
Applying QoS-Aware Service Selection

on Functionally Diverse Services

Florian Wagner1,�, Fuyuki Ishikawa2, and Shinichi Honiden1,2

1 The University of Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan

{florian,f-ishikawa,honiden}@nii.ac.jp

Abstract. The Service-Oriented Computing (SOC) paradigm envisions
the composition of loosely coupled services to build complex applications.
Most current selection algorithms assume that all services assigned to a
certain task provide exactly the same functionality.

However, in realistic settings larger groups of services exist that share
the same purpose, yet provide a slightly different interface. Incorporat-
ing these services increases the number of potential solutions, but also
includes functional invalid configurations, resulting in a sparse solution
space. As a consequence, applying näıve heuristic algorithms leads to
poor results by reason of the increased probability of local optima.

For that purpose, we propose a functionality clustering in order to
leverage background knowledge on the compatibility of the services. This
enables heuristic algorithms to discover valid workflow configurations in
shorter time. We integrate our approach into a genetic algorithm by
performing repair operations on invalid genomes. In the evaluation we
compare our approach with related heuristic algorithms that use the
same guided target function but pick services in a random manner.

1 Introduction

1.1 Service Composition

Services are interoperable and reusable software components that are published
on company intranets and recently more and more on public servers and cloud
systems. Standardized interface description languages such as WSDL specify the
functionality of these services. Furthermore, services may provide Service-Level
Agreements (SLA) that declare the non-functional parameters [8].

Service composition algorithms are applied in order to provide a virtually un-
limited number of functionalities. In general, in the first step a workflow template
containing service tasks is provided by the user or by a planning algorithm [12].
A service task is associated with a set of functionally equivalent services, each
having varying QoS-attributes. In the next step, a QoS-aware service selection
algorithm computes a workflow configuration that determines for each task one
single service. The goal is to optimize the utility of the service composition and

� The work of Florian Wagner is partially supported by the KDDI Corporation.

G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 100–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Applying QoS-Aware Service Selection on Functionally Diverse Services 101

meet the QoS-constraints. Service selection optimizes the consumption of re-
sources and is therefore a major concern for companies, but is also considered
as an important issue in research [9].

Since the problem has been proven to be NP-hard [10], enumerating all pos-
sible workflow configurations is not feasible. Therefore, approaches that em-
ploy near-optimal heuristic algorithms such as hill-climbing [4] and genetic algo-
rithms [1,14] have been applied. All these approaches assume that for each task
a set of functionally equivalent services exists. Fig. 1 depicts the service selection
problem. In Fig. 1b the solution space is visualized where each solid point is a
valid workflow configuration.

null

S31

S21

S11

null

S32

S22

S12

null

S33

S23

S13

Task T1 Task T2 Task T3

(a) All possible service combinations, high-
lighting one sample workflow configuration

Task T1

Task T2

T
a
sk

T
3

1
2

3

1

2

3

1
2

3

{S31, S32, S23}

(b) Complete solution space

Fig. 1. Classical service selection problem

1.2 Functionally Diverse Services

However, requiring that services associated to a workflow task must have exactly
the same functionality might be too restrictive. In reality, various providers offer
services that share the same purpose but have slightly varying interfaces, e.g.
having optional input parameters or additional result variables. Moreover, service
interfaces might be modified and updated during the lifecycle of a service.

Apart from these differences in the interfaces, even if services yield a valid link
on the conceptual level, the link may be invalid on the concrete data-structural
level [2]. By allowing functionally diverse services in workflow tasks, more can-
didate services are available, offering more choices to optimize the utility of the
workflow.

For these reasons, a certain amount of workflow configurations may be invalid
as some services are not functionally compliant. Even though in this scenario the
number of possible service combinations in fact decreases, heuristic algorithms
achieve only poor results as the solution space is sparse and local optima are
more likely. The consequences on the solution space are shown in Fig. 2b. Crosses
indicate invalid workflow configurations, e.g. the configuration {S31, S32, S23}
from Fig. 1a is invalid since there are no valid links between these services.

102 F. Wagner, F. Ishikawa, and S. Honiden

null

S31

S21

S11

null

S32

S22

S12

null

S33

S23

S13

Task T1 Task T2 Task T3

(a) Restricted service combinations

×
×

×

×
×

×

×

×
×

×
×

×
×

×

×

Task T1

Task T2

T
a
sk

T
3

1
2

3

1

2

3

1
2

3

(b) Sparse solution space

Fig. 2. Service selection on functionally diverse services

1.3 Our Contributions

Most related studies present selection algorithms that require functionally equiv-
alent services for each task. Our approach does not have this restriction and is
therefore applicable to a wider range of selection problems. Our contributions to
the selection problem are as follows:

1. We discuss the implications of introducing functionally diverse services to
the selection task. We analyze which heuristic algorithms are applicable to
solve the problem and present how these algorithms can be adjusted to find
valid workflow configurations and evaluate the resulting performance.

2. We present a method to find valid configurations efficiently based on a func-
tional clustering of candidate services. This method leverages background
knowledge on the compliance of the services to prune the search space.

3. We demonstrate how this method can be embedded into a genetic algorithm
to repair erroneous genomes. In our detailed evaluation we show which pa-
rameters yield the best results for our modified algorithm.

The proposed clustering algorithm is related to the algorithm shown in [11] but
uses a more general clustering method. Moreover, the annotations of the graph
vary from the previous version and are used for a different purpose.

In the next section we discuss the preliminaries of the selection problem. In
Section 3 we present our approach based on a functional clustering of services
combined with a genetic algorithm and Section 6 concludes this paper.

2 Preliminaries

In this section we discuss the general service selection problem and further ex-
plain the consequences of including functionally diverse services.

Applying QoS-Aware Service Selection on Functionally Diverse Services 103

2.1 Services

Services provide a certain functionality on a public or private network. In order to
specify the functional interface of a service, a description document written in an
interface description language such asWSDL is published. Moreover, each service
has varying QoS-attributes that are determined in a Service-Level Agreement
(SLA) document. In this paper we consider the price, the response time, the
reliability, and the availability [13] of a service. A detailed classification on QoS-
attributes can be found in [8].

Given the functional interface of a service, service S1 can be connected to S2

if S1 provides an output parameter that is required by S2.
Comparing a service ST

1 with service ST
2 associated to the same task T , we

distinguish three cases:

1. Both services can be connected to the same set of services, in other words
the two services are equivalent.

2. Service ST
1 can be applied at least in all cases where ST

2 is applicable. In
that case we say that ST

1 provides more functionality than ST
2 .

3. In all other cases, the two services are unrelated.

2.2 Workflows

A workflow is a directed graph where each node is either a task or a control node,
depicted in 3a. A task is a set of functional related services that have varying
QoS-attributes. A control node determines the control flow of the workflow. In
this paper we consider sequences, AND/OR branches, and loops. In the case of
loops we “unroll” the loop retrieving the number of expected calls from past
invocations. In [3] several possible workflow patterns are discussed in detail.

T1 T2 And

T3

T4

T5

(a) A workflow graph

Seq

T5Seq

T1 Seq

T2 And

T4 T3

(b) Workflow tree representation

Fig. 3. Comparison of workflow trees and graph representations. S1−S5 depict services,
gray nodes are control nodes.

For aggregating the QoS attributes, workflows are often represented as workflow
trees, illustrated in 3b. This way, the computations of Table 1 can be applied to
the root node. Inner nodes are the control nodes, leaf nodes are the task nodes.
For the sake of simplicity we use binary trees in the following.

In order to execute a workflow, a workflow configuration is computed that
selects for each task T a service S, where S ∈ T .

104 F. Wagner, F. Ishikawa, and S. Honiden

QoS-Aggregation. In order to compute the QoS-attributes of a workflow con-
figuration the QoS Qi of the composite services are aggregated. First, all at-
tributes are normalized between 0 and 1, with 1 being the best value (cf. Equa-
tion 1). Therefore, the minimal and the maximum values of the attributes are
either pre-defined or determined by comparing all available services. In case the
utility of an attribute grows with higher values, the attribute is categorized as a
positive attribute Qpos, otherwise as a negative attribute Qneg [6]. For instance,
reliability and availability are positive attributes, price and response time are
negative attributes.

Q′
i =

⎧
⎪⎨

⎪⎩

Qi−Qmin

Qmax−Qmin
if Qi ∈ Qpos and Qmin �= Qmax,

Qmax−Qi

Qmax−Qmin
if Qi ∈ Qneg and Qmin �= Qmax,

1 else

(1)

Subsequently, the normalized attributes Q′
i of the services are aggregated to the

QoS Q of the workflow depending on the characteristics of the attributes and
the control flow. Table 1, taken from [1], depicts the aggregation for common
control structures and QoS-attributes. The probability p refers to the execution
probability of the branch, k is the expected loop count. Both variables are cal-
culated based on either execution logs or estimated by humans. We apply the
same computations, but instead of using a probabilistic approach for concurrent
execution branches we adopt a worst-case computation.

These computations are first applied to the root node of the workflow tree,
iterating subsequently to the child nodes until all nodes have been visited. In
each node the QoS of the subtree are aggregated, with the root node containing
the aggregated QoS of the workflow.

Table 1. QoS-aggregation of composite services, adopted from [1, Table 1]

Attribute Sequence AND-Branch OR-Branch Loop

Response time (t)
∑n

i=1 Si.Qt maxS∈N (Si.Qt) maxS∈N (Si.Qt) k · Si.Qt

Price (c)
∑n

i=1 Si.Qc

∑n
i=1 Si.Qc maxS∈N (Si.Qc) k · Si.Qc

Reliability (r)
∏n

i=1 Si.Qr

∏n
i=1 Si.Qr minS∈N (Si.Qr) Si.Q

k
r

Availability (a)
∏n

i=1 Si.Qa

∏n
i=1 Si.Qa minS∈N(Si.Qa) Si.Q

k
a

Utility Computation. After computing the QoS-attributes of the entire work-
flow, the QoS vector Q is aggregated to a single value. For that purpose, utility
functions are defined, in most studies a Simple Additative Weighting (SAW) is
applied as in Equation 2.

µ(Q) =

|Q|∑

i=1

wi · Qi where

|Q|∑

i=1

wi = 1 (2)

The user provides for each QoS-attribute a certain weight wi, indicating the
user’s preferences towards e.g. the price or the response time.

Applying QoS-Aware Service Selection on Functionally Diverse Services 105

Global QoS-Constraints. Apart from the utility, the user may state global
QoS-constraints, determining limits on e.g. the price of the whole workflow com-
position. In case the constraints are violated, the utility of a workflow becomes
0. Therefore, in this setting QoS-constraints are considered as hard constraints.

2.3 Heuristic Approaches

Since the selection problem is a NP-hard problem, near-optimal heuristic ap-
proaches are applied. In case all services provide the same functionality, the
functional compliance is always satisfied. Therefore, the algorithms only have
to take the QoS-attributes into consideration, by using a heuristic function that
subtracts a penalty from the utility if constraints are violated (cf. Eq. 3).

µheu(Q) = µ(Q)− (wqos · dqos) (3)

The value dqos equals the number of violated QoS-constraints multiplied by a
certain weight wqos. This way, the algorithm is guided towards a solution that
meets the QoS-constraints. In the following, we will discuss two popular heuristic
approaches that employ the modified utility function µheu.

Hill-Climbing. Hill-climbing is a simple greedy approach which tries to im-
prove a selection by replacing a single service in each iteration. First, a random
configuration is computed. Next, for a random task the service that yields the
best heuristic value is selected.

An extension of the classical hill-climbing algorithm iterates over a set of
candidate solutions and in the end chooses the selection with the best heuristic
value. This way, the effect of local optima can be reduced but the computation
time increases as well.

Genetic Algorithms. Genetic Algorithms maintain a set of genomes that
encode a service selection. The genome length equals the workflow length and
the cells contain the indices of the selected services, depicted in Fig. 4.

AND
S11

S12
S13

S21

S22

S31

S32

S41S42

S43
S51

S52
S11 S21 S32 S42 S52=⇒

Fig. 4. Translating a workflow configuration (left) to a genome (right)

Genomes are evolved in each generation by applying the following operations:

Crossover given a probability Pcro, two genomes are combined by picking a
service from the genomes for each task. Alternatively, both genomes are cut
into halves and concatenated.

106 F. Wagner, F. Ishikawa, and S. Honiden

Mutation given a certain probability Pmut, for each task the currently selected
service is replaced with a random service from the same task.

Selection. In the last step, the genomes are sorted according to their fitness
(the utility function µheu) and only the best ones are kept.

These three steps are iterated either a fixed number of times or until no change
occurred to the fitness of the best genome in a certain number of generations.
In each iteration the top-k genomes are kept to ensure that these genomes are
not discharged.

2.4 Functional Compliance of Services

In case all services associated to a workflow task provide the same functionality,
theoretically every possible configuration is executable. However, in reality cer-
tain links between services may be invalid. Workflow configurations that contain
at least one invalid link cannot be executed.

In most cases, these restrictions can be automatically derived by verifying the
type hierarchy of the parameters or the WSDL interface. If a service provides
exactly the required output parameters or parameters with additional data to
another service, then these services yield a valid link. Apart from that, the user
may also declare certain service combinations as invalid, e.g. if two services are
hosted on servers that are connected with a low-bandwidth cable. In the following
we assume that a relation combinable : S× S exists, that indicates whether two
services can be combined with each other.

Similar to the QoS-constraints, these restrictions are hard constraints, there-
fore if a selection contains an invalid link, the utility becomes 0.

3 Approach

In this section we present our algorithm that integrates a repair operation for
invalid workflow configurations into a genetic algorithm. This operation leverages
a functional clustering on the candidate services to resolve invalid links efficiently.

3.1 Functional Clustering

For each workflow task the services are clustered and arranged in a direct-acyclic
graph based on their functionality. The functionality of a service S depends on
the services that can be connected to S.

Converting the Workflow Tree. Since the functionality of a certain service
in a workflow depends on the incoming and outgoing links in a workflow, the
workflow tree is first converted into a graph representation to detect these links,
described in Algorithm 1. The algorithm starts with the root node, descending
first to the task nodes and adding them to the graph G (line 1).

Applying QoS-Aware Service Selection on Functionally Diverse Services 107

Subsequently, the inner nodes are traversed. In case a sequence is found the
incoming task of the left subtree and the outgoing tasks of the right subtree are
stored in the sets M1 and M2 (line 6 and 7). Then, in line 10 the services of both
sets are connected with a directed edge and added to G.E′.

Algorithm 1. convert(T, n)

Input: Workflow tree T = (V,E), node pointer n
Output: Workflow graph G = (V ′, E′)

1 if n ∈ Tasks then G.V ′ := G.V ′ ∪ {n};
2 else
3 convert(T, n.left);
4 convert(T, n.right);
5 if n is Sequence then
6 M1 := outgoingTasks(n.left);
7 M2 := incomingTasks(n.right);
8 foreach Task t1 ∈ M1 do
9 foreach Task t2 ∈ M2 do

10 G.E′ := G.E′ ∪ {t1, t2}
11 end

12 end

13 end

14 end

In Alg. 2 the helper function incomingTasks is shown, computing all services
that provide outgoing links in a subtree. In case the parameter n is a task
node then the task itself is returned (line 2). Otherwise, if the control node is a
sequence then we descend the tree to the right child node (line 4). In case of a
parallel control node, the union of the left and right node is returned in line 5.

Algorithm 2. incomingTasks

Input: Node n
Output: Set M of outgoing tasks in the subtree of n

1 if n ∈ Tasks then
2 return {n.t};
3 else
4 if n is Sequence then return incomingTasks(n.left);
5 else return incomingTasks(n.left) ∪ incomingTasks(n.right);

6 end

The helper function outgoingTasks is defined in the same way, except for pro-
viding n.right as a parameter in line 5.

After computing the incoming and outgoing links we determine for each ser-
vice the set of functional compatible predecessor IL and successor OL services,
in other words services that can provide outputs and receive inputs from a ser-
vice respectively. Given two tasks t and t′ where (t, t′) ∈ G.E′, for all services

108 F. Wagner, F. Ishikawa, and S. Honiden

pairs {S, S′|S ∈ t, S′ ∈ t′} that are contained in combinable, service S′ is added
to the set S′.IL and S is added to the set S′.OL.

Computing the Functionality Graph. Based on the two sets IL and OL
of each service a functionality graph is computed by comparing all services in a
task with another. Two rules apply:

1. If S.IL = S′.IL and S.OL = S′.OL then the services are functionally equiv-
alent. In that case, these services are clustered in the same composite node.

2. Otherwise, if S.IL ⊆ S′.IL and S.OL ⊆ S′.OL then S and S′ are connected
with a directed edge.

Each connected component forms a cluster. In Fig. 5 an example cluster with
12 services is shown, taken from the clustering of the OWLS-TC test1.

Fig. 5. An example cluster from the resulting clustering of the OWLS-TC testset.
Composite services are marked by gray nodes. The relation combinable is computed
by comparing the parameter types of the services (last line of the nodes).

In the last step, we aggregate in each node the accumulated output list OL of
all OL sets in the subcluster and SC containing the set of all services in the
subcluster.

Nodes Services N.IL N.OL
N12 S12 {S11, S21} {S33}
N22 S22 {S11, S21, S31} {S23, S33}
N32 S32 {S11, S21} {S13, S33}

(a) The computed N.IL and N.OL sets

N12

N22 N32

N12.SC = {S12, S22, S32}
N12.OL = {S13, S23, S33}

(b) Resulting graph

Fig. 6. Results of applying the algorithm to Task T2 of Fig. 2a

1
http://projects.semwebcentral.org/projects/owls-tc/

Applying QoS-Aware Service Selection on Functionally Diverse Services 109

The resulting functionality graph of the second task of Fig. 2a is shown in Fig. 6b
as an example.

A specific form of the clustering technique is described in [12] where the method
is applied to automatic service composition. The functional comparison is based
on the parameter types and pre- and postconditions of the services. We present a
more general approach to cluster services in this paper that can be applied to any
kind of services, even if no type hierarchy and pre- and postconditions are given.

3.2 Combining Functional Clustering with a GA

In our approach we apply a genetic algorithm that performs an intermediate
repair operation on the genomes between the mutation and the selection step.
The fitness function extends the function µheu (cf. Eq. 3) in a way that functional
compliance is taken into account, shown in Eq. 4.

µ′
heu(Q) = µ(Q)− (wqos · dqos + wfunc · dfunc) (4)

The variable dfunc indicates the ratio of invalid service links and wfunc assigns
a certain weight to this value. This function is used in the genetic algorithm as
a fitness function of the genomes to guide the algorithm towards selections that
are functional compatible and meet the QoS constraints.

In each generation an invalid genome is repaired with a certain probability
Prep. In general, increasing the repair probability performs repair operations
more aggressively but also increases the computational complexity of each gen-
eration. By experiment we have evaluated that 33% is a good tradeoff between
utility and performance.

s21 s32 s23

N32.OL = {N13, N33} N23.SC = {N23, N33}N12

N22 N32 N33

N23 N13

Link l

Fig. 7. Repairing an invalid link of a genome

In order to repair an invalid genome, services Sin and Sout that are part of an
invalid link are detected and replaced. First, we detect whether the invalid link
can be resolved by replacing one service with a service from its subtree. This is
the case when the intersection of Sin.OL and Sout.SC is not empty, depicted in
Fig. 7. In the example, N23 is replaced by N33.

In case the intersection is empty, one of the parent nodes of Sin and Sout is
selected randomly. If both nodes are already root nodes, then we pick a random
root node from a different cluster of the same task.

110 F. Wagner, F. Ishikawa, and S. Honiden

4 Evaluation

In our evaluations, we use a hill-climbing algorithm (HC) that iterates 100 initial
solutions 100 times, therefore 10.000 iterations in total. The genetic algorithm
(GA) has 200 seeds, iterating at most 200 times. Furthermore, we evaluate our
cluster algorithm (CA) that is based on the GA, including the repair operation
and with 100 seeds. We provided various repair probabilities in order to evaluate
the optimal parameter, e.g. CA33 is a CA with 33% repair probability. All ex-
periments regarding the performance have been executed on an Intel Quad-core
3.00Ghz with 4GB ram.

10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

Workflow length

U
ti
li
ty

HC GA
CA33 CA66
CA100

(a) Utility comparison (GA baseline)

10 20 30 40 50 60

0

2

4

6

Workflow length

R
u
n
ti
m
e
in

[s
]

HC GA
CA33 CA66
CA100

(b) Comparing the runtime

Fig. 8. Evaluating the utility and performance with varying workflow length

We have created workflows with varying lengths, consisting of sequences and
AND/OR branches. Each task contains 20 concrete services. The QoS attributes
of the services were chosen randomly, except for the price which was chosen
partially randomly and partially depending on the other attributes.

In the first two experiments, each test case is executed 1, 000 times with varying
QoS constraints on price and response time. We set the utility of the GA as the
baseline to 100% in order to evaluate the benefit of the additional repair opera-
tion. In Fig. 8a and 8b we vary the workflow length with a fixed average service
compatibility of approx. 40%.

In relation to the baseline, the utility of the HC algorithm decreases with
growing workflow length, whereas the utility of the CA grows (cf. Fig. 8a).
Regarding the performance, with increasing repair probability more runtime
is required as shown in Fig. 8b. Based on these results, we choose the CA33
algorithm as a reasonable tradeoff between utility and performance.

In the last experiments we evaluate the evolution of the genomes. We use
a workflow of length 60 with service compliance 20%. In Fig. 9a we compare
the mean ratio of valid links of all genomes. The genetic algorithm repairs all
genomes in approx. 50 iterations. In contrast, the CA repairs the genomes in 10
(CA33) and 5 (CA100) iterations respectively. In Fig. 9b the fitness value of the
best genomes are compared. For instance, the fitness of the GA in iteration 60
is achieved by the CA in iteration 10.

Applying QoS-Aware Service Selection on Functionally Diverse Services 111

0 20 40 60

0.2

0.4

0.6

0.8

1

Iterations

M
ea
n
va
li
d
li
n
k
ra
ti
o

GA
CA33
CA100

(a) Ratio of valid links of all genomes

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Iterations

F
it
n
es
s

GA
CA33
CA100

(b) Convergence of the fitness

Fig. 9. Comparing the evolution of the genomes

5 Related Work

We review some representative selection approaches that deal with the selec-
tion problem for functionally equivalent services and studies that analyze the
functional compliance of services.

Zeng et al. formulate in [13] the composition problem as a Multi-Knapsack
Decision Problem, proposing Integer Programing (IP) to tackle the problem.
Their approach computes an optimal solution, but with growing problem size this
approach cannot compute a solution in feasible time. Moreover, invalid workflow
configurations are difficult to integrate in this approach.

In order to overcome the performance issues by computing an optimal solution
with IP, near-optimal heuristic approaches such as hill-climbing [4] and genetic
algorithms [1] have been investigated. A penalty is subtracted from the utility
if constraints are violated in order to guide the algorithm to a feasible solution.

Nebil et al. [6] apply a clustering method on the service tasks before the
actual selection process. In contrast to our approach they apply the clustering
on the QoS-attributes of the services. For that purpose, they employ a k-nearest
neighbor algorithm to identify the clusters. The algorithm computes a solution
in reasonable time but the achieved utility is rather low (60%− 80%).

Similar to our approach, Lécué and Mehandjiev apply in [5] a genetic algo-
rithm to optimize the QoS and the matching quality of the service links. For that
purpose, they combine these two values in the fitness function of the genomes.
As a consequence, configurations with better QoS attributes but less functional
compliance might be ranked higher. Contrary to their approach we treat the
functional compliance like a QoS constraint, adding a penalty factor to the fit-
ness of invalid genomes.

In [2] the authors investigate the gap between the conceptual and data-
structural level of service composition. They claim that even if the conceptual
types of the parameters of two services are compatible, the WSDL implementa-
tion may be incompatible. The focus of their work is on the automatic compo-
sition, taking no QoS-attributes into account.

112 F. Wagner, F. Ishikawa, and S. Honiden

The authors of the EASY project [7] arrange services in a functionality graph.
The edges of this graph are based on the different Plug-in relationship as we
apply it. QoS attributes are not considered in this work.

6 Conclusion and Future Work

In this paper we have discussed the problem of applying QoS-aware service
selection on functionally diverse services and shown the impact on heuristic al-
gorithms. We have presented which adjustments are necessary to apply heuristic
algorithms and evaluated the algorithms on the modified problem. In the next
step we have integrated a repair operation for the erroneous genomes based on a
functional clustering into a genetic algorithm. This modification leverages back-
ground knowledge on the service compliance. We have shown that this mod-
ification outperforms näıve heuristic algorithms that randomly select services
without taking the service compliance into account. Moreover, we have deter-
mined the optimal parameters for our algorithm by experiment.

As a next step we intend to improve the integration of the functional compli-
ance criteria that is currently based on adding a penalty to the target function,
similar to QoS-constraints. We will consider multi-objective optimization to bal-
ance the conflicting functional and non-functional requirements.

Furthermore, we plan to investigate on how to integrate the proposed solution
into our automatic service composition approach [12]. The approach computes
workflow templates that contain tasks with functionally diverse services.

References

1. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the Conference
on Genetic and Evolutionary Computation, GECCO (2005)

2. Ishikawa, F., Katafuchi, S., Wagner, F., Fukazawa, Y., Honiden, S.: Bridging the
Gap Between Semantic Web Service Composition and Common Implementation
Architectures. In: IEEE International Conference on Services Computing, SCC
(2011)

3. Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation for Web Service
Composition using Workflow Patterns. In: EDOC (2004)

4. Klein, A., Ishikawa, F., Honiden, S.: Efficient Heuristic Approach with Improved
Time Complexity for QoS-aware Service Composition. In: IEEE International Con-
ference on Web Services (ICWS), Washington D.C., USA (2011) (to appear)

5. Lécué, F., Mehandjiev, N.: Seeking Quality of Web Service Composition in a Se-
mantic Dimension. IEEE Trans. on Knowl. and Data Eng. 23, 942–959 (2011)

6. Ben Mabrouk, N., Beauche, S., Kuznetsova, E., Georgantas, N., Issarny, V.: QoS-
Aware Service Composition in Dynamic Service Oriented Environments. In: Bacon,
J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp. 123–142. Springer,
Heidelberg (2009)

7. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semantic service discovery in pervasive computing environments with QoS
and context support. Journal of Systems and Software 81(5), 785–808 (2008)

Applying QoS-Aware Service Selection on Functionally Diverse Services 113

8. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: What’s in a Service? Distributed
and Parallel Databases 12(2/3), 117–133 (2002)

9. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. IEEE Computer 40(11) (2007)

10. Pisinger, D.: Algorithms for Knapsack Problems. Ph.D. thesis, DIKU, University
of Copenhagen, Denmark, Technical Report 95-1 (1995)

11. Wagner, F.: Efficient, Failure-Resilient Semantic Web Service Planning. In: Maglio,
P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp.
686–689. Springer, Heidelberg (2010)

12. Wagner, F., Ishikawa, F., Honiden, S.: Qos-aware automatic service composition
by applying functional clustering. IEEE International Conference on Web Services,
ICWS (2011)

13. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven
Web Services Composition. In: Proceedings of the 12th International Conference
on World Wide Web (WWW), pp. 411–421. ACM (2003)

14. Zhang, W., Schütte, J., Ingstrup, M., Hansen, K.M.: A Genetic Algorithms-Based
Approach for Optimized Self-protection in a Pervasive Service Middleware. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900,
pp. 404–419. Springer, Heidelberg (2009)

	Applying QoS-Aware Service Selection on Functionally Diverse Services
	Introduction
	Service Composition
	Functionally Diverse Services
	Our Contributions

	Preliminaries
	Services
	Workflows
	Heuristic Approaches
	Functional Compliance of Services

	Approach
	Functional Clustering
	Combining Functional Clustering with a GA

	Evaluation
	Related Work
	Conclusion and Future Work
	References

