Skip to main content

Semi-supervised Vehicle Recognition: An Approximate Region Constrained Approach

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7414))

Included in the following conference series:

  • 1515 Accesses

Abstract

Semi-supervised learning attracts much concern because it can improve classification performance by using unlabeled examples. A novel semi-supervised classification algorithm SsL-ARC is proposed for real-time vehicle recognition. It makes use of the prior information of object vehicle moving trajectory as constraints to bootstrap the classifier in each iteration. Approximate region interval of trajectory are defined as constraints. Experiments on real world traffic surveillance videos are performed and the results verify that the proposed algorithm has the comparable performance to the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dee, H., Velastin, S.: How close are we to solving the problem of automated visual surveillance? Mach. Vison. Appl. 19(5-6), 329–343 (2008)

    Article  MATH  Google Scholar 

  2. Chapelle, O., Schôlkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  3. Zhu, X., Goldberg, A.: Introduction to semi-supervised learning. Morgan Claypool Publishers, USA (2009)

    MATH  Google Scholar 

  4. Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. learn. 39(2), 103–134 (2000)

    Article  MATH  Google Scholar 

  5. Abu-Mostafa, Y.: Machines that learn from hints. Scientific American 272(4), 64–71 (1995)

    Article  Google Scholar 

  6. Li, Y., Ai, H., Yamashita, T., Lao, S., Kawade, M.: Tracking in low frame rate video: A cascade particle filter with discriminative observers of different lifespans. In: 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press, Minneapolis (2007)

    Google Scholar 

  7. Grabner, H., Bischof, H.: On-line boosting and vision. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 260–267. IEEE Press, New York (2006)

    Google Scholar 

  8. Avidan, S.: Ensemble tracking. IEEE T. Pattern Anal. 29(2), 261–271 (2007)

    Article  Google Scholar 

  9. Yu, Q., Dinh, T.B., Medioni, G.: Online Tracking and Reacquisition Using Co-trained Generative and Discriminative Trackers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 678–691. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Kalal, Z., Matas, J., Mikolajczyk, K.: P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In: 23rd IEEE Conference on Computer Vision and Pttern Recognition, pp. 13–18. IEEE Press, San Francisco (2010)

    Google Scholar 

  11. Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: Discovering Objects and their Localization in Images. In: 10th IEEE International Conference on Computer Vision, pp. 370–377 (2005)

    Google Scholar 

  12. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast SVM training on very large data sets. J. Mach. Learn. Res. 6, 363–392 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Bradski, G.R.: Computer Vision Face Tracking For Use in a Perceptual. User Interface. Intel Technology Journal, 2nd Quarter (1998)

    Google Scholar 

  15. Yao, Y.Y.: Interval-set algebra for qualitative knowledge representation. In: 5th International Conference on Computing and Information, pp. 370–374 (1993)

    Google Scholar 

  16. Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180(3), 341–353 (2010)

    Article  MathSciNet  Google Scholar 

  17. Affine covariant region detectors, http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, R., Wei, Z., Miao, D., Wu, Y., Mei, L. (2012). Semi-supervised Vehicle Recognition: An Approximate Region Constrained Approach. In: Li, T., et al. Rough Sets and Knowledge Technology. RSKT 2012. Lecture Notes in Computer Science(), vol 7414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31900-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31900-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31899-3

  • Online ISBN: 978-3-642-31900-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics