
Migratability of BPMN 2.0 Process Instances�

Angineh Barkhordarian, Frederik Demuth, Kristof Hamann,
Minh Hoang, Sonja Weichler, and Sonja Zaplata

Distributed Systems and Information Systems, Department of Informatics
University of Hamburg, Germany

hamann@informatik.uni-hamburg.de

Abstract. The migration of running process instances allows for a dy-
namic distribution of individual business processes at runtime. However,
a widely-used standardized process description language and an agreed
format for the exchange of process instance data are vital for the ap-
plicability of such concept. The newly evolved standard of the Business
Process Model and Notation (BPMN 2.0) is currently gaining accep-
tance in many organizations and is supported by a growing number of
process engines. In order to leverage BPMN for the dynamic distribution
of business processes, this paper presents an analysis on the migratabil-
ity of running BPMN process instances. The results include a mapping
of BPMN 2.0 control flow elements to an existing migration model and
a novel migration concept for process instances which contain BPMN-
specific elements such as events, pools and user tasks. In addition, the
effort for extending a BPMN process engine is evaluated by a prototype
implementation based on the open source Activiti process engine.

1 Motivation

In today’s dynamic environments, business processes are often subject to changes
related to the content and the structure of the business case. In consequence,
flexibility of supporting information and communication systems is one of the
most driving factors. Considering that a business process is not always executed
by a single organization or, more technically, by a single process engine, also
the requirements for the distributed execution of individual process instances
can change dynamically. A typical example is the spontaneous shift of a selected
process partition to a mobile device in order to allow for its offline execution
in a different location [3,13]. Other examples include the dynamic distribution
of process instances due to load balancing strategies for process engines [12] or
the runtime exchange of business partners in order to quickly react to market
changes or to individual demands of customers [11].

In situations where requirements for a distributed execution of individual
process instances can change dynamically, a flexible distribution mechanism is
needed. In comparison to other distribution models which require to determine

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme under grant agreement 215483 (S-Cube).

G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 66–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Migratability of BPMN 2.0 Process Instances 67

process partitions at design time (e.g. web service choreographies), the concept
of process instance migration allows for deciding about most distribution param-
eters at the runtime of each process instance [6,10,14]. The procedure used here
basically involves stopping the execution of a running process instance, capturing
its current status, and transferring both the process model and its instance data
to another process engine where the execution of the process is continued. Us-
ing this strategy, a business process can be distributed at nearly any time with
an arbitrary granularity of process partitions and open number of potentially
participating process engines [14].

As such dynamic distribution requires a common understanding of the busi-
ness case as well as a standardized specification including an execution semantic,
the applicability of process instance migration is dependent on the underlying
process description language, its specific structure and its control flow elements.
A promising candidate is the newly evolved standard of the Business Process
Model and Notation (BPMN 2.0) [9] which is – in contrast to its predecessor
BPMN 1.1 – not limited to a graphical representation of business process mod-
els but also provides an execution semantic. It therefore closes the gap between
business process analysts and technical developers and thus significantly reduces
the time between the development phases of design and implementation. Al-
though BPMN also integrates elements to describe distribution (i.e. pools and
lanes), a runtime migration of BPMN process instances has not yet been con-
sidered. Instead, the distribution of BPMN processes is still an inflexible and
time-consuming procedure because it requires the manual deployment of pre-
determined process partitions on pre-selected process engines prior to runtime.

In order to address these issues, this paper presents an analysis on the gen-
eral migratability (i.e. the ability to partition and transfer the process within a
specific control flow structure) of running BPMN process instances based on an
existing generic migration model which allows the representation of language-
independent process instance data. Relevant background information about the
migration model and related approaches are presented in Section 2. Section 3
discusses the specific characteristics of BPMN language elements and proposes a
mapping of these elements to the migration model. Section 4 evaluates the effort
for enhancing an existing BPMN process engine in order to realize the migration
within a prototype implementation. Results are summarized in Section 5.

2 Background and Related Work

Process instance migration as a basic concept for distributed workflow manage-
ment (not to be confused with migration of instances to another schema, e.g.
case migration [5]) has been introduced by Cichocki and Rusinkiewicz [6] in 1997.
More recently, the framework OSIRIS [10] relies on passing control flow between
distributed workflow engines in order to execute service compositions. In Adept
Distribution [4] a similar approach to process fragmentation is presented which
supports dynamic assignment of process parts to so-called execution servers.
The control of a particular process instance migrates from one execution server



68 A. Barkhordarian et al.

Process

Structured
Activity

Atomic
Activity

Current
Value

Name

Initial
Value

Process
State

Security
Policy

1

1

1

*

1

0,1

11

0,1

1

11

0,1

0,1

1

*

1

1

1

1

0,1
1
1

StartActivity
1

1..n

Activity
State

1

1

ID

Activity

0,1

1

lo
ca
lv
ar
ia
bl
e

gl
ob
al
va
ria
bl
e

1

Log

1

0,1

Variable

Assignment
Strategy

Elements of the general
process meta model

Elements of the migration
data meta model

Activity State Model

inactive ready

executing

executed

skipped expired

in error

finished

terminated

Migratable Process State Model

created

option

in error

running

transferring

finished deleted

terminating terminatedsuspended

Fig. 1. Generic migration model (simplified) [14]

to another and process activities can influence the next participant. Related
to this, Atluri et al. [1] present a process partitioning algorithm which creates
self-describing subprocesses allowing dynamic routing and assignment. Process
migration has also particularly been applied to the area of mobile process exe-
cution, e.g. by Montagut and Molva [8]. Their approach relies on passing control
flow between distributed WS-BPEL engines in order to access applications inter-
nal to mobile devices. Similarly, the DEMAC middleware [13] is able to delegate
process execution (in whole or in part) to other stationary or mobile process
engines. However, the presented approaches either propose a migration-specific
extension of a (standard) process description language such as XPDL or WS-
BPEL (e.g. [8,13]) or use a completely proprietary specification (e.g. [6,10,4,1]).
Based on its novelty as an executable process description language, migration of
(unmodified) BPMN process instances has not been considered yet.

As a more general approach, a technology-independent migration model has
been introduced in [14] (cp. Figure 1). Here, the migration model only assumes
the existence of a common minimal process model consisting of a finite number
of activities representing the tasks to be fulfilled during process execution, and
a finite number of global or local variables holding the data used by these ac-
tivities. Activities are either atomic activities (i.e. represent a specific task) or
structured activities (i.e. a control flow structure as a container for other activi-
ties). A process description complying to these properties can be supplemented
with a separate description of migration data documenting the state of the vari-
ables (current value) as well as the execution state of the process (process state)
and of each activity (activity state). In order to preserve the process’s consistency
and the integrity of its data, a process instance is not allowed to be migrated
until all of the currently executed atomic activities are completed. Thus, the pro-
cess lifecycle state option defines a stable point to transfer a process during its



Migratability of BPMN 2.0 Process Instances 69

execution which can only be reached if none of the activities are in the activity
lifecycle state executing. In order to control the selection of target execution sys-
tems, each activity of the process can be optionally connected to an assignment
strategy and/or a security policy representing user defined distribution strate-
gies and restrictions. In addition, a set of activities can be referenced as start
activities to mark the first activities to be executed after process migration. In
order to connect the migration data model with the original process model, each
activity and variable must have a unique name or identifier (ID). As BPMN
complies to these basic requirements, this generic migration model can be used
as a basis to analyse the migratability of BPMN process instances.

The concept of process instance migration has recently been evaluated for
basic elements of XPDL and WS-BPEL processes (cp. [14]). However, regarding
the ability for migration, BPMN processes have inherently different character-
istics and thus impose new challenges for migration. In contrast to WS-BPEL,
BPMN processes are able to combine interactive user-centric tasks and automatic
application tasks such as web services on both a specific or an abstract level. Fur-
thermore, BPMN processes can already specify descriptions about a distributed
execution and BPMN includes a strong event concept allowing event-based con-
trol flow constructs. In order to address these differences in more detail, the
following section discusses relevant BPMN control flow elements with respect to
a potential migration of the process.

3 Migrating BPMN Processes

The Business Process Model and Notation (BPMN ) is a graph-based description
language for the specification of business process models which can be expressed
in a standardized graphical notation, and, since BPMN 2.0 [9], also in a respec-
tive executable XML representation. Its goal is to provide a single specification
for notation, metamodel and interchange format of business processes. Follow-
ing BPMN, a process consists of a number of flow objects (tasks, gateways and
events), connecting objects (sequence flows and message flows), distribution ob-
jects (pools and swimlanes) and other artifacts (e.g. data objects and groups)
(cp. Figure 2 for an overview). The migratability of the most important control
flow constructs is discussed in the following.

3.1 Tasks

A BPMN process consists of at least one functional task which represents a single
unit of work to be done. Considering the migration model presented in Section 2,
a task corresponds to an atomic activity. However, in contrast to e.g. WS-BPEL
activities, BPMN tasks can be defined on different levels of abstraction and do
not require to bind a resource (e.g. a web service or a human process participant)
by a static binding. Instead, resources can also be specified by a role or a number
of characteristics and thus can be rebound after migration. Depending on the
assignment strategy, a task can be rebound to a locally-available resource at the
target system, the local binding can be replaced by a unique systemwide reference



70 A. Barkhordarian et al.

Pr
oc
es
s
En
gi
ne
1

R
ol
e
1

R
ol
e
2

Pr
oc
es
s
En
gi
ne
2

R
ol
e
3

Task 1 Task 2 Task 3a Task 3b

Task 3c

Task 4 Task 5

Task 6

x

y

Result?

Task 8c

Task 7
Task 10

ResultStart
event

End
event

Message flow

Task 8a Task 8b
Task 9

Event 1 AND Event 2

User task Business rule task

Service task

Intermediate boundary event

Intermediate catching event

XOR Gateway with condition

Parallel multiple event Script taskSend task Receive task

(Event handler)

End
event

Throwing (message) 
event

Start
event

Pool Lane Subprocess

Task 3

Fig. 2. Example of BPMN elements and control flow constructs

or, if applicable, the resource can be moved or copied to the target system [7]. In
consequence, this abstraction implies more possibilities for migration and thus
possibly leads to a higher level of flexibility.

In more detail, BPMN supports different types of tasks. Service tasks (calling
a software application) and manual tasks (signaling a user to fulfill a task outside
the computer system) can be executed by a remote process management system
if the required resources are (locally or remotely) available. However, rebind-
ing resources requires a common understanding such as a shared organizational
model or an ontology which is not part of BPMN. In consequence, the migration
of BPMN processes relying on such (abstract) constructs requires an additional
agreement on specific technologies to be used.

Furthermore, user interfaces for presenting process data and accepting the
user’s input are often process-specific and are deployed together with the process
(e.g. an HTML form). The same is true for small code snippets which are carried
along with the process. As such resources can be (physically) moved to the
target system, migration of respective user tasks and script tasks is possible if
the target system provides a compatible platform. However, the migration of
arbitrary executable code (as with the script task) implies potential security
risks and should thus be restricted to trustworthy partners only (cp. [14]).

Another restriction is required for messaging tasks: If send task and receive
task belong to a pair of asynchronous communication (e.g. tasks 7 and 10 in
Figure 2), such corresponding tasks must be executed on the same process engine
in order to allow the answer message to be correctly delivered. This can be
realized by applying a dynamic assignment strategy.

Finally, the specification of business rules is also outside the scope of BPMN.
If business rule management systems are compatible and a business rule task is
rebound to a local rule engine, it must be considered that the outcome may be
different and thus may lead to a different control flow (cp. task 2 in Figure 2).



Migratability of BPMN 2.0 Process Instances 71

Table 1. Properties of throwing event types in BPMN 2.0

Type of event Purpose of the event type Latest point of subscription

top level start instantiate process models process deployment
event sub-process start launch indepent sub-processes start of surrounding (sub-)process
intermediate boundary handle events in bounded flow objects start of bounded flow object
intermediate catching hold control flow until event occurs control flow arrives at event

3.2 Gateways

A gateway is a control flow construct which determines forking and merging of
alternative or parallel process paths depending on a set of (optional) conditions.
With respect to the migration model, it is advantageous to consider a gateway
to be a kind of atomic activity executed by the process engine itself. Now, the
act of evaluating a condition can be assigned to a specific process engine (or a
respective role) and thus it can be influenced which process engine should be
responsible for its execution. Following this idea, a gateway is in the state ready
if the process’s control flow reaches the gateway, it is in the state executing while
evaluating all of its conditions and is executed resp. finished if the outcome has
been computed. Depending on the result, the states of the upcoming activities are
set to ready or skipped (used by dead path elimination, cp. [14]). In consequence,
migration is also possible during the execution of alternative or parallel paths.

3.3 Subprocesses

A subprocess represents a block activity containing an enclosed control flow
which is executed in place of the subprocess. Therefore, it can be mapped to a
complex activity in the migration model which enables migration at any time
before, during or after its execution w.r.t. the state and migratability of enclosed
elements. However, the description of the subprocess is required to be available
at the target system. This is given if the calling process and the subprocess are
specified within the same process description which is supported by both the
graphical and the XML representation of BPMN (cp. task 3 in Figure 2).

3.4 Events

BPMN distinguishes events which are thrown by the process instance and events
which are caught by the responsible process engine. Regarding migration, throw-
ing an event is uncritical because it corresponds to a simple (atomic) activity
which is performed by the process engine. In contrast, catching events involves
the subscription for the respective events which are specified within the control
flow, receiving the actual event instances, and starting the event handler (set
of flow objects). In general, a (non-recurring) event can only be unsubscribed
if the event has already been caught or the event-based control flow structure
is finished. Considering the starting time and duration of a subscription for dif-
ferent event types (cp. Table 1), avoiding to split the procedure of subscription,



72 A. Barkhordarian et al.

Event

Internal event source
(process event)

Global event sourceLocal event source
(e.g. process engine)

Simple event

Complex event

Complex event processing is
performed by external provider

Complex event processing is
performed by local system

Complex event based
on absolute values

Complex event based
on relative changes

Migration during event processing requires
consideration of partial results already
recognized

Migration is not possible during
event processing

Migration of
process instance is
possible

Fig. 3. Classification of events with respect to a process instance migration

receiving and processing of events would therefore prohibit migration for all
event-based control flow structures. Thus, a more flexible solution is required.

Figure 3 shows an overview of respective migration possibilities resulting from
general considerations on event processing. Accordingly, Table 2 evaluates the
specific events defined in BPMN 2.0. Non-complex events (e.g. error, compensa-
tion, message) are non-critical, because such simple events are processed atomi-
cally and, in case of migration, they are handled either on the source or target en-
gine. However, a rebinding of the event source may be required. Complex events
which are composed of process internal events (e.g. (parallel) multiple events
using error and message events) are also non-critical, since they can be regarded
as structured activities (cp. subprocesses) and the occurrence of a sub-event can
be tracked by means of the activity lifecycle state. If the process instance re-
quires subscription of events with an external source, it is necessary to take a
closer look at the type of event and its relationship to the local environment.
Complex events processed by an external provider are recognized by the process
engine as a simple event and therefore inherit the corresponding migratability.
If complex event processing is performed by the local system, sub-events which
are already detected on the current process engine would have to be transferred
to the target engine. Other complex events using local event sources from the
context of the process engine (e.g. an event concerning the temperature in the
local environment) are feasible, if the complex event is based on absolute val-
ues and sub-events are transferred on migration. However, in case of relative
changes, it is possible that events are triggered by migration. An example is a
complex event which is thrown if the temperature rises up to 150% of its average
value. If the ambient temperature of the source and target location of process
execution essentially differ during migration, the event may be thrown although
the temperature has not changed at both locations at all. Throwing the event
would thus be semantically incorrect and has to be avoided.



Migratability of BPMN 2.0 Process Instances 73

Table 2. Evaluation of specific events in BPMN 2.0

Event name Purpose Compl. Int. Loc. Rem. Migration

Compensation compensation of activities – � – – possible
Error hierarchical processing of errors – � – – possible
Escalation hierarchical processing of escalations – � – – possible
Terminate terminates the current process instance – � – – possible
Link connects control flow inside a process – � – – possible
Signal signaling inside and across processes – � � – possible1

Cancel canceling transactions – � � – possible2

Message receiving a message – – � – possible1,3

Timer wait for a specific time period/point – – � – possible4

Conditional reference to arbitrary conditions ∗ ∗ ∗ ∗ depends on source/complexity
Parallel/Multiple requires all/one of multiple events ∗ ∗ ∗ ∗ depends on used event types

1 source rebinding possibly required
2 see message event in case of external transactions
3 the message event is locally triggered on receiving a (remote) message
4 time periods can be replaced by an absolute point of time on activation

A reliable solution is to consider receiving events as (atomic resp. structured)
activities which require the process engine to perform event processing. The
activity is set to the ready state if the process’s control flow reaches the event
resp. the first activity of its bounding (resp. surrounding) scope. At this point
of time, also the event source has to be subscribed at the latest. The event
activity goes to the state executing at the time event processing is started, i.e.
a (partial) event is received. Simple events have the character of an atomic
activity and are executed and finished right after the event has been detected
and the upcoming activity has been activated. Complex events consist of a rule
for pattern recognition of multiple event parts along a time period and remain in
the state executing until the event is completely detected and processing is ended.
In that case, the event is set to executed resp. finished and upcoming activities
are activated. In doing so, complex event processing cannot be interrupted by
a migration of a process instance as this would lead to a loss of partial results
of event detection and, possibly, incorrect results. In case of boundary events,
there is also the option to set the event to the states expired resp. terminated if
the execution of the scope is finished before the event has (completely) occurred.
The process engine can now unsubscribe from the event source.

3.5 Pools and Swimlanes

BPMN 2.0 allows to express the collaboration of multiple resources and organi-
zational units. The swimlane element represents the assignment of flow objects
to roles or specific participants and thus represents a resource level view of a
distributed business process. The pool element is a higher level construct to ex-
press which business unit or technical unit is responsible for the execution of a
specific process partition and for calling the required resources. Pool elements
can thus be mapped to the migration model as a pre-defined assignment strategy
for migration targets based on design-time distribution requirements. In conse-
quence, the distribution specified in the collaboration among pools (i.e. message



74 A. Barkhordarian et al.

flows) can be used to represent the transfer of the process instance from one
process engine to another. Process instance migration thus provides an interest-
ing alternative interpretation of the distribution specified in BPMN’s executable
collaboration models. Basic strategies to also support a parallel execution of
process partitions among different process engines can be found in [14].

4 Extension of the Activiti Process Engine

In order to estimate the efforts for extending an existing BPMN process engine
with additional support for process instance migration, the open source Activiti
process engine [2] was selected. In general, the procedure of process instance
migration can be separated into four distinct phases:

1. Stop the process engine’s execution of a process instance in a consistent
state.

2. Extract and save runtime information, then delete the process instance or
mark it as transferring.

3. Send process definition and runtime information to the target system.
4. Resume the transferred process instance on the target system.

Following this procedure, Activiti has been enhanced by an internal event con-
cept in order to trigger a blocking event each time migration becomes possible,
i.e. after an activity’s execution has been finished. The new migration handler
component handles such events by stopping the process execution if there is cur-
rently a demand for migration (i.e. based on user-defined migration strategies;
phase 1). Otherwise, the execution is continued regularly. In the second phase,
process instance data is retrieved from the process engine and is transformed
according to the generic migration model. Activiti uses a relational database to
store runtime information of processes in a proprietary schema, which is used by
the migration handler in order to create a system-independent XML file contain-
ing the migration data. In phase three, this file and the (original) BPMN process
model are transferred to another migration-aware (Activiti) BPMN engine by
using a well-defined Web Service interface. After successful transmission, the
target engine subscribes for local and remote events which are in the state ready
and, subsequently, the source engine can unsubscribe for these events and delete
the interrupted process instance. Finally, in the fourth phase, the transferred
process instance is resumed. In Activiti, this is done by creating a new process
instance and by applying the current state from the XML migration data.

The experiences with the prototype show, that, dependent on the process
engine’s architecture, deep intrusions in the engine’s code may be necessary in
order to gather the current process state and influence the process execution.
However, the engineering effort for extending an existing BPMN process engine
has to be performed only once in order to migrate arbitrary process instances
automatically. Compared to a physical fragmentation which requires modifica-
tion and deployment of each individual process model, this engineering effort is
feasible – especially if many process instances have to be distributed individually.



Migratability of BPMN 2.0 Process Instances 75

5 Conclusion

Although BPMN 2.0 is developed as a process interchange format, the migration
of running BPMN process instances holds several challenges. First, a meta model
for process instance data is not part of BPMN. Second, the process description
can be defined in a rather abstract way which requires rebinding of activities to
new execution environments and resources. Based on an existing approach, this
paper has thus proposed a mapping of BPMN 2.0 elements to a generic migration
model and has discussed benefits and restrictions of the runtime migration of
BPMN process instances. It shows that migration of BPMN process instances
is – in general – possible. In order to ensure the original semantic of execution,
migration has to be limited when tasks (including complex event processing)
are currently executed. Due to its higher abstraction level, BPMN also allows
for more flexibility in rebinding resources and events to the target system of
migration. However, many relevant implementation details such as bindings to
software applications, references to organizational models or the description and
integration of user interfaces are not included within the BPMN standard and
use additional (platform-dependent) instance data – which is still a challenge for
ad-hoc process instance migration and has to be addressed in future work.

References

1. Atluri, V., et al.: A Decentralized Execution Model for Inter-organizational Work-
flows. Distrib. Parallel Databases 22(1), 55–83 (2007)

2. Baeyens, T., et al.: Activiti BPM Platform (2011), http://www.activiti.org/
3. Baresi, L., Maurino, A., Modafferi, S.: Workflow Partitioning in Mobile Information

Systems. In: MOBIS 2004, pp. 93–106 (2004)
4. Bauer, T., Dadam, P.: Efficient Distributed Workflow Management Based on Vari-

able Server Assignments. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000.
LNCS, vol. 1789, pp. 94–109. Springer, Heidelberg (2000)

5. Casati, F., Shan, M.C.: Dynamic and adaptive composition of e-services. Inf.
Syst. 26(3), 143–163 (2001)

6. Cichocki, A., Rusinkiewicz, M.: Migrating Workflows. In: Advances in Workflow
Management Systems and Interoperability, pp. 311–326. NATO (1997)

7. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Trans-
actions on Software Engineering 24(5), 342–361 (1998)

8. Montagut, F., Molva, R.: Enabling Pervasive Execution of Workflows. In: Collab-
orative Computing: Networking, Applications and Worksharing. IEEE (2005)

9. OMG: Business Process Model and Notation (BPMN), Version 2.0. Tech. rep.,
Object Management Group (OMG) (2011)

10. Schuler, C., Weber, R., Schuldt, H., Schek, H.J.: Scalable Peer-to-Peer Process
Management - The OSIRIS Approach. In: ICWS, pp. 26–34 (2004)

11. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

12. Wutke, D., Martin, D., Leymann, F.: A Method for Partitioning BPEL Processes
for Decentralized Execution. In: ZEUS 2009, pp. 109–114. CEUR-WS.org (2009)

13. Zaplata, S., Kunze, C.P., Lamersdorf, W.: Context-based Cooperation in Mobile
Business Environments. Bus. and Inf. Syst. Eng. (BISE) 2009(4) (October 2009)

14. Zaplata, S., et al.: Flexible Execution of Distributed Business Processes based on
Process Instance Migration. Journal of System Integration (JSI) 1(3), 3–16 (2010)

http://www.activiti.org/

	Migratability of BPMN 2.0 Process Instances
	Motivation
	Background and Related Work
	Migrating BPMN Processes
	Tasks
	Gateways
	Subprocesses
	Events
	Pools and Swimlanes

	Extension of the Activiti Process Engine
	Conclusion
	References




