
Artifact-Centric Modeling Using BPMN

Niels Lohmann and Martin Nyolt

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
{niels.lohmann,martin.nyolt}@uni-rostock.de

Abstract. BPMN offers a rich pool of language constructs to model dif-
ferent aspects of choreographies, interorganizational business processes
and service compositions. With collaborations and choreographies,
BPMN enables the modeler concentrate on the control flow and the
message flow, respectively. At the same time, data flow is only treated as
a subordinate extension. In contrast, recent artifact-centric approaches
model processes from the point of view of the data objects that are ma-
nipulated during the process. This paper investigates to what extend
BPMN is suitable to model artifact-centric processes and which exten-
sions are required to comfortably support this modeling approach.

1 Introduction

Business process modeling includes a specification of the order in which tasks
are executed (control flow), the way data are processed (data flow), and how
different branches in distributed and interorganizational business processes and
services are invoked and coordinated (message flow). The current BPMN stan-
dard offers two different views on business processes: (1) collaboration diagrams
(sometimes called interconnected models) that emphasize the local control flow
of each participant of the process and (2) choreography diagrams (interaction
models) that describe the process from the point of view of the messages that
are exchanged among the participants. Conceptually, collaboration diagrams can
be seen as control-flow centric models whereas choreography diagrams follow a
message-flow centric view. In either diagram, data flow— if at all—only plays
a subordinate role.

As third school of thought, artifact-centric models do not specify processes
as a sequence of tasks to be executed or messages to be exchanged (i. e., imper-
atively), but from the point of view of the data objects (called artifacts) that
are manipulated throughout the course of the process (i. e., declaratively). In
recent work [10], we showed that artifact-centric models can be automatically
transformed into choreographies and collaborations while guaranteeing certain
correctness criteria such as soundness or compliance to business rules [9].

There currently does not exist a common conceptual modeling language for
artifact-centric processes. In this paper, we investigate whether BPMN is suitable
to express data aspects and to which extend BPMN needs to be extended to be
used in an artifact-centric setting. The choice to study BPMN is motivated by
its flexibility, comprehensibility, and its popularity among domain experts.

G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 54–65, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Artifact-Centric Modeling Using BPMN 55

remotely
accessible

data objects

fill
debit

Debit
[empty]

Debit
[filled]

send 
debit

order 
beer

oder
wine

Order
[undec.]
[unpaid]

Order
[beer]
[paid]

Order
[wine]
[paid]

receive 
cargo

process 
debit

use
debit

Debit
[filled]

Debit
[proc-
essed]

Debit
[used]

register 
payment

load
beer

load
wine

send 
cargo

Cargo
[un-

loaded]

Cargo
[beer]

Cargo
[wine]

Cargo
[beer]

Cargo
[wine]

Order
[beer]

[unpaid]

Order
[wine]

[unpaid]

S
hi

pp
er

B
uy

er

Debit Cargo

Fig. 1. Shipping scenario as BPMN collaborative process

Organization. The rest of this paper is organized as follows. The next section
introduces a shipping scenario and discusses several issues in BPMN’s capability
of modeling data flow and manipulation. In Sect. 3, we briefly introduce artifact-
centric modeling. The main contribution of the paper is presented in Sect. 4. We
introduce several BPMN extensions to model the different aspects of artifact-
centric processes. We continue by discussing the resulting model and related
work in Sect. 5 and 6, before Sect. 7 concludes the paper.

2 Data Flow Modeling in BPMN

We shall employ a shipping scenario taken from [10] as running example for
this paper. It consists of a buyer that (1) fills a debit order and (2) may choose
between ordering wine or beer and a shipper who (3) processes the debit order,
(4) loads a cargo with the ordered goods, (5) and sends it to the buyer. Figure 1
depicts a collaborative BPMN process model of this scenario.

Several data objects, or artifacts, are involved in the process: the debit, the
order, and the cargo. Apparently, the cargo is not a classical data object, but a
physical artifact. Nonetheless, a conceptual model should be able to cope with
such objects. This paper does not focus on actual implementations which would



56 N. Lohmann and M. Nyolt

be done in standard languages such as WS-BPEL. The state of these artifacts
can be changed by tasks. For instance, the buyer’s task “fill debit” changes
the debit’s state from “[empty]” to “[filled]”. Usually, the access to artifacts is
restricted and an artifact is implicitly owned by a participant of the process. At
the same time, it may be necessary to change the location of an artifact; that is,
to send it to another participant. In the example, the debit is eventually sent to
the shipper. As BPMN does not support this directly, we used an association to
specify that the debit artifact is actually the message that is sent to the shipper.
Beside artifacts that may change their location, it is also common to assume
artifacts that can be remotely accessed. Such artifacts do not have a canonic
owner or pool to be associated to. In the shipping scenario, the order artifact is
an electronic document that can be remotely accessed by both participants: It
does not need to be explicitly sent to the shipper to be evaluated. Again, BPMN

does not define a canonic way to specify this. Finally, artifacts may contain
several data fields that can be manipulated independently. The order artifact in
the example process contains information on the desired goods (“unspecified”,
“wine”, or “beer”) and the payment status (“unpaid” and “paid”). A partial
state change (e. g., setting the payment status to “paid” without considering the
ordered items) is not supported by BPMN, which makes the shipper’s “register
payment” task appear clumsy and underspecified.

The shipping scenario shows that BPMN’s capability to specify data objects
and data flow is rather limited and a shift to an artifact-centric approach is
impossible without making several extensions and adjustments.

3 Artifact-Centric Modeling in a Nutshell

Artifact-centric modeling promotes the data objects of a process and their life
cycles to first class citizens. An artifact-centric model of the shipping scenario
is consequently specified from the point of view of the artifacts ; that is, the
order, the debit, and the cargo. As we see in Fig. 1, the states of the artifacts
may evolve over time, and each state change is performed by an agent, namely
the buyer or the shipper. Specifying which agent may change an artifact’s state
also requires information on the location and the access control of an artifact:
Physical artifacts (such as the cargo) need to be sent to an agent to be processed,
whereas logical artifacts (such as a data base) can be remotely accessed.

The life cycle of each artifact can be seen as a small business process with an
initial state and at least one final state. The latter models a successful comple-
tion such as “order paid” or “cargo loaded”. As the artifacts can evolve indepen-
dently, the control flow of the whole business process is specified declaratively.
Each execution that brings each artifact to a final state can be seen as sound.
Apparently, this includes unreasonable executions, for instance those where an
implicit order of tasks is violated (sending the cargo before placing an order).
Also the final states of artifacts may not be arbitrarily mixed, because otherwise
executions in which beer is ordered and wine is delivered would be possible. In
recent work [10], we proposed policies and goal states to exclude such undesired



Artifact-Centric Modeling Using BPMN 57

behavior: Policies constrain the execution order of tasks in different artifacts and
goal states exclude certain combinations of artifacts’ final states.

From the artifact life cycles, the policies, and the goal states, a process model
(such as the one in Fig. 1) can be automatically synthesized which is sound by
design; that is, correctness of the model follows from the synthesis algorithm.
The interested reader is referred to [10] for a detailed discussion.

4 BPMN Extensions for Artifact-Centric Modeling

In this section, we give more details on the ingredients of artifact-centric pro-
cesses and propose BPMN extensions for each aspect. In particular, we consider

– artifacts: the process model’s basic building blocks;
– object life cycles: a specification of the artifacts’ states;
– location information: a means to specify how artifacts change their location;
– access control: a specification of remote accessibility of artifacts;
– goal states: a specification of desired final states; and
– policies: a means to remove undesired behavior.

The structure of this section can be seen as a recipe specifying the natural
order in which artifact-centric models are created. We thereby exploit that the
artifact-centric approach is modular in the sense that artifacts can be specified
independently from one another. Hence, each artifact can be refined locally, and
later synchronization (e. g., removing undesired behavior by applying policies)
usually only affects a small subset of all artifacts.

4.1 Artifacts and Object Life Cycles

The basic building blocks of the artifact-centric approach are artifacts which are
represented just like data objects in BPMN, cf. Fig. 2(a). The artifact’s name
is noted in the upper left corner. Without any further information, it can be
treated as a placeholder symbol just like an empty pool in a collaboration. This
placeholder symbol can also be used to hide details, for instance when policies
are modeled and the focus lies on the dependencies among artifacts.

The object life cycle of an artifact (cf. Fig. 2(b)–2(d)) can be modeled using
the symbols for tasks, events, and gateways. However, artifacts have no behavior
per se, but are passive objects whose state changes are triggered by agents,
for instance “Buyer” or “Shipper”. Consequently, each task is annotated by an
agent who may execute it. Furthermore, events are annotated by adjectives that
describe the current state of the artifact (e. g., “empty” or “filled”). Initial and
final states are denoted using the standard BPMN symbols for start and end
events, respectively. Note that the life cycle of an artifact may have more than
one symbol denoting an initial state. As an example for this, consider for instance
the order artifact in Fig. 2(c): This artifact keeps track of the payment status
and the purchase order. Each of these information has an individual initial state.
The order is initially “unpaid” and the purchase order is initially “undecided”.



58 N. Lohmann and M. Nyolt

Name

(a) placeholder

Debit

fill

Buyer

process

Shipper

use

Shipperfilledempty processed used

(b) debit artifact

Order
order
beer

Buyer

order
wine

Buyer

undecided

wine ordered

beer ordered
register
payment

Seller
unpaid paid

(c) order artifact

Cargo
load
beer

Shipper

load
wine

Shipper

unloaded

wine loaded

beer loaded

(d) cargo artifact

Fig. 2. BPMN representation of artifacts and object life cycles

As we can see from Fig. 2, the local life cycles of the artifacts are rather brief
and clear compared to the data handling in the process of Fig. 1. We achieved
this by “abusing” control flow constructs to model the evolution of object life
cycles. As the semantics of the gateways remains the same, the object life cycle
models should be intuitively understandable by BPMN modelers.

4.2 Location Information

We already sketched in Sect. 3 that artifacts may be logical or physical objects
that need to be transported between agents to perform state changes (e. g., the
cargo artifact) or data objects that can be remotely accessed (e. g., the order
artifact). This differentiation has an impact on the execution of the process,
because artifacts may need to be sent to an agent before he can execute a task.

To this end, we extend the artifact models with location information and
information about accessibility. We assumed that the debit artifact can be sent
among the buyer and the shipper. This is modeled by an additional life cycle in
the upper part of the debit artifact, cf. Fig. 3(a). Thereby, each agent is treated
as a location (depicted by a stick-figure) and the arrows specify message channels
between these locations. In addition, a start event and an end event specify that
the debit artifact resides initially at the buyer and a successful processing of
the artifact is only possible at the shipper agent. The cargo artifact is extended
similarly. When synthesizing a process such as the model in Fig. 1, respective
message events are inserted automatically and make sure that, for instance, the
debit artifact is sent to the shipper before the task “process debit” is executed.
Again, we refer to [10] for more information on the synthesis.

In contrast, the order artifact does not have a location, but can be remotely
accessed, for instance using an URL or a different form of addressing mechanism.



Artifact-Centric Modeling Using BPMN 59

Debit

fill

Buyer

process

Shipper

use

Shipperfilledempty processed used

ShipperBuyer

(a) debit artifact with location information (message exchange)

Order
order
beer

Buyer

order
wine

Buyer

undecided

wine ordered

beer ordered
register
payment

Shipper
unpaid paid

(b) order artifact with location information (remote access)

Fig. 3. BPMN representation of location information

Poll

participate
in poll

Participant
participated

create
poll

Initiator
created

URL URL

Fig. 4. BPMN representation of the creation and distribution of access control tokens

This is depicted by a small lightning symbol next to the agent’s names, cf.
Fig. 3(b). This means that the agent can always execute the task and does not
need to receive the artifact before.

4.3 Access Control

Up to now, we assumed that an artifact is either an object—physical or logi-
cal— that needs to change its location to be accessed or a remotely accessible
data object whose location (e. g., its URL) is known to the agents. The latter
abstraction fails short in describing situations in which data objects are cre-
ated or the access is only granted after other tasks have been executed. In such
situations, the access control must be explicitly modeled.

As an example, consider the Doodle Web service (http://doodle.com) to
schedule meetings or events. After creating a poll, the service returns a URL to
that poll that can be sent to colleagues that should take part in the meeting.
Without this URL, a participation in the poll is impossible, and the URL can
hence be seen as an access token. We visualize this access control granting by a

http://doodle.com


60 N. Lohmann and M. Nyolt

CargoOrder

beer loaded

wine loaded

beer ordered

wine ordered

paid

Buyer

Fig. 5. BPMN representation of goal states

novel event type with a key symbol, cf. Fig. 4. In the example, the initiator of
the poll creates a key with name “URL”, and the participant can only execute
the task “participate in poll” after receiving this URL.

The extensions we presented so far only affect single artifacts. Hence, each
artifact can be modeled from a mere placeholder to a fully specified model in-
cluding object life cycles, location information, and access control. The remaining
extensions concentrate on the interdependencies between artifacts.

4.4 Goal States

Up to now, any execution of tasks that lead each artifact to a final state would
be seen as a successful outcome of the shipping process. Such executions would,
however, include runs that reach the final state “beer ordered” of the order
artifact (cf. Fig. 2(c)) and “wine loaded” of the cargo artifact (cf. Fig. 2(d)).
Apparently, such executions are undesired as the final states of the artifacts do
not match. To exclude such undesired combinations, we specify goal states. A
goal state is a combination of artifact’s final states, and each combination that
is not mentioned as goal state is implicitly excluded during the synthesis to a
collaborative process model.

To give goal states a BPMN representation, we connect the desired end events
of the artifacts with a parallel gateway, cf. Fig. 5. In this example, connecting
“beer ordered” and “beer loaded” respectively “wine ordered” and “wine loaded”
has the effect that only these combinations are valid. Considering all artifacts,
this yields two valid final states of the overall process:

1. The order is paid and beer was ordered. The cargo is at the buyer and loaded
with beer. The debit is used and at the shipper.

2. The order is paid and wine was ordered. The cargo is at the buyer and loaded
with wine. The debit is used and at the shipper.



Artifact-Centric Modeling Using BPMN 61

Policy 1

Order

register 
payment

Shipper
Cargo

load
wine

Shipper

Cargo

load
beer

Shipper

CargoOrder

Fig. 6. BPMN representation of policies

In Fig. 5, we used placeholder symbols for the order and the cargo artifacts and
only depicted the end events. Such a view on the end events should be provided
by a modeling tool to make the specification of goal states as simple as possible.

4.5 Policies

Artifact-centric approaches follow a declarative modeling style: Instead of explic-
itly modeling global state changes, we only modeled the local object life cycle of
each artifact. Consequently, the order of tasks in the generated process is only
constrained with respect to goal states. As a downside of this approach, a lot of
unreasonable behavior is exposed. For instance, sending out an unloaded cargo
or even sending without prior payment is possible. To rule out this undesired
behavior, we employ four policies :

1. Only load the cargo after payment has been registered.
2. Only register the payment when the filled debit form is at the shipper.
3. Do not send an unloaded cargo to the buyer.
4. Only send the debit form if it is filled and at the buyer.

A policy specifies dependencies between the tasks of one or more artifacts. For
instance, the first policy expresses a causality between the order and the cargo
artifact. To model policies in BPMN, we use tasks and gateways to express the
additional dependencies and add an association to all involved artifacts. As an
example, consider Fig. 6: In the upper part of each task, we also specify the
artifact it belongs to. Policy 1 specifies that the “register payment” task of
the order artifact must be executed before the “load beer” or the “load wine”
task of the cargo artifact are executed. The parallel gateway is used, because a
policy should not exhibit choices (i. e., we do not allow exclusive splits). The fact
that the last two tasks are mutually exclusive follows from the life cycle of the
order artifact, cf. Fig. 2(c). Again, we used placeholder symbols for the involved
artifacts and a modeling tool should support the hiding of the object life cycles.
The other policies can be modeled similarly.

5 Discussion

Figure 7 depicts the overall artifact-centric model. It consists of the three arti-
facts (with their object life cycles and the location information), four policies, and



62 N. Lohmann and M. Nyolt

Debit

fill

Buyer

process

Shipper

use

Shipperfilledempty processed used

ShipperBuyer

Order
order
beer

Buyer

order
wine

Buyer

undecided

wine ordered

beer ordered
register
payment

Shipper
unpaid paid

Cargo

load
beer

Shipper

load
wine

Shipper

unloaded

wine loaded

beer loaded

Shipper Buyer

Policy 2

Order

register 
payment

Shipper
Debit

fill

Buyer

Debit

Shipper

Policy 4

Debit

fill

Buyer

Debit

send to
buyer

Buyer

Policy 3Cargo

load
beer

Shipper

Cargo

load
wine

Shipper

Cargo

send to
buyer

Shipper

Policy 1

Order

register 
payment

Shipper
Cargo

load
wine

Shipper

Cargo

load
beer

Shipper

Fig. 7. Complete artifact-centric BPMN model of the shipping scenario

two goal states. This model can be automatically transformed into the process
depicted in Fig. 1 using the synthesis approach described in [10]. Conceptually,
this synthesis is defined in terms of Petri nets [12], but the BPMN constructs
can be straightforwardly mapped to Petri nets using the formal semantics of
Dijkman et al. [6]. More details can be found in [11].

At this point, a comparison between the artifact-centric model (cf. Fig. 7) and
the collaborative process model (cf. Fig. 1) is difficult and premature, because
without empirical studies, it is impossible to decide which model is easier to
understand or which model can be created in a shorter period of time. In par-
ticular, such questions heavily rely on the education of the modelers and proper
tool support. However, we would like to mention some aspects that are unique
to, or at least enforced by, artifact-centric process models.

Modularity. We already mentioned that artifacts can be modeled independently.
That is, a modeler only needs to concentrate on a single artifact model at a
time. This partition into smaller, “brain-sized”, units may not only improve the
understandability and the model quality, but should also facilitate the concurrent
modeling of all required artifacts of a process. Furthermore, adding or refining
an artifact does not influence the other artifacts which adds flexibility to the
approach.



Artifact-Centric Modeling Using BPMN 63

The moment dependencies between several artifacts need to be expressed,
views may help the modeler focus on the relevant aspects. For goal states, only
the artifact’s end events need to be considered. If a tool supports such a view, the
specification of a goal state should boil down to a few selection actions. Likewise,
the creation of a policy only depends on the names of the artifact’s tasks and
could be facilitated by a modeling tool by corresponding menus and support for
autocompletion.

To summarize, the modularity allows to explore and create a model gradually.
Compared to the model in Fig. 1, less global dependencies need to be under-
stood at once. As a side effect, the artifact-centric model (cf. Fig. 7) is already
graphically partitioned into smaller units.

Declarative modeling. The declarative modeling style is a liberal specification
of all possible behavior. Thereafter, undesired behavior needs to be ruled out
by adding goal states and policies. Given the artifacts, the goal states, and the
policies, a sound process model can be automatically synthesized. In case an
aspect changes, this synthesis can be repeated. This may increase the flexibility
and the modeling speed of this approach. Even if the change affects large parts
of the process, only a few parts of the original artifact-centric model need to be
changed due to the modularity. For instance, adding the possibility to perform
a third-party debit check would have a large impact on the overall process, but
could be realized by a small adjustment to the debit artifact.

The automatic synthesis further allows to abstract from certain error-prone
aspects such as message protocols: The message flow directly follows from the
location information. It ensures that artifacts are only sent to agents to perform
tasks on them or to satisfy goal states.

6 Related Work

Since the first draft of BPMN, several extensions have been proposed that aim
at giving modelers the constructs at hand to model additional aspects of their
processes: Decker et al. [5,3] studied extensions toward choreography modeling.
These extension have already been picked up by the OMG and choreography
models are now a part of the current BPMN standard. Other extensions focus on
nonfunctional properties such as performance measures [8], time requirements
and constraints [7], service quality requirements [14], authorization [15] and se-
curity [13], transactions and compensation [2], or process compliance [1].

All extensions share the evaluation that BPMN is the de facto standard in
process modeling and that it is promising to integrate novel aspects to BPMN

rather than to propose an alternative language. This results in careful extensions
that try to reuse BPMN constructs as much as possible and to make extensions
appear as natural as possible. Best practices such as abstraction by sub pro-
cesses or hiding of unnecessary details are also frequently adopted. Depending
on whether the extension is just conceptual or already aimed at execution, also
the meta model needs to be adjusted.



64 N. Lohmann and M. Nyolt

To the best of our knowledge, this paper provides the first extension of BPMN

toward artifact-centric modeling. As our extensions are at a conceptual model,
we did not specify an extension to the BPMN meta model at this point.

7 Conclusion

Summary. We investigated a small process model of a shipping scenario and
showed that certain data-flow aspects are not faithfully supported by the current
BPMN standard. To model artifact-centric processes, we proposed several BPMN

extensions to represent the parts of the artifact-centric approach. Thereby, we
tried to reuse existing graphical notations as much as possible. We also tried to
follow modeling best practices and define different views on the process to help
the modeler focus on relevant details.

Lessons learnt. The current BPMN standard has only limited modeling support
for data aspects. In particular, modeling the life cycle of data objects results in
cluttered models. By “abusing” control flow constructs such as tasks, events, and
gateways, artifacts and their life cycle can be effectively modeled. As a matter
of fact, the whole school of artifact-centric process design can be expressed with
only a few adjustments to BPMN.

As artifact-centricmodels are naturally partitioned into smaller parts (i. e., arti-
facts, policies, and goal states), they facilitate a gradualmodeling approach. Beside
the modularity, the declarative nature further improves flexibility, because even if
changes affect large parts of the model (e. g., if a policy or an artifact changes), a
sound process can be automatically synthesized. This process can then be realized
by several services; that is, the process is replaced by a service composition.

Future work. This paper is only the first step toward BPMN support for artifact-
centric modeling. One obvious direction of future work is the integration of the
proposed extensions into a BPMN modeling tool such as Oryx [4]. Beside the
mere support of the concepts, also an implementation of different process views
(i. e., a view on a single artifact, a view on goal states, and a view to model
policies) is required.

Based on a prototyping implementation, case studies and empirical experi-
ments need to be conducted. The question which kind of processes may benefit
from an artifact-centric modeling approach is still open. This includes questions
regarding modeling speed, model quality, adaptability and flexibility, as well as
understandability of the models.

References

1. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q
and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)



Artifact-Centric Modeling Using BPMN 65

2. Bocchi, L., Guanciale, R., Strollo, D., Tuosto, E.: BPMN Modelling of Services
with Dynamically Reconfigurable Transactions. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 396–410. Springer,
Heidelberg (2010)

3. Decker, G., Barros, A.: Interaction Modeling Using BPMN. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 208–219. Springer, Heidelberg (2008)

4. Decker, G., Overdick, H., Weske, M.: Oryx – An Open Modeling Platform for the
BPM Community. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 382–385. Springer, Heidelberg (2008)

5. Decker, G., Puhlmann, F.: Extending BPMN for Modeling Complex Choreogra-
phies. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp.
24–40. Springer, Heidelberg (2007)

6. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information & Software Technology 50(12), 1281–1294 (2008)

7. Gagné, D., Trudel, A.: Time-BPMN. In: CEC 2009, pp. 361–367. IEEE (2009)
8. Korherr, B., List, B.: Extending the EPC and the BPMN with business process

goals and performance measures. In: ICEIS 2007, pp. 287–294 (2007)
9. Lohmann, N.: Compliance by Design for Artifact-Centric Business Processes. In:

Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
99–115. Springer, Heidelberg (2011)

10. Lohmann, N., Wolf, K.: Artifact-Centric Choreographies. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 32–46.
Springer, Heidelberg (2010)

11. Nyolt, M.: Modellierung artefaktzentrierter Geschäftsprozesse. Bachelorarbeit,
Universität Rostock, Rostock, Germany (2011), (in German)

12. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn.
Springer (1985)

13. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. IEICE Transactions 90-
D(4), 745–752 (2007)

14. Saeedi, K., Zhao, L., Sampaio, P.R.F.: Extending BPMN for supporting customer-
facing service quality requirements. In: ICWS 2010, pp. 616–623. IEEE (2010)

15. Wolter, C., Schaad, A.: Modeling of Task-Based Authorization Constraints in
BPMN. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 64–79. Springer, Heidelberg (2007)


	Artifact-Centric Modeling Using BPMN
	Introduction
	Data Flow Modeling in BPMN
	Artifact-Centric Modeling in a Nutshell
	BPMN Extensions for Artifact-Centric Modeling
	Artifacts and Object Life Cycles
	Location Information
	Access Control
	Goal States
	Policies

	Discussion
	Related Work
	Conclusion
	References




