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Abstract. The lack of semantics inWS-SecurityPolicy (WS-SP)hampers
the effectiveness of matching the compatibility betweenWS-SP assertions.
To resolve this problem, we present in this paper a semantic approach for
specifying and matching the security assertions. The approach consists in
the transformation of WS-SP into an OWL-DL ontology and the defini-
tion of a set of semantic relations that can exist between the provider and
requestor security concepts.We show how these relations lead to more cor-
rect and flexible matching of security assertions.

1 Introduction

Dynamic service discovery and selection is an essential aspect of Service Ori-
ented Architecture (SOA). To meet modern business requirements, service selec-
tion must not only take into account functional aspects, but also non-functional
properties of the service. This paper focuses on message security which is one
of these non-functional properties. Message security becomes a major concern
when using Web services, the most adopted implementation of SOA. Message
security mainly means the confidentiality and the integrity of data transmitted
through the message. Confidentiality and integrity can be assured by applying
security mechanisms such as encryption and digital signature.

WS-Security [1] and WS-SecurityPolicy (WS-SP) [2] are the most important
standards for definition and enforcement of message security in systems based
on Web services. While WS-Security defines the syntax of security elements in
a SOAP message, a WS-SP document describes which security measures are to
be applied to which parts of the message. The basic building blocks of SPs are
security assertions that consider the WS-Security message security model. Every
single assertion may represent a specific requirement, capability, other property,
or a behavior related to message security [2]. WS-SP is built on top of WS-Policy
framework [3].With the help of WS-Policy operators, security assertions can be
composed to complex security policies.

WS-SP is widely accepted in the industry and it is currently a popular stan-
dard to be aggregated into the Web service architecture. Nevertheless, WS-SP
has a major weakness: it only allows syntactic matching of security policies. In
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fact, security policy matching depends on the policy intersection mechanism [3]
provided by WS-Policy. The core step in this mechanism is matching the asser-
tions specified in the service provider and requestor policies. This step consists
in a pure syntactic comparison between the security assertions, neglecting the
domain-specific semantics of assertions such as message security semantics. Al-
though WS-Policy admits that checking the compatibility of policy assertions
may involve domain-specific processing, it does not give hints on how to inte-
grate it. Syntactic matching of security assertions restricts the effectiveness of
checking the compatibility between them. In fact a simple comparison of the
syntactic descriptions of security assertions is prone to get fault negative results.
For example, consider syntactically different security assertions with the same
meaning. Such assertions are considered incompatible which is counterintuitive.
Besides, syntactic matching of security assertions only yields a strict yes/no
matching result. A more flexible matching with intermediary matching degrees
is needed in order to consider subtle differences that may exist between security
assertions and not reject a potential partnership between a service requestor and
provider. For example consider the cases when the provider security assertion
and the requestor security assertion have the same type but have some different
properties that make the provider assertion stronger, from security perspective,
than the requestor assertion. Such assertions are considered incompatible which
is overly strict.

In this paper we propose an approach to enable semantic matching of Web ser-
vice security assertions. Firstly, we transform WS-SP into an ontology. Secondly,
we extend this WS-SP-based ontology with new semantic relations, such as isE-
quivalentTo and isStrongerThan relations, between the provider and requestor
security assertions. The additional relations allow to semantically interpret the
syntactic heterogeneities that may exist between these assertions, particularly
when the provider and the requestor security assertions point to the same onto-
logical concept but have different properties. We define a set of SWRL[4] based
semantic rules in order to control the dynamic instantiation of the additional
semantic relations. Then, we propose an algorithm for matching security asser-
tions.

We implemented a prototype for the semantic matching of security assertions.
We used this prototype to match several syntactically different but semanti-
cally related assertions and obtained the expected matching degrees between
them. Based on the semantic interpretation of the syntactic heterogeneities that
may occur between a provider assertion and a requestor assertion, our approach
doesn’t produce fault negative results and thus supports more correct matching.
Besides, it allows to introduce close match and possible match as intermediary
matching degrees, which makes security assertion matching more flexible.

The rest of the paper is structured as follows. In Section 2 we present a moti-
vating example to show the need for semantics in matching a pair of requestor-
provider assertions. In Section 3 we describe how WS-SP can be extended to
incorporate semantics. We firstly present the ontological representation of WS-
SP, and then detail the new semantic relations that we propose in order to
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semantically interpret the syntactic heterogeneities that may occur between se-
curity policy assertions. In Section 4 we present our algorithm for matching
security assertions. Section 5 focuses on the implementation of our approach
and its application to match examples of assertions. Related work is presented
in section 6. Finally, we conclude in Section 7 and give the guidelines of our
future work.

2 The Need for Semantics in Matching Security
Assertions

Syntactic matching of security assertions restricts the effectiveness of checking
the compatibility between them. In order to illustrate this deficiency, suppose
that a requestor is looking for a flight reservation Web service that supports
the signature of the message body with a symmetric key securely transported
using an X509 token. Besides, the necessary cryptographic operations must be
performed using Basic256 algorithm suite. This could be formalized, based on
the WS-SP standard, by adding the assertions RAss1 and RAss2 from Fig. 1
to the requestor security policy (SP). Furthermore, suppose that the requestor
finds a Web service that provides flight reservation and whose SP includes PAss1
and PAss2 assertions (see Fig. 1). In order to know if the requestor and provider
SPs are compatible, we have to check the compatibility of their assertions. It
is clear that the assertions specified in the provider SP are syntactically dif-
ferent than those specified in the requestor SP. Syntactic matching will then
produce a no match result for these assertions. However, semantic interpreta-
tion of the above syntactic heterogeneities leads to decide a different matching
result. In fact, in the above scenario RAss1 and PAss1 assertions have the same
meaning: sign the body of the message. Therefore, matching these two asser-
tions must lead to a perfect match rather than to a no match. Besides, the only
differ-ence between RAss2 and PAss2 assertions is that the SymmetricBinding
as-sertion specified in the provider SP contains an extra child element which is

Fig. 1. Example of syntactically different but semantically related security assertions
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sp:IncludeTimestamp. The meaning of this element is the following: a times-
tamp element must be included in the security header of the message. From se-
curity perspective this strengthens the integrity service ensured by the message
signature [16] and thus makes PAss2 assertion stronger than RAss2 assertion.
Although it is not a perfect match, it is also overly strict to consider that it is a
no match case. In fact, if the requestor can strengthen his security assertion by
the inclusion of a timestamp, the perfect compatibility between both assertions
will be ensured. We consider that it is more flexible to decide a possible match
for this case in order to not reject a potential partnership between the service
requestor and provider.

We will show in the rest of this paper how the inclusion of semantics into
WS-SP enables more correct and flexible matching of security assertions.

3 Extending WS-SecurityPolicy to Incorporate Semantics

The assertions defined in WS-SP must be augmented with semantic information
in order to enable semantic matching. Below we describe how we transform WS-
SP into an ontology and detail the semantic relations that we add at the level
of the security concepts.

3.1 WS-SecurityPolicy-Based Security Policy Ontology

We redesign WS-SP with an ontological representation of its assertions in order
to obtain a WS-SP-based ontology that can be augmented with new semantic
relations. A graphical depiction of the main parts of the ontology is shown in
Figures 2 to 5. The blue coloured object properties represent the additional
semantic relations and will be explained in the next subsection.

Web service security assertions are specified within security policies of the ser-
vice provider and requestor. Typically, the structure of these policies is compliant
with the WS-Policy normal form. In the normal form, a policy is a collection
of alternatives, and an alternative is a collection of assertions. It is in the as-
sertion components that a policy is specialized. Fig. 2 shows the main classes
of the WS-SP-based ontology. As it is illustrated in this figure, we create the
three classes SecurityPolicy, SecurityAlternative and SecurityAssertion in or-
der to enable specifying security assertions within security policies. Then, we
transform WS-SP assertions into classes and properties in the security policy
ontology based on the semantic meaning of these assertions. SecurityBinding,
SupportingSecurityTokens, TokenReferencingAndTrustOptions, and Protection-
Scope are the security assertions of our ontology and are modelled as subclasses
of the SecurityAssertion class. Due to space limitations, we will focus, in the
rest of the paper on SecurityBinding and ProtectionScope classes.

SecurityBinding class: represents the various security bindings defined in WS-
SP (see Fig. 3). This class allows specifying the main security mechanism to
apply for securing message exchanges. Security binding can be either transport
level, represented by TransportBinding class, or message level represented by
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MessageSecBinding class that possesses the two subclasses SymmetricBinding
and AsymmetricBinding. Security bindings have common properties of the fol-
lowing types:

– SecurityHeaderLayout :security header layouts are represented by instances
of this class. LayoutValue is a string data type property having a possible
value among ”Strict”, ”Lax”, ”LaxTsFirst”, and ”LaxTsLast”.

– AlgorithmSuite:algorithm suites are captured by this class. The possible val-
ues of the string property AlgSuiteValue are all algorithm suites defined in
WS-SP such as Basic256, Basic192, and Basic256Rsa15 algorithm suites.

– Timestamp: the presence of a timestamp in the SOAP message is captured
by this class having a boolean data type property called IncludeTimestamp.

Fig. 2. Security policy ontology: main classes

Message level security bindings have also some common properties such as pro-
tection order, signature protection, and token protection that are modelled as
data type properties or object properties of the MessageSecBinding class.

Besides, each specific type of security binding has binding specific token prop-
erties modelled by object properties such as hasTransportToken, hasSignature-
Token, hasProtectionToken,etc. These object properties relate a security binding
to the SecurityToken class (see Fig. 4). This class allows to specify the type of
tokens to use to protect or bind claims to the SOAP message. There are different
types of tokens with different manners to attach them to messages. Fig. 4 just
shows some token types.

ProtectionScope class: is used to group and organize the protection assertions
of WS-SP. Fig. 5 shows the property layers of this class. The first level properties
are of the following types:

– EncryptionScope:this class is used to specify message parts that are to be
protected by encryption. Its properties hasEncryptedPart, hasEncryptedElt,
and hasContentEncryptedElt allow to specify coarse-grained as well as fine-
grained encryption. The EncryptedPart class represents a message part to
be encrypted. ”Body”, ”Header” and ”Attachments” are the possible values
of its PartType property.
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Fig. 3. Security policy ontology: security binding

Fig. 4. Security policy ontology: security token
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Fig. 5. Security policy ontology: protection scope

– SignatureScope:through its properties hasSignedPart and hasSignedElt, this
class allows to describe message parts that are to be digitally signed.

– RequiredScope(not shown in the figure due to space limitations): this class
is used to specify the set of header elements that a message must contain.

3.2 Adding Semantic Relations

We augment the WS-SP-based ontology with new semantic relations at the level
of the security assertions and their properties. These relations are graphically
illustrated in Figures 2 to 5 as blue coloured object properties of the ontology
classes. They actually link the security concepts of the provider SP to those of
the requestor SP.

The automatic instantiation of the semantic relations between concrete
provider and requestor security assertions (mapped to instances of the secu-
rity ontology concepts) is controlled by SWRL [4] based semantic rules. These
rules define the conditions that the concrete assertions must satisfy in order to
create a given semantic relation between them.

Next, we detail the semantic relations and present (in natural language) some
of the semantic rules that control their instantiation.

isIdenticalTo relation1 . This relation allows to specify that a security concept
specified by the provider is identical to a security concept specified by the re-
questor (no syntactic heterogeneity exists between them). There are two main
cases for this relation:

Case 1. It is defined at the level of every security property of ProtectionScope
and SecurityBinding assertions. At the level of an atomic property such as

1 isIdenticalTo and isDifferentFrom relations are not shown in the figures to avoid
saturating them.
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Timestamp and AlgorithmSuite, a property specified in the provider assertion
is identical to a property specified in the requestor assertion if they point to
the same security concept and have equal values. At the level of a composite
property such as SecurityToken and EncryptionScope, a property specified in
the provider assertion is identical to a property specified in the requestor asser-
tion if they point to the same security concept and all their child properties are
identical (have isIdenticalTo relation).
Case 2. isIdenticalTo relation is defined at the level of ProtectionScope and Se-
curityBinding assertions. A provider security assertion is identical to a requestor
security assertion, if they point to the same security concept and all their prop-
erties are identical.

isEquivalentTo relation. This relation allows to specify that a security concept
specified by the provider is equivalent to a security concept specified by the re-
questor. There are three ways this relation can occur:

Case 1. It is defined between an encrypted part and an encrypted element, sim-
ilarly between a signed part and a signed element, and between a required part
and a required element. This is because a message part can also be referenced
through an XPath expression. For example, the XPath expression
/S:Enveloppe/S:Body references the body part of a SOAP message. The follow-
ing is one of the semantic rules representing this equivalence case:
If there exists, in the requestor policy, a signed element reqSignedElt, which has
its XPathValue property having the value ”/S:Enveloppe/S:Body”, and if there
exists, in the provider policy, a signed part PSignedPart, which has its PartType
property, which has the value ”Body”, then create an isEquivalentTo relation
between PSignedPart and RSignedElt.
Case 2. isEquivalentTo relation is defined between two algorithm suites. An algo-
rithm suite denes which algorithms must be used when cryptographic operations
such as signing, encryption, and generating message digests are involved. The
algorithm suites dened in WS-SP are not disjoint and two algorithm suites can
include many common elements. For example, Basic256 and Basic256Sha256 al-
gorithm suites differ only by the digest algorithm. Therefore, if one of these two
algorithm suites is specied in the requestor SP and the other is specied in the
provider SP and neither of the two SPs involves digest generation, then the two
algorithm suites can be considered as equivalent in this context.
Case 3. This case is a consequence of cases 1 and 2. In fact, if the equivalence
relation actually exists at the level of the aforementioned concepts of cases 1
and 2, it spreads to the upper concepts of the security ontology. It can so exist
between two encryption scopes, two signature scopes, and two required scopes.
Then, it can exist at the level of SecurityBinding and ProtectionScope assertions.
For example, an assertion PProtecScope specified by the provider is equivalent
to an assertion RProtecScope specified by the requestor if it has at least one
property (encryption, signature, or required scope) that is equivalent to the cor-
responding property of RProtecScope, and the other properties of PProtecScope
and RProtecScope are identical.
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isLargerThan relation. This relation only concerns the protection scope con-
cept. There are three cases for this relation:

Case 1. Since the body part of a SOAP message is larger than any element that
belongs to it, also a header part is larger than any of its sub-elements, we dene
isLargerThan relation between an encrypted part and an encrypted element,
between a signed part and a signed element, as well as between a required part
and a required element. Similarly, since any XML element is larger than any of
its sub-elements, we furthermore dene isLargerThan relation between two en-
crypted elements, two signed elements, and between two required elements.
Case 2. isLargerThan relation can also exist at the level of encryption scopes, sig-
nature scopes, and required scopes. For example an encryption scope PEncScope
specied by the provider is larger than an encryption scope REncScope specied
by the requestor if: 1) it has at least an encrypted part or an encrypted element
which is larger than an encrypted element of REncScope, the other encrypted
parts and encrypted elements of PEncScope and REncScope are identical or
equivalent, or 2) it has at least one extra encrypted part or encrypted element
than REncScope, the other encrypted parts and encrypted elements of PEnc-
Scope and REncScope are identical, equivalent, or have isLargerThan relations.
Case 3. At the level of the protection scope concept, a protection scope PPro-
tecScope specied by the provider is larger than a protection scope RProtecScope
specied by the requestor if it has at least one property (encryption, signature,
or required scope) that is larger than a property of RProtecScope, and the other
properties of PProtecScope and RProtecScope are identical or equivalent. Note
that in order to obtain correct isLargerThan relations, any syntactic heterogene-
ity between XML data referenced in the protection scopes must be resolved [10]
before executing the involved semantic rules.

isSmallerThan relation. This relation is to specify that the protection scope
(in the SOAP message) specified by the provider is smaller than the protection
scope specified by the requestor. It is the opposite of isLargerThan relation and
occurs in three cases just in an opposite manner to isLargerThan relation.

isStrongerThan relation. This relation is to specify that a security concept
specified by the provider is stronger, in the security perspective, than a security
concept specified by the requestor. There are three ways this relation can occur:

Case 1. Since some security binding properties such as algorithm suite, times-
tamp, signature protection, and token protection have influence on the security
strength, we add isStrongerThan relation at the level of these properties (see Fig.
3). For instance, the following semantic rule defines when a timestamp property
specified in the provider security binding assertion is stronger than a timestamp
property specified in the requestor security binding assertion:
If there exists, in the requestor policy, a security binding RSecB, and if there
exists, in the provider policy, a security binding PSecB, and if PSecB and
RSecB have the same class of binding (transport, symmetric, or asymmetric),
and if RSecB has a timestamp RTs, which has its IncludeTimestamp property
which has the value ”false”, and if PSecB has a timestamp PTs, which has its
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IncludeTimestamp property which has the value ”true”, then create an is-
StrongerThan relation between PTs and RTs.
Case 2. At the level of a security binding assertion, an assertion PSecB specified
by the provider is stronger than an assertion RSecB specified by the requestor
if it points to the same type of security binding as RSecB but it has at least
one property that is stronger than the corresponding property of RSecB, and
the other properties of PSecB and RSecB are identical or equivalent.
Case 3. isStrongerThan relation is dened between two protection scopes. A pro-
tection scope PProtecScope specified by the provider is stronger than a protection
scope RProtecScope specified by the requestor if it has at least one property (en-
cryption, signature, or required scope) that isn’t specied in RProtecScope, and
the other properties of PProtecScope and RProtecScope are identical, equivalent,
or have isLargerThan relations.

isWeakerThan relation. This relation is to specify that a security concept
specified by the provider is weaker, in the security perspective, than a security
concept specified by the requestor. It is the opposite of isStrongerThan relation
and occurs in three cases just in an opposite manner to isStrongerThan relation.

hasTechDiffWith relation. In addition to concepts that allow to specify how a
SOAP message is to be secured (confidentiality, integrity,), WS-SP-based ontol-
ogy also includes concepts to describe technical aspects concerning how adding
and referencing the security features in the message. At the level of these tech-
nical concepts, we define hasTechDiffWith relation to state that any mismatch
between the provider concept properties and the requestor concept properties
must be considered as a technical mismatch rather than a security level mis-
match. There are three cases for this relation:

Case 1. Since the security header layout property simply defines which layout
rules to apply when adding security items to the security header and has no
influence on the security services ensured by a SP, we added hasTechDiffWith
relation at the level of the SecurityHeaderLayout concept (see Fig. 3). The fol-
lowing semantic rule controls the instantiation of hasTechDiffWith relation at
the level of the SecurityHeaderLayout concept:
If there exists, in the requestor policy, a security binding RSecB, and if there
exists, in the provider policy, a security binding PSecB, and if PSecB and RSecB
have the same class of binding, and if RSecB has a securityHeaderLayout RSHL,
which has a LayoutValue property RHLValue, and if PSecB has a SecurityHead-
erLayout PSHL, which has a LayoutValue property PHLValue, and if RHLValue
and PHLValue are not equal, then create a hasTechDiffWith relation between
PSHL and RSHL.
Case 2. Similarly some child properties of the security token property have no
influence on the security services ensured by a SP. So we also add hasTechDif-
fWith relation at the level of these subproperties as well as at the level of the
SecurityToken concept. For instance, we defined hasTechDiffWith relation at the
level of DerivedKeys property since this property just specifies which mechanism
must be applied in order to reference, in the SOAP message, derived keys used
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in cryptographic operations and it has no influence on which cryptographic op-
erations to use or with which strength they must be applied.
Case 3. At the level of a security binding assertion, an assertion PSecB specified
by the provider has technical difference with an assertion RSecB specified by the
requestor if it points to the same type of security binding as RSecB but it has at
least one property (SecurityHeaderLayout or SecurityToken) that has technical
difference with the corresponding property of RSecB, and the other properties
of PSecB and RSecB are identical or equivalent.

isMoreSpecificThan relation. According to WS-SP standard, many security
properties are optional to specify in a SP and WS-SP doesn’t attribute default
values for them. Therefore we define isMoreSpecificThan relation that occurs
when a security concept specified by the provider is more specific (i.e., described
in more detail) than a security concept specified by the requestor. There are two
cases for this relation:

Case 1. It occurs between two SecurityToken properties that point to the same
concept but the security token specified by the provider is described in more
detail than the security token specified by the requestor. For example, the se-
curity token specified by the provider is an X509 token that has its property
Version&Profile having the value ”WssX509V3Token10” (which means that an
X509 Version 3 token should be used as defined in WSS:X509TokenProfile1.0
[5]), while the security token specified by the requestor is an X509 token with
no properties.
Case 2. isMoreSpecificThan relation is defined at the level of a security binding
assertion, an assertion PSecB specified by the provider is more specific than an
assertion RSecB specified by the requestor if: 1) it points to the same type of
security binding as RSecB but it has a security token property that is more
specific than the corresponding security token property of RSecB, and the other
properties of PSecB and RSecB are identical or equivalent, or 2) it points to
the same type of security binding as RSecB and has a SecurityHeaderLayout
property (which is an optional property without a default value), while RSecB
hasn’t a SecurityHeaderLayout property, and the other properties of PSecB and
RSecB are identical or equivalent.

isMoreGeneralThan relation. This relation occurs when a security concept
specified by the provider is more general (i.e., described in less detail) than a
security concept specified by the requestor. It is the opposite of isMoreSpeci-
ficThan relation and oc-curs in two main cases just in an opposite manner to
isMoreSpecificThan relation.

isDifferentFrom relation. This relation occurs when the security concepts
specified by the requestor and the provider are semantically disparate. There
are two main cases for this relation:

Case 1. It is defined at the level of AlgorithmSuite and SecurityToken prop-
erties of SecurityBinding assertions. For example a security token specified by
the provider as a username token is considered different from a security token
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specified by the requestor as an X509 token. This relation is also defined at the
level of all properties of ProtectionScope assertion. For example an encrypted
part specified by the provider as a Body part is considered different from an
encrypted part specified by the requestor as a Header part.
Case 2. isDifferentFrom relation is defined at the level of ProtectionScope and
SecurityBinding assertions. A provider security assertion is different from a re-
questor security assertion if: 1) they point to different security concepts, or 2)
they point to the same security concept, and they have at least one isDifferent-
From relation at the level of their properties, and their remaining properties are
linked with semantic relations of type isIdenticalTo or isEquivalentTo.

4 Semantic Matching of Security Assertions

In this section, we propose an algorithm for matching provider and requestor se-
curity assertions. The matching process consists in checking to what extent each
security assertion RAss specified in the requestor SP is satisfied by a security
assertion PAss specified in the provider SP. The matchmaker has to perform two
main tasks. Firstly, it must create all possible semantic relations at the level of
each pair of provider and requestor assertions. This is done through the execu-
tion of the semantic rules presented in the previous section. Secondly, based on
the created semantic relations, it must decide the appropriate matching degree
for each PAss-RAss pair. The final matching degree for a requestor assertion is
the highest level of match it has against all of the checked provider assertions.
There are four possible matching degrees for a PAss-RAss pair: perfect match,
close match, possible match, and no match in decreasing order of matching.

Perfect match. A perfect match occurs when PAss and RAss are connected
through isIdenticalTo or isEquivalentTo relations.

Close match. A close match occurs when PAss and RAss are connected through
isMoreSpecificThan relation. For example, suppose that PAss and RAss point to
the TransportBinding concept, and PAss has a SecurityHeaderLayout property
having the value ”Lax”, while RAss hasn’t a SecurityHeaderLayout property,
and the other properties of both assertions are identical.

The transport binding specified by the provider is described in more detail
than the transport binding specified by the requestor. We assume that the re-
questor omits specifying the SecurityHeaderLayout property because he doesn’t
care which specific value is used for this property. Therefore, close match is an
appropriate matching degree for this example.

Possible match. A possible match is decided in three main cases:

Case 1. PAss and RAss are connected through isMoreGeneralThan relation.
This means that the information available can not ensure that PAss can perfectly
match RAss. We assume that a potential partnership between the requestor and
the provider can take place if the requestor can obtain additional information or
negotiate with the provider.
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Case 2. PAss is connected to RAss through isLargerThan, isStrongerThan, or
hasTechDiffWith relations. This means that the incompatibility between the two
assertions doesn’t negatively affect the security services and levels required in
RAss. We assume that a potential partnership between the requestor and the
provider can take place if the requestor can strengthen his policy assertion or
change some technical properties of his assertion.
Case 3. PAss and RAss point to the same security concept and have at least one
isMoreGeneralThan, isLargerThan, isStrongerThan, or hasTechDiffWith relation
at the level of their properties, and their remaining properties are linked with
semantic relations of type isIdenticalTo, isEquivalentTo, or isMoreSpecificThan.
For example, suppose that PAss and RAss point to the SymmetricBinding con-
cept, but PAss has a protection token that is more general than the protection
token specified in RAss. In addition, PAss has an algorithm suite that is identi-
cal to the algorithm suite specified in RAss. And finally, PAss has a Timestamp
property that is stronger than the Timestamp property of RAss. The two asser-
tions have two heterogeneities that don’t rule out the possibility of a match, so
it is a possible match case.

No match. No match is decided in two main cases:

Case 1. PAss and RAss are connected through isDifferentFrom, isSmallerThan,
or isWeakerThan relations. For example, suppose that PAss points to the Sym-
metricBinding concept, while RAss points to the ProtectionScope concept. These
two assertions specify two semantically unrelated concepts. Therefore, they must
be linked by isDifferentFrom relation and then a no match must be decided for
them.
Case 2. PAss and RAss point to the same security concept, and they have at
least one isDifferentFrom, isSmallerThan, or isWeakerThan relation at the level
of their properties.

5 Implementation and Application

In this section, we present implementation details and show how we use our ap-
proach to handle the flight reservation use case that was discussed in the second
section. We implemented the WS-SP-based ontology WS-SP.owl in OWL-DL [6]
semantic language with the Protégé OWL tool [7]. The OWL file can be found
at http://www.redcad.org/members/monia.benbrahim/WS-SP.owl. Then we
created PSP.owl and RSP.owl ontologies as specializations of WS-SP.owl ontol-
ogy. PSP.owl and RSP.owl ontologies must be imported respectively by the
provider and the requestor in order to specify their SPs. In addition, we created
another ontology called AssertionMatching.owl that imports two OWL files rep-
resenting the provider SP and the requestor SP. This ontology contains the con-
cepts of PSP.owl with the prefix provider and the concepts of RSP.owl with the
prefix requestor. InAssertionMatching.owl ontology, we added all the new seman-
tic relations previously detailed in section 3.2 as well as all the necessary SWRL
rules for their dynamic instantiation. For example the following is the SWRL rule
corresponding to the first semantic rule presented in section 3.2:

http://www.redcad.org/members/monia.benbrahim/WS-SP.owl.
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requestor: SignedElement(?RSignedElt) ∧
XPathValue(?RSignedElt, "/S:Enveloppe/S:Body") ∧
provider: SignedPart(?PSignedPart) ∧
PartType(?PSignedPart, "Body")→
isEquivalentTo(?PSignedPart, ?RSignedElt)

We also implemented the matching algorithm described in the previous section
as a set of SWRL rules and added them to AssertionMatching.owl ontology.

The assertions contained in a concrete (requestor/provider) SP are mapped to
in-stances of AssertionMatching.owl ontology. We use the Jess rule engine [8] to
exe-cute the SWRL rules and automatically generate, in a first step, the involved
semantic relations between each pair of provider assertion-requestor assertion;
and generate, in a second step, the appropriate matching degrees between the
assertions.

In order to apply our approach to the use case presented in section 2, we used
the RSP.owl ontology to transform the requestor SP that was written in WS-SP
language into the semantic SP RSPEx1.owl2 . Similarly, based on the PSP.owl
ontology, the provider SP is semantically described in PSPEx1.owl3. Then an
AssertionMatching.owl file that imports RSPEx1.owl and PSPEx1.owl is gen-
erated. After running the Jess engine, a set of semantic relations and matching
degrees are created between the provider and the requestor assertions. This is an
extract from the new knowledge that was added in the AssertionMatching.owl
file after the execution of the SWRL rules:

<rdf:Description rdf:about="http://.../PSPEx1.owl#PSignedPart">

<isEquivalentTo rdf:resource="

"http://.../RSPEx1.owl#RSignedElt"/>

</rdf:Description>

<rdf:Description rdf:about="http://.../PSPEx1.owl#PSymBinding">

<isStrongerThan rdf:resource=

"http://.../RSPEx1.owl#RSymBinding"/>

</rdf:Description>

<rdf:Description rdf:about="http://.../PSPEx1.owl#PAss1">

<PerfectMatch rdf:resource=

"http://.../RSPEx1.owl#RAss1"/>

</rdf:Description>

The application of our semantic approach to match the security assertions
specified in the flight reservation use case allows to obtain the expected
matching degree at the level of each requestor assertion-provider assertion pair
as well as the expected final matching degree at the level of each requestor as-
sertion.

2 Available at
http://www.redcad.org/members/monia.benbrahim/useCase/RSPEx1.owl

3 Available at
http://www.redcad.org/members/monia.benbrahim/useCase/PSPEx1.owl
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6 Related Work

Several works dealt with the enrichment of WS-Policy with semantics using
OWL ontologies. The authors of [18] propose to create the policy assertions
based on terms from ontologies instead of XML schema based vocabularies. In
[17], Speiser proposes a technique for annotating policy assertions with semantic
references as it is done for SAWSDL [9]. Chaari et al. [11] redesign WS-Policy
with an ontological representation of concepts and relations. They also define
a general QoS ontology and integrate it with the WS-policy ontology. All these
contributions just give an idea on how to augment WS-Policy with semantics,
but they did not indicate how to define specific domain ontologies such as se-
curity ontology. The work described in [15] consists in mapping WS-Policy and
related specifications such as WS-SP to OWL-DL. In this work, the authors
systematically map each policy assertion to an ontology class. In our approach,
we rather take into account the semantic meaning of security policy assertions
and make several semantic classifications of security assertions. In addition, we
transform some assertions into data type and object properties and not into
classes in order to explicit the semantic relationships between assertions.

In the area of Web service security, works such as [12], [14], and [13] pro-
pose a security ontology to describe the security requirements and capabilities
of Web service providers and requestors. Although these ontologies include con-
cepts related to SOAP message security, they consider neither the message secu-
rity model defined by WS-Security standard nor the security assertions defined
in WS-SP standard. Besides these approaches have the drawback of not being
compatible even to WS-Policy. The work proposed by Garcia et al [19] mainly
deals with integrity and confidentiality of SOAP messages. A security ontology
that considers the WS-Security message security model is proposed and consti-
tutes a foundation to support WS-Policy with semantics. However, this ontology
doesn’t include concepts to describe many security as-pects such as transport
level security and supporting tokens. Moreover, the security concepts used in the
ontology are not equivalent to WS-SP assertions.

In addition to being compatible to WS-SP, our approach is distinguished from
all pre-vious approaches by the fact that we extend the WS-SP-based ontology
with additional semantic relations and semantic rules that support more correct
and more pre-cise semantic matching of Web service security policies.

7 Conclusion and Future Work

In this paper, we presented an approach to provide a semantic extension to
security assertions of Web services. The approach is based on the transforma-
tion of WS-SP into an OWL-DL ontology. We showed, through a top down
methodology, how we transform WS-SP assertions into classes and properties in
the ontology. Besides, in order to support semantic matching of these assertions,
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we extended the domain knowledge with semantic relations that can exist be-
tween requestor and provider security concepts. These relations are dynami-
cally instantiated through the execution of SWRL rules. Moreover, we proposed
an algorithm for matching security assertions. Our semantic approach supports
more correct and more flexible security assertion matching compared to syntac-
tic matching as well as to previous works that combined ontologies and Web
service security properties. The on going work is the completion of our matching
algorithm in order to decide about the final matching degree between complex
security policies containing several security alternatives and assertions. Besides,
we plan to develop a tool that automatically transforms a WS-SP policy into
our ontological representation.
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