial) Eve is
required to carry out a number of oblivious transfer invocations. In these
invocations, Alice can be given the required key and can act as the sender.
Fortunately, oblivious transfer is exactly the functionality thatΠOT provides!
So these OT invocations can be executed using the protocol ΠOT.

4. Thus, now there are only Alice and Eve running a number of concurrent
executions of ΠOT. Hence, the chosen protocol attack we started with can
now be carried out in our setting of concurrent self-composition with static-
inputs and fixed-roles.

2 Preliminaries

Below we present some of the important definitions we need. Through out this
paper, we denote the security parameter by κ.

Secure Computation under Concurrent Self-composition. In this section,
we present the definition for concurrently secure two-party computation.

The definition we give below is an adaptation of the definition of security under
concurrent self-composition from [27], but with two further restrictions to the
model — fixed-roles and static-inputs — i.e., there are only two parties engaged
in multiple executions of a given protocol, with each playing the same “role” in
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all the sessions, and the inputs of the honest parties for each session is fixed in
advance. (Recall that since the focus in this work is on obtaining impossibility
results, our results are stronger by adding these restrictions.) Some parts of the
definition below have been taken almost verbatim from [27].

A two-party functionality7 F with input domains X and Y for the two parties
is defined by two functions f1 : X×Y → ZA and f2 : X×Y → ZB, where ZA, ZB

are the output domains. For most part we shall consider the input and output
domains to be finite sets. Such functionalities are called finite functionalities.
(Again, since our focus is on impossibility results, it is more interesting to show
impossibility of finite functionalities than of infinite functionalities.)

We will denote the two parties that wish to jointly instantiate F as Alice
and Bob (or sometimes P1 and P2). If Alice’s input is x ∈ X and Bob’s input
is y ∈ Y , then the functionality would output f1(x, y) to Alice and f2(x, y) to
Bob (unless aborted by a corrupt party). A functionality is called asymmetric
if only Bob receives any output; more precisely, in an asymmetric functionality
f1 is the constant function (Alice does receive this fixed output to indicate the
termination of execution). An asymmetric functionality will be defined using a
single function f : X × Y → Z.

In this work, we consider a malicious, static adversary. The scheduling of the
messages across the concurrent executions is controlled by the adversary. The
security of a protocol is analyzed by comparing what an adversary can do in the
protocol to what it can do in an ideal scenario, where a trusted party computes
the function output on the inputs of the parties. We do not require fairness
(i.e., our impossibility is not a consequence of requiring fairness) and hence in
the ideal model, we allow a corrupt party to receive its output in a session
and then optionally block the output from being delivered to the honest party,
in that session. Unlike in the case of stand-alone computation, in the setting of
concurrent executions, the trusted party computes the functionality many times,
each time upon different inputs. We refer the reader to the full version of the
paper, or [27] for further details of the real and ideal model executions.

The output pair of the ideal-model adversary S and the honest party (or both
parties, when neither corrupt) in an ideal-model execution of a functionality
F with security parameter κ, input vectors x, y and auxiliary input z to S,
will be denoted as idealF ,S(κ,x,y, z). Similarly, the output pair of the real-
model adversary A and the honest party (or parties) in a real-model concurrent
execution of a protocol Π with security parameter κ, input vectors x, y and
auxiliary input z to A will be denoted by realΠ,A(κ,x,y, z).

Definition 1 (Security under Concurrent Self-Composition). A protocol
Π is said to securely realize a functionality F under concurrent composition
if for every real model non-uniform probabilistic polynomial-time adversary A,
there exists an ideal-model non-uniform probabilistic expected polynomial-time
adversary S, such that for all polynomials m = m(κ), every z ∈ {0, 1}∗,
7 All functionalities considered in this paper are (unfair) secure function evaluation
(SFE) functionalities. For simplicity we shall not explicitly qualify them as SFE or
non-reactive.
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every pair of input vectors x ∈ Xm, y ∈ Y m, {idealF ,S(κ,x,y, z)}κ∈N
and

{realΠ,A(κ,x,y, z)}κ∈N
are computationally indistinguishable.

We shall also consider a few stronger security definitions, that we achieve in our
positive results (used in proving the main negative result). Firstly, we can require
the above to hold even with probabilistic expected polynomial time adversaries
in the real-model. Secondly, we could in fact allow the real-model adversary
to be computationally unbounded, and allow the ideal-model adversary to be
unbounded too.8 Also, we shall consider Universally Composable (UC) security
[4,5]. We shall not present the details of the UC security definition (which has
several slight variants, with essentially the same properties), but remark that it
implies concurrent self-composition and more.

Finally, sometimes we permit the real model protocols to invoke ideal func-
tionalities as sub-protocols (denoted like ΠF , where F is the ideal functionality
invoked by the parties in Π). In all the instances we do this, we can actually
consider UC-security of the protocol; however this definition can be easily
generalized to security under concurrent self-composition too, and would be
useful in stating a composition theorem (without involving UC-security).

Non-interactive Protocols and Asynchronous Non-interactive Proto-
cols. A two-party protocol ΠF (i.e., in the F -hybrid model) is called a non-
interactive protocol if the protocol has the following structure: the two parties
carry out local computation; then together they invoke one or more parallel,
synchronized sessions of F ; then they carry out more local computation and
produce outputs. By synchronized sessions we mean that even corrupt players
can invoke these sessions only in parallel.9 We shall also require that all copies
of F are invoked with the same fixed roles for the two parties.

A two-party protocol ΠF is called an asynchronous non-interactive protocol if
the protocol has the above structure, but the parallel sessions of F are parallel
but asynchronous. By this we mean that a corrupt player can invoke these
sessions in arbitrary order, choosing the inputs for each session based on the
outputs from prior sessions; the honest players have to choose their inputs a
priori and remain oblivious to the order in which the sessions are invoked.

One Time Programs. A one-time program (OTP) [15] for a function f allows
a party to evaluate f on a single input x chosen by the party dynamically.
As introduced in [15], an OTP is implemented as a package consisting of
some software and hardware tokens (specifically one time memory tokens), that
essentially provided the party with asynchronous access to several oblivious
transfer invocations. We shall treat OTPs as an asynchronous non-interactive
protocol in the OT-hybrid model (as was done in [17]), that securely realizes an

8 This is not a strengthening of the security definition, as the ideal-model is more
relaxed now; however, the protocols we shall consider will satisfy this definition in
addition to the other definitions.

9 A more accurate notation for such a protocol that invokes at most t sessions of

F , would be ΠFt

, where Ft stands for a non-reactive functionality implementing t
independent copies of f . For simplicity we do not use this notation.
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asymmetric “one-time program functionality” FOTP against corruption of the
receiver alone. FOTP accepts a circuit f from the party P1 and an input x from
the party P2, and returns f(x) to P2 (and notifies P1). We refer the reader to
[17] or the full version for details.

Definition 2 (One-Time Program). (Adapted from [15,17]) A one-time
program (OTP) scheme is an asynchronous two-party non-interactive protocol
ΠFOT (in the FOT-hybrid model) that UC-securely realizes FOTP when the
adversary is allowed to corrupt only P2.

In the text, we shall refer to the collection of inputs P1 provides to the FOT

instances in an execution of ΠFOT when its input is a circuit f , as an OTP for f .
We note that OTPs exist if a (standalone secure) OT protocol exists [17], which
in turn exists if a concurrent secure OT protocol exists. Thus, for proving the
impossibility of concurrent secure OT protocols, we can assume the existence of
OTPs “for free.”

Our use of OTP parallels the use of garbled circuits in the impossibility
result in [2]. Following [16], we use OTPs instead of garbled circuits, since they
have stronger security properties (namely, security against an actively corrupt
receiver), and allows one to simplify the construction in [2]. We refer the reader
to the full version for further discussion.

3 A Non-interactive Protocol for OT from Any
Non-trivial Asymmetric SFE

The goal of this section is to obtain an asynchronous, non-interactive protocol for
FOT in the F -hybrid model, for any finite deterministic “non-trivial” asymmetric
functionality F . For our purposes, we define a trivial asymmetric functionality
as follows.

Definition 3 (Dominating input.). In an asymmetric functionality defined
by a function f : X×Y → Z, an input y ∈ Y for the receiver is said to dominate
another input y′ ∈ Y if ∀x1, x2 ∈ X, f(x1, y) = f(x2, y) =⇒ f(x1, y

′) =
f(x2, y

′).

Definition 4 (Trivial functionality.). An asymmetric functionality is called
trivial if there exists an input for Bob that dominates all of its other inputs.

We now state the main result in this section.

Theorem 1. For any non-trivial asymmetric functionality F , there exists an
asynchronous, non-interactive protocol ΠF that UC-securely realizes FOT, even
against computationally unbounded adversaries.

Background. In [22] Kilian presented an elegant protocol to show that any
non-trivial asymmetric functionality is complete for security against active
adversaries. The protocol, which constructs an erasure channel from a non-
trivial asymmetric functionality F , achieves security against active adversaries
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by using an input distribution to F derived from the Nash equilibrium of a zero-
sum game defined using F . Kilian shows that an adversary deviating from the
prescribed distribution cannot change the erasure probability in the protocol.
This rather enigmatic protocol does invoke F with fixed roles, but is not useful
for showing impossibility of concurrent secure protocol for F , because it is
modestly interactive (two steps which should occur one after the other) and
more importantly, because it yields only an erasure channel and not a

(

2
1

)

-OT.10

The only known substitute for this protocol, by [24], is much more interactive,
involving several rounds of communication in both directions, apart from the
invocation of F . Our challenge is to devise an asynchronous non-interactive
protocol which uses F with fixed-roles and directly yields

(

2
1

)

-OT. Being non-
interactive and asynchronous requires that all the sessions are invoked together
by an honest party, but the adversary is allowed to schedule them adaptively,
and base its inputs for later sessions based on the outputs from earlier sessions
(rushing adversary). As mentioned in Section 1.2, this rules out some standard
techniques like privacy amplification (using extractors), since the adversary can
learn the seed used for extraction before it extracts partial information about a
string to which the extraction will be applied.

We present a new and simple non-interactive OT protocol which uses a simple
non-linear “extraction” strategy that does not require a seed, but is sufficient to
amplify the uncertainty about certain values into almost zero information about
at least one of two extracted values. Our protocol is in fact UC-secure (in the
PPT as well as information theoretic settings) and is asynchronous.

3.1 The New Protocol

Our asynchronous non-interactive protocol UC-securely realizes the
(

2
1

)

-OT
functionality FOT in the F -hybrid model, where F is a finite11 asymmetric
functionality defined by a function f : X × Y → Z, and F is not trivial. Note
that (since domination is transitive) this means that there are at least two inputs
in Y — denoted by ŷ0 and ŷ1 — which are not dominated by any other input
y ∈ Y .

To define the protocol, first we pick a prime number p ≥ min{|X |, |Z|}. Then
we can define two maps to relabel the columns corresponding to ŷ0 and ŷ1

in the function table of f using elements in Zp – i.e., two injective functions
N0 : Z0 → Zp, N1 : Z1 → Zp, where Zb = {f(x, ŷb)|x ∈ X} – such that there
exist x̂0, x̂1 ∈ X satisfying the following.

10 Our impossibility result in Section 4 holds only for
(
2
1

)
-OT, and not for erasure

channels. Indeed, using techniques in [16,18], it would be possible to construct
concurrent secure protocols for an asymmteric functionality like erasure channels,
in which Bob does not have any input.

11 For simplicity, following [22], we require |X|, |Y | to be constant. But the security
of the protocol presented here only requires |X| to be poly(κ) where κ is the
security parameter. Alternatively, if |Y | is poly(κ), we can have the protocol use
a uniform distribution over a subset of X of size at most 2|Y |, restricted to which
the functionality is still non-trivial.
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[

N0

(

f(x̂0, ŷ0)
)

N1

(

f(x̂0, ŷ1)
)

N0

(

f(x̂1, ŷ0)
)

N1

(

f(x̂1, ŷ1)
)

]

=

[

0 1
1 0

]

To illustrate this for the case of boolean functions (p = |Z| = 2), we note that
for a non-trivial boolean functionality, the function table of f , restricted to the
two columns corresponding to ŷ0 and ŷ1 must have one of the following minors

(possibly with the columns reordered, in the last case):
[

0 1
1 0
0 0

] [

0 1
1 0
1 1

] [

0 0
0 1
1 1

]

. In the

first two cases N0, N1 can be the identity map and in the last case exactly one
of N0, N1 would be the identity. The formal proof is given in the full version.

The protocol is now defined as follows, in terms of the inputs ŷ0, ŷ1 ∈ Y ,
x̂0, x̂1 ∈ X and the functions N0, N1 as identified above.

Alice’s Program: Alice’s input is two bits s0, s1.

1. Alice carries out the following computations:
• For i = 1 to 2κ, pick xi ← X .
• For each i, let R0

i = N0(f(xi, ŷ
0)) and R1

i = N1(f(xi, ŷ
1)).

• Let r0 =
∑κ

i=1 R
0
iR

0
κ+i, and r1 =

∑κ
i=1 R

1
iR

1
κ+i.

• Let m0 = s0 + r0 and m1 = s1 + r1 (interpreting bits s0, s1 as elements
in {0, 1} ⊆ Zp).

2. Alice invokes, in parallel, several copies of F with the following inputs:
• Sessions i = 1 to 2κ with inputs xi.
• 2
log p�more sessions to “communicate” the bits of (m0,m1): in a session
to send a bit 0, use input x̂0, and in a session to send a bit 1, use input
x̂1.

3. If all F sessions are completed, then Alice completes the protocol (i.e.,
outputs an acknowledgment).

Bob’s Program: Bob’s input is a choice bit b.

1. Bob invokes the same copies of F as Alice with the following inputs:

• In each of the 2κ sessions numbered i = 1 to 2κ, use input ŷb, and obtain
Rb

i .
• In each of the sessions used for communication, use input ŷ0; obtain all
bits of (m0,m1).

2. If all sessions of F are completed, compute rb =
∑κ

i=1 R
b
iR

b
κ+i, and sb =

mb − rb. Then, if sb = 0 output 0, otherwise output 1.

Below we sketch the intuition behind the proof of security. The formal simulation
and proof is presented in the full version.

The protocol is easily seen to be correct. Also, security when Alice is corrupt
is easy to argue as F does not give any output to Alice. (The simulator can
extract Alice’s inputs by considering what Bob would output when his input is
b = 0 and b = 1.) The interesting case is when Bob is corrupt.

Note that in the protocol, all the instances of F are invoked in parallel by
the honest parties, but a rushing adversary that corrupts Bob can dynamically
schedule the sessions and also choose its inputs for these sessions adaptively,
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based on the outputs received thus far. The main idea behind showing security
against Bob is that one of r0 and r1 appears completely random to Bob (even
given the other one), no matter how he chooses his inputs yi. For this we
define a pair of F sessions (i, κ+ i) to be a “0-undetermined pair” if R0

iR
0
κ+i

is not completely determined by the view of the adversary in those sessions,
combined with R1

iR
1
κ+i; simiarly we define the pair to be a “1-undetermined

pair” if R1
iR

1
κ+i is not completely determined by the view of the adversary

in those sessions, combined with R0
iR

0
κ+i. Then, it can be shown that there

will be a constant probability that any pair will be either 0-undetermined or
1-undetermined.

Note that for any input y that the adversary chooses in the first session out of
a pair, it does not dominate at least one of ŷ0 and ŷ1. With constant probability
the adversary will be left with some uncertainty about either f(x, ŷ0) or f(x, ŷ1),
where x stands for Alice’s input in this session. Suppose f(x, ŷ0) is not fully
determined. Now, with a further constant probability Alice’s input in the other
session in the pair would be x′ = x̂1. Then, even if Bob learns x′ exactly, he
remains uncertain of f(x, ŷ0).f(x′, ŷ0) = f(x, ŷ0) · 1. This uncertainty remains
even if Bob learns f(x, ŷ1).f(x′, ŷ1) = f(x, ŷ1) · 0, as it is independent of x.

This slight uncertainty about a term in r0 or r1 gets amplified by addition in
Zp, as summarized in the following lemma.

Lemma 1. Let p be a fixed prime number. Let D be a distribution over Zp, such
that for some constant ε > 0, for all z ∈ Zp, Pra←D[a = z] < 1 − ε. For any
positive integer N , let a1, · · · , aN be i.i.d random variables sampled according to
D. Then the statistical distance between the distribution of

∑N
i=1 ai (summation

in Zp) and the uniform distribution over Zp is negligible in N .

This follows from an elementary argument. The proof is given in the full version.
To complete the intuitive argument of security, we need to also consider how

the simulator for Bob can extract his input bit b. The simulator would let Bob
schedule several sessions, until a constant fraction of the pairs (i, κ+ i) have had
both sessions completed. At this point Bob would have already accumulated
sufficient uncertainty about one of r0 and r1, say rb, that will remain no matter
what he learns from the remaining sessions. Further, not having invoked the
remaining sessions will ensure that at this point he still has no information
about the other element rb. So, at this point, the simulator will send b = 1− b to
the ideal FOT and learn what rb should be, and can henceforth “pretend” that it
was always using that value of rb. Pretending thus (i.e., sampling Alice’s inputs
for the remaining sessions according to the right conditional distribution) can
be efficiently done by rejection sampling (since p is a constant).

4 Impossibility of Concurrent Oblivious Transfer

Theorem 2. There does not exist a protocol that securely realizes FOT under
concurrent self-composition even in the static-input, fixed-role setting.
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Suppose towards contradiction, we are given a protocol ΠOT that securely
realizes the OT functionality under static-input, fixed-roles concurrent self-
composition. We will exhibit a set of inputs (for sender and receiver) and a
real-world adversarial receiver that is able to perform a concurrent attack and
manages to learn a secret value, called secret with probability 1. We will then
prove that if there exists an adversarial receiver in the ideal world that is able
to learn secret with high enough probability, then we can break the stand-alone
security of ΠOT against a cheating sender, thus arriving at a contradiction. Our
formal proof follows the high-level structure as discussed in Section 1.2. We now
proceed to give details of each of the steps.

Chosen Protocol Attack. Let ΠOT be a protocol that securely realizes the
OT functionality. To fix notation, let us consider two parties Alice and Bob that
are executing an instance of ΠOT. Say that Alice’s input bits are denoted by
s0 and s1 and Bob’s input bit is b. Upon successful completion of the protocol,
Bob obtains sb. Next, let ̂ΠOT be a slightly modified version of ΠOT where the
receiver Bob also has both of Alice’s inputs, s0 and s1 in addition to his bit
b. In ̂ΠOT, Bob and Alice run an execution of ΠOT with inputs b and s0, s1
respectively. Upon receiving an output s∗, Bob checks whether s∗ = sb. If so, he
sends secret = sb̄ to Alice.

Now, consider the following scenario involving three parties Alice, Eve and
David. Alice holds input bits s0, s1, while David holds s0, s1, as well as a
random input bit b. Alice plays the sender with receiver Eve in an execution
of ΠOT, and Eve plays sender with receiver David in an execution of ̂ΠOT. It
is clear that a malicious Eve can launch “man-in-the-middle” attack, where she
simply forwards Alice’s message to David and David’s back to Alice, in order
to learn the value secret = sb̄. However, note that if the execution of ΠOT is
replaced with an ideal call to the OT functionality, then the attack does not
carry through.

Converting ̂ΠOT to ΠOT. Note that the above attack is valid in the setting
of concurrent general composition. However, we are interested in the setting of
concurrent self composition, where only ΠOT is executed concurrently. Towards
this end, in this section, we will convert the protocol ̂ΠOT into a series of OT
calls which can be implemented by ΠOT. Since ΠOT executed concurrently with
̂ΠOT is insecure, this will allow us to show that ΠOT is insecure under concurrent
self composition.

To begin, we transform the protocol ̂ΠOT run by Eve (as sender) and
David into a sequence of calls made by Eve to an ideal reactive functionality
(with inputs fixed in advance). As in [2], it is natural to instantiate this ideal
functionality by the next message function FDavid of David’s strategy in protocol
̂ΠOT. Then Eve can simulate the interaction with David by invoking FDavid each
time she expects a message from David. More precisely, the inputs to FDavid will
be the bits s0 and s1, a random bit b, a message from Eve denoted by ei, and a
state statei−1 (since FDavid is a reactive functionality, it needs to know statei−1

in order to compute statei), and the output of FDavid will be David’s ith message
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in ̂ΠOT and statei. Thus, Eve can, as before, play the receiver in an execution
of ΠOT with Alice as the sender and carry out the man in the middle attack by
invoking FDavid. We will denote the real world attacker played by Eve as Ê real.

As the next step, we will to replace the ideal calls to FDavid made by Ê real

by a series of OTs executed between Alice and Ê real. Let n denote the number
of messages that David sends in protocol ̂ΠOT. Then, consider the one time
programs OTP-msg1, . . . ,OTP-msgn where OTP-msgi computes the ith next
message function of David. We will provide Alice with all the keys {keysi}ni=1 to

the OTPs. Then, to evaluate the ith OTP, Ê real executes (multiple sessions of)
ΠOT with Alice to obtain the keys corresponding to her input.

Also note that OTPs are stateless by definition, but David’s next message
functionality is stateful. We handle this by allowing each OTP-msgi to pass its
private state to OTP-msgi+1 using standard techniques. Specifically, we will add
to the (fixed) inputs of OTP-msgi a key K for an authenticated encryption
scheme. Now, OTP-msgi outputs not only David’s next message di, but also an
authenticated encryption of its resultant state, denoted by τi = EncK(statei).
As input, OTP-msgi requests not only message ei, but also a valid authenticated
encryption τi−1 such that DecK(τi−1) = statei−1. This forces the functionality
FDavid implemented by OTPs, to be invoked in proper order. For the rest of the
article, we will assume that any OTPs we use are made “stateful” in this way.

Note that there are two kinds of executions of ΠOT being carried out between
Alice and Ê real : the “main” OT execution where Alice uses inputs s0, s1, and
the additional OT executions that allow Eve to obtain keys for the one time
programs. For clarity of exposition, we will refer to the “main” execution as
Πmain

OT and each of the remaining ones as ΠDavid
OT .

Attack in the Real World. Now, we will describe the explicit execution of
OTs between Alice and Ê real , where Ê real recovers secret = sb̄. The protocol is
as follows:

Alice’s program: Alice is given input bits s0, s1 for Πmain
OT and all the one time

program keys {keysi}ni=1 for OTP-msg1, . . . ,OTP-msgn. She behaves honestly
according to the protocol ΠOT and responds honestly to all OT invocations
made by Ê real.

Ê real’s Program: Ê real is given input bit b̂ for Πmain
OT and the one time programs

{OTP-msgi}ni=1 where OTP-msgi computes the ith next message function of
David. Let s0, s1 and b denote the fixed inputs (hardwired) in the OTPs such
that secret = sb̄. For i = 1, . . . , n, do:

1. Upon receiving ith message from Alice in Πmain
OT , say ai, suspend (temporar-

ily) the ongoing Πmain
OT session and start a new ΠDavid

OT session with Alice to
compute the ith message that David would have sent in response had he
received ai from Eve. Depending on ai, retrieve the corresponding keys keysi
from Alice to input to OTP-msgi. End the ΠDavid

OT protocol.
2. Run OTP-msgi with keys keysi and obtain output di.
3. If i ≤ n− 1, resume the suspended Πmain

OT protocol and send di back to Alice
as response. Otherwise, output the value secret received from OTP-msgn.
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Thus, using a sequence of OT executions, a dishonest Ê real is able to recover
secret = sb̄ with probability 1.

Infeasibility of Ideal World Attacker. Suppose for contradiction that there
exists an ideal world attacker Ê ideal that succeeds in outputting secret with
probability 1− negl. Then, we can construct a stand-alone cheating sender that
executes ΠOT with an honest receiver R and uses Ê ideal to learn R’s secret input
bit b with non-negligible probability. Please see the full version for details.

5 Putting It All Together

By combining the results from the previous sections, we now state our final
results. All functionalities referred to below are 2-party finite deterministic non-
reactive functionalities. For brevity and clarity we drop these qualifiers.

In the full version, we prove the following composition theorem for security
under concurrent self-composition in the static-input, fixed-role setting.

Theorem 3. Suppose ΠF is an asynchronous, non-interactive protocol that
securely realizes G under concurrent self-composition in the static-input, fixed-
role setting, and is secure against expected PPT adversaries. Also, suppose ρ is
a protocol (in the plain model) that securely realizes F under concurrent self-
composition in the static-input, fixed-role setting. Then Πρ securely realizes G
under concurrent self-composition in the static-input, fixed-role setting.

Since UC-security implies security under concurrent self-composition in the
static-input, fixed-role setting, by composing the OT protocol in Theorem 1 with
a hypothetical protocol for any non-trivial asymmetric functionality F (using
Theorem 3), we will obtain a protocol for FOT, contradicting Theorem 2. This
gives our main impossibility result:

Theorem 4. For any non-trivial asymmetric functionality F , there does not
exist a protocol (in the plain model) that securely realizes F under self-
composition even in the static-input, fixed-role setting. (On the other hand, every
trivial asymmetric functionality has a UC-secure protocol.)

Another consequence of the protocol in Theorem 1 is to give a characterization
of functionalities that are non-interactively complete against active adversaries.
This is because FOT itself has this property, as was shown by the following
non-interactive (but not asynchronous) protocol from [19].

Theorem 5. [19, Full version] For any asymmetric functionality G, there
exists a non-interactive protocol ΦFOT that UC-securely realizes G, even against
computationally unbounded adversaries.

Since the protocols in our positive results above are UC-secure, by the UC
theorem their composition is secure. Further, composing a non-interactive
protocol in FOT-hybrid with a non-interactive protocol for FOT in F -hybrid
gives a non-interactive protocol in F -hybrid. This gives us the following
characterization:
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Theorem 6. In the class of asymmetric functionalities, every non-trivial func-
tionality is non-interactively complete with respect to UC security (against active
adversaries). That is, for any two asymmetric functionalities F , G, if F is non-
trivial, then there exists a non-interactive protocol ΨF that UC-securely realizes
G, even against computationally unbounded adversaries.
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