Approaches to Improve Reliability of Service
Composition

Jorg Hohwiller, Diethelm Schlegel, and Gregor Engels

Capgemini, CSD Research, Berliner Str. 76, 63065 Offenbach, Germany
{joerg.hohwiller,diethelm.schlegel}@capgemini.com, engels@upb.de

Abstract. Nowadays, enterprises realize functionality as systems that
are composed of services. This includes even mission critical parts of their
business. Hence, the reliability of such systems including their composi-
tion and services is increasingly important. However, it is a challenge to
establish a high reliability in this context because distribution of func-
tionality increases the potential points of failure. Different approaches
exist to increase reliability but they typically act on a restricted scope
like network layer or software design. In order to obtain better results, it
is often necessary to combine multiple approaches depending on the ac-
tual situation and the requirements. This paper classifies commonly used
approaches according their scope and rates their effects on the reliabil-
ity. Thereby, it supports the selection of approaches to improve reliability
and finally helps to find a suitable solution for a given situation.

Keywords: Reliability, SOA, Composition, Service, Quality of Service.

1 Problem

Services are functionalities that are exposed over networks using standardized in-
terfaces. They are the base of service oriented architectures (SOA). Enterprises
implement even critical business logic by services. In the past, the majority
of services was implemented internally. Nowadays, it can be observed that the
use of external services is growing fast. On the other hand, service composition
combines multiple existing services to a new one which offers a more complex
functionality. As shown in figure [Il the realization uses a wide range of differ-
ent hardware and software components including networks. [3] deals with the
prediction of the resulting reliability of the composite service.

Independent of whether a service is composed or not, consumer expect its
reliability in accordance with the concrete usage conditions. Generally, reliability
is defined as the ability of a service to perform its required functions under stated
conditions for a specified time interval [I0] (e.g. an availability of 99.45% for a
7/24 service typically means it must be fully functional at least 363 days a year).
It contains four aspects: maturity, fault tolerance, recoverability, and reliability
compliance (see [7]).

Service level agreements (SLA) typically regard reliability with respect to
stated conditions. To guarantee a SLA, systems must cope with this well defined

G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 321-B32Z] 2012.
© Springer-Verlag Berlin Heidelberg 2012

322 J. Hohwiller, D. Schlegel, and G. Engels

N

Internet)

Vs

N

External
Services

Internal
Services

Intranet)

r

~N
J

L=l > O

Service
Composition

6 Functionality Y,

r

Fig. 1. Service Composition

set of situations that could be systematic or accidental, temporary or permanent,
targeted or unintended. The importance of conditions depends on the concrete
usage scenarios. Several users of the same service may even have different SLAs
depending on their actual conditions and payments.

In many cases, the effects of service faults on the business are disastrous. So,
measures must be taken for reducing the risk of service failures. There are several
commonly used techniques like failover mechanisms or redundancy to enhance
service reliability. But their value depends on the environment and situation.
When designing a system, architects must be familiar with these interrelations
to choose the right concepts. For example, it has no major effect to replicate
databases when the most critical problems arise from overloaded networks.

In the following sections, situations with negative impact on the behaviour
of composed services are classified. Some approaches for reliability improvement
are described and rated concerning their effects in these situations. This will
give architects an advice to decide which techniques he shall use for individual
usage scenarios and possible fault situations. Hereby, our results mainly result
on empirical experiences collected in customer projects.

2 Situations and Scopes

The overall reliability of a composed service is affected by a large variety of
situations. This section introduces two dimensions that classify situations into
scopes. Thus, it is possible to rate the capabilities of approaches to increase the
service reliability in individual situations (see section [3]).

The first dimension consists of different levels. of influence It ranges from the
central service composition up to external services in the cloud. In the same way,
the approaches to improve the reliability act on one or more of these levels. The

Approaches to Improve Reliability of Service Composition 323

following levels are distinguished in this paper. They correspond with the three
layers represented in figure [I1

The composition level summarizes the logical design, the model, and the
physical implementation of resulting composed services, e.g. by using busi-
ness process engines (BPE). It also includes the interfaces that make the
resulting services available.

The internal level contains hardware, network components, operating sys-
tems (OS), runtime environments, and the implementation of the services
used by the composition.

The external level collects hardware and software components external to
the company. The main difference to the first two levels consists in the fact
that there are only few or no possibilities to influence these components.

As a second dimension, the situations are grouped by provoking causes leading to
deteriorated reliability of service compositions. There are four condition clusters
regarded in this paper.

Overloads are characterized by the presence of too many or too complex
requests. This implies that components are used more intensely than they
are designed for. If the situation is provoked intentionally it is called a denial
of service attack.

Failures sum up all situations where hardware or software components do
not perform the way they are designed to. Examples are unstable operating
systems, software abortions, or complete breakdown of hardware (servers,
network, power-supply, internet connection, etc.).

As opposed to failures, design mistakes cover all situations where compo-
nents sure perform well but their behaviour is not consistent with their re-
quirements. They are more systematic and occur deterministically. Reliable
service compositions are expected to handle such conditions properly.
Attacks contain situations where components are out of order due to external
or internal enemies aimed at bringing wohle systems or single components
down.

Table [shows examples of situations in order to clarify the two dimensions
described above. The same table layout will be used in section Bl to rate the
approaches.

3

Solution

This section shows approaches aimed at improving the reliability of services
and compositions. The solution is created by choosing the right combination of
approaches for the given requirements. Each approach is summarized by a table
showing the effects on reliability for the classes as in table [Il (see section [2).
Each cell shows a rating of the impact for the corresponding situations. A gain
is marked as +. On the other hand a - indicates a negative and an empty cell
no relevant influence.

324 J. Hohwiller, D. Schlegel, and G. Engels

Table 1. Situations with Impact on Reliability

<
s
&} Overload Failure Design Attack
Level
. . . . Ty
2 = Too many « Model abortion Wro.ng system Dlsnv'lbuted)
=] requests .. architecture Denial of Service
k= = Race condition . i
S % | Toocomplex = Incorrect service |® Unauthorized
o = Dead lock .
models composition access

= Wrong config

= = Too many = Server crash .

= . . = Insufficient .

= invocations = Power outage hardware = Trojan Horse
2 = CPU load too = Ressource leak X = Viruses

= . . . = Unsuitable net-
— high = Service failure .
work architecture

T
= = Not enough = Internet (access) |® Provider SLA not s

2 oug () . Distributed

= bandwidth problems sufficient . .
) . . Denial of Service
] = Overload of = External service |= Ext. Service not

» . . . Worms
= external service not available suitable

3.1 Load Balancing

An obvious approach to increase reliability is to have multiple redundant in-
stances. This applies to all technological levels in order to avoid single points of
failure.

— Composition: multiple instances (physical hardware or virtual instances)
— Internal services: multiple instances of internal services, network redundancy
— External services: second ISP, redundant cloud services

Having redundant instances available in cold-standby will only help to avoid
maintenance downtimes. In undesired conditions (failure and overload) availabil-
ity can be increased by dynamic delegation of requests across multiple available
redundant instances. This is achieved by a proxy as front-end to the service.
Such proxy serve two demands.

— Fuailover: If one of the redundant instances becomes unavailable requests are
delegated to another instance.

— Load balancing: The proxy distributes the load of incoming requests among
the available instances. There are various strategies like round-robin [2].

There are existing hardware and software solutions to realize load balancers
(proxy servers capable of load balancing and failover). Especially, this applies
for HTTP as a de facto standard for the transport of services. The same ap-
proach can be used on external level in the other direction by clustering internet
connections of different service providers.

A redundant design of service implementations can cause problems if the func-
tionality is not read only. Write operations allowing modifications of underlying
persistent data require synchronization of changes between redundant instances.

Approaches to Improve Reliability of Service Composition 325

This is solved by concepts like master/slave replication or clustering of databases
(e.g. see [I]). On the other hand the service logic should be designed stateless
for good scalability.

The rating of this approach is summarized in table 1 It improves the relia-
bility only if applied on the composition and on internal services because it is
impossible to influence the redundancy the whole external equipment involved.
Furthermore, design mistakes and attacks cannot be relieved by duplicating
instances.

Table 2. Approach: Load Balancing

Dynamically route requests to redundant instances according to load and
Summary:
presence
Preconditions: Stateless service or synchronization required
- Simple and generic approach
Advantages: X . . -
8 - Established, evident gain of availability
Drawbacks: - High cpst (e.g. duglicgte hgrdware costs,' increasing maintenance)
- Potential synchronization issues on service level
Level Cond. Overload Failure Design Attack
Composition + +
Internal A +
External

3.2 Quality of Service

As described in section [l the requirements for reliability differ per usage scenario.
Here we extend the approach redundancy (seeBJ]). Instead of giving all requests
the same priority in the load balancing, the quality of service (QoS) level depends
per usage scenario. This mechanism can be applied on composition side when
exposing the service interface and for the internal and external services. QoS can
be achieved by different approaches.

— QoS per Endpoint (Virtualized Services) defines different endpoints (URLSs)
for each usage scenario that represent the same service logic but offer differ-
ent QoS. Realizing this with entirely redundant hardware would be a waste
of resources. Instead, the endpoints represent virtualized services that del-
egate to the same back-end (the redundant instances described in section
B)). Each virtualized service is realized as separate load balancer (see B
and can ensure a different QoS level. This also includes limiting the QoS
by reducing the number of parallel requests or not involving all available
redundant instances from the backend (see Figure Bl). Different usage sce-
narios then use different virtual services. On infrastructure level it can be
ensured that only the dedicated virtual service is reachable for a particular
client. In advance to load balancing and failover (see B.I)) this approach is
more robust. Overload conditions and attacks will only block a single usage
scenario.

326

J. Hohwiller, D. Schlegel, and G. Engels

Client Client Client i

(Group A) 4 (Group B) (Group C)

&
@

)

Virtual

Service B
Virtual

Service A

\ /X7

Fig. 2. QoS per Endpoint

Virtual
Service C

“<:>@
“<—>@:
O

Redundant instances

Typically, the user is related to the usage scenario that is associated to a
particular QoS level (QoS per User). The user invoking the service needs to
be identified and its according QoS level determined. If the service requires
authentication the user identification arises implicit. Otherwise information
as the IP-address have to be used. As such information can be manipulated
additional security mechanisms may be required. If the appropriate QoS level
is determined, the application logic (service facade) can route the request
accordingly to one of the redundant back-end instances (e.g. analogue to QoS
per endpoint). This should typically be addressed by an enterprise service
bus (ESB). However, it is important to assure the chosen product is robust
enough not to become a bottleneck.

A very flexible approach is to send the QoS requirements with each service
request (QoS per Request, see also [I3]). The question is how much trust
shall be given to the requester. In a closed and isolated world this approach
will work well, but in an open and uncontrolled world (e.g. the public cloud)
some control and restriction mechanisms have to be added on the provider
side. Otherwise a DoS-attacker will have it even easier to produce high load.
The main scenario of this approach is therefore a service that is used by a
smaller set of clients over a secured channel. If requests are charged according
to the required QoS a balance will establish. Such offering will typically
require service level agreements and measurement (see [5] and [11]) for proper
acceptance.

Table [B] shows the rating of this approach. Compared with failover mechanisms
it copes with denial of service attacks and overload situations because only single
QoS groups are affected. This even is relevant for external services. As a draw-
back, establishing appropriate QoS based redundancy is more expensive than
simple failover mechanisms.

Approaches to Improve Reliability of Service Composition 327

Table 3. Approach: Quality of Service

Summary: Dynamically route requests to redundant instances with different QoS-levels
Preconditions: Redundancy (load balancing and failover)
Advantages: - Availability even in case of overload / attack
Drawbacks: - High cpst (e.g. mul'tlplg tlr'nes ofhardwgre costs, more maintenance)

- Potential synchronization issues on service level
Level Cond. Overload Failure Design Attack
Composition 4 + ES
Internal A + +
External a4 +

3.3 Parallel Service Invocation

If the reliable service needs some functionality provided by another service and
there is more than one possible service provider offering the needed function, the
requesting service can decide what service it calls.

The service calls at least two of the possible providers, waits until the first
result is received and aborts the other calls. If data is modified it is important
that changes are performed only once. This implies the need for compensation,
transactional behaviour or two phases commit (see [I2]). The call is successful
if at least one service provider is performing well. The time needed for the call
is the minimum time of all providers (see [9] and [g]).

The more independent the service implementations are in respect of infras-
tructure and implementation, the higher will be the benefit of this approach.
A disadvantage is the higher resource utilization. The network load increases
by sending multiple requests in parallel. If adopted on the large scale service
providers must cope with more requests in a given time interval. The approach
is not useful against attacks and concerning the composed service itself.

3.4 Dynamic Service Composition

The main disadvantage of the redundant service invocation approach consists
in the load it generates and the need for compensation or two phases commits.
It is desirable to call only one of the service providers to save bandwidth. As a
solution, static service composition is established by manually configuring the
provider to use. This approach resembles the load balancing approach (see B.))
with another service provider available as a backup.

As a drawback, failure and overload cannot be detected without delay and
intervention. The solution is to choose the provider dynamically. The challenge
is to find the service provider with the best reliability based on an algorithm. It
must react on changing conditions fast and in an appropriate way. The general
problem to find the best provider at any time cannot be solved, because it is

328 J. Hohwiller, D. Schlegel, and G. Engels

Table 4. Approach: Parallel Service Invocation

Summary: Call more than one service provider in parallel
ie Critical service, >2 providers available, compensation or two phase commit,
Preconditions: X
stateless service

Advantages: - Guarantees the best response behaviour at the given conditions
Drawbacks: - Generates overload on network, proxies and service implementation

Cond. i i
Level Overload Failure Design Attack
Composition
Internal - +
External - + +

impossible to predict the future conditions. Besides, regular checking of service
availability would increase network load.

Optimizing dynamic service composition is known as NP-hard (see [14]). How-
ever, there are a lot of proposals for QoS aware service compositions based on
integer programming, case-based reasoning, genetic algorithms (see [4]), and hy-
brid approaches (see [14]). Which of these will be appropriate depends on the
given situation and structure. Sudden overload, attacks, or failure conditions will
be recognized with delay and therefore negative impact on reliability. Addition-
ally, it improves the behaviour in the context of design mistakes (composition
and external services).

Table 5. Approach: Service Composition

Summary: Call the service provider with best predicted QoS
. Critical service, > 2 providers available, probability for sudden overload or
Preconditions: . ;
failure not too high
AT - Improves th§ response behaviour by making some assumptions of the service
provider conditions
Drawbacks: - Reacts on sudden overload or failure with delay
Level Cond. Overload Failure Design Attack
Composition +
Internal + 4 +
External a4 + + +

3.5 Service Interface Granularity

All preceding approaches take services as given and add the appropriate mecha-
nisms. Another way to improve reliability consists in better system design. It is

Approaches to Improve Reliability of Service Composition 329

the preferred way when implementing a new composition including the internal
services, but it can also be accomplished when re-designing consisting applica-
tions or selecting external services. This paper considers the service granularity.
In any case, extremes must be avoided. Monolithically designed services as well
as thousands of small services will lead to poor performance and reliability.

As stated in [6] coarser grained interfaces reduce the number of calls and at the
same time network utilization. So, the impact of overload will be minimized. On
the other hand, the interfaces will become more complex leading to increasing
requirements and execution times as well as to higher design mistake rates. This
also decreases the reliability against attacks. The probability to find alternative
providers for functionalities decreases.

Finer grained interfaces result in leaner implementations. The chance to find
redundant providers becomes higher which indirectly leads to more robust be-
haviour in overload or failure conditions. Transactional reliability can be achieved
more easily if operations are less complex. At the same time, the increasing num-
ber of service calls leads to higher network utilization. If external providers are
called the individual round trip delays of multiple invocations sum up reducing
the performance compared to singe service calls. In summary it can be stated
that finer grained services have more demands concerning the underlying net-
work infrastructure.

Table 6. Approach: Service Granularity

Summary: Choose the appropriate interface complexity and service granularity
Preconditions: Service composition not yet fixed

- More reliable implementation, better chance to find redundant service
Advantages: . .

implementations
Drawbacks: - Possible increase of network and proxy utilization

Cond. i i

Level Overload Failure Design Attack
Composition + + +
Internal A +
External a4 + +

3.6 Solutions for Usage Scenarios

Figure Bl shows an overview of the approaches and the resulting positive and
negative impact on reliability. This implies solutions for the following usage
scenarios of a service

— Internal: As long as the system is composed of services in the local network
redundancy B B2) will be the adequate approaches to ensure sufficient
reliability. Additionally, if the infrastructure is properly sized, it is preferable
to choose a finer interface granularity ([B.5]). If external services are involved

330

J. Hohwiller, D. Schlegel, and G. Engels
Load Balancing : :
Quality of Service E : E
Parallel Service Invocation - * _
Dynamic Service Composition : : : :
Service Granularity E E :

Fig. 3. Approaches to Improve Reliability

the approaches with respect to the parallel service invocation ([F3) or dy-
namic service composition (3.4) will become preferred solutions.

Business to Business: If multiple partners must be provided by different QoS
levels for the same service, one of the QoS based redundancy B2 B2) is the
best approach. The interface granularity should be rather coarser grained
B3) to reduce the network traffic.

Business to Customer: If the service is also exposed to customers it is highly
recommended to choose the QoS per Endpoint approach (3.2)). Requests
should be separated into QoS groups to be able to guarantee high service
reliability for important users. Finer grained interfaces ([3.3]) would be slightly
better in this case to prevent denial of service attacks by calling complex
services.

Based on the results there are the following ruler of thumb. The usage scenarios
and rules of thumb must be checked against the actual requirements before
implementing them because their effects highly depend of the concrete scenario.

1.

@

As long as services are composed internally redundancy should be estab-
lished.

As long as cloud services are involved parallel invocation or dynamic service
composition are appropriate.

Cloud services should tend to be coarser granular.

Internal services should be designed finer granular.

Approaches to Improve Reliability of Service Composition 331

4 Conclusion and Further Work

This paper dealt with the question how to make a service composition more
reliable, especially if external service providers are involved. Based on two di-
mensions several approaches were rated and summarized with respect to their
impact on reliability. The concrete solution consists in selecting one or more
approaches depending on the actual scenario.

Furthermore, the solution depends on the point of view. A service provider
can improve the reliability by load balancing () and QoS mechanism (32))
while a service requester will consider parallel invocation or dynamic service
composition (F4). This is summarized by exemplary usage scenarios and rules
of thumb in section After all, true service reliability can only be achieved if
all technological levels are addressed.

Based on this paper possible future work includes analysing further approaches
(e.g. architectural design questions) and extending dimensions (e.g. with condi-
tions like duration and severity). Further, the methodology can be extended by
incorporating security aspects or implementation costs. So, the ratings of the
approaches will become even more useful.

References

1. Database replication, http://www.tech-faq.com/database-replication.html

2. Bhavin Turakhia, P.K.: The compendium of load balancing strategies. Tech. rep.,
Wiki. Directi (2009)

3. Bocciarelli, P., DAmbrogio, A.: A model-driven method for describing and pre-
dicting the reliability of composite services. Software and Systems Modeling 10,
265-280 (2011), doi:10.1007/s10270-010-0150-3

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: GECCO 2005: Proceedings of
the 2005 Conference on Genetic and Evolutionary Computation, pp. 1069-1075.
ACM, New York (2005)

5. Dobson, G.: Quality of service in service-oriented architectures. Tech. rep., Lan-
caster University (2004)

6. Friedl, B.: Zur optimalen Granularitdt von IT-Services - Eine Analyse relevanter
Okonomischer Einflussfaktoren. In: Bernstein, A., Schwabe, G. (eds.) Proceedings
of the 10th International Conference on Wirtschaftsinformatik, vol. 1, pp. 404413

2011

7. Enterrzational Organization for Standardization: ISO/IEC 9126. Software engineer-
ing — Product quality (2001)

8. Kokash, N., D’Andrea, V.: Evaluating Quality of Web Services: A Risk-Driven
Approach. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 180-194.
Springer, Heidelberg (2007)

9. Laranjeiro, N., Vieira, M.: Towards fault tolerance in web services compositions.
In: Guelfi, N., Muccini, H., Pelliccione, P., Romanovsky, A. (eds.) EFTS, p. 2.
ACM (2007)

10. Lee, K., Jeon, J., Lee, W., Jeong, S.H., Park, SSW.: QoS for web services: Re-
quirements and possible approaches. Tech. rep., W3C, Web Services Architecture
Working Group (November 2003),
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

http://www.tech-faq.com/database-replication.html
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

332 J. Hohwiller, D. Schlegel, and G. Engels

11. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web service level agreement
language specification, 1.0 (2008)

12. May, N.R.: A redundancy protocol for service-oriented architectures (2008)

13. Tian, M., Gramm, A., Ritter, H., Schiller, J.H., Voigt, T.: Qos-aware cross-layer
communication for mobile web services with the ws-qos framework. In: Dadam, P.,
Reichert, M. (eds.) GI Jahrestagung (2). LNI, vol. 51, p. 286. GI (2004)

14. Ye, X., Mounla, R.: A hybrid approach to qos-aware service composition. In: Pro-
ceedings of the 2008 IEEE International Conference on Web Services, pp. 62—69.
IEEE Computer Society, Washington, DC (2008)

	Approaches to Improve Reliability of Service Composition
	Problem
	Situations and Scopes
	Solution
	Load Balancing
	Quality of Service
	Parallel Service Invocation
	Dynamic Service Composition
	Service Interface Granularity
	Solutions for Usage Scenarios

	Conclusion and Further Work
	References

