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Abstract. Biomine and ProbLog are two frameworks to implement
bisociative information networks (BisoNets). They combine structured
data representations with probabilities expressing uncertainty. While
Biomine is based on graphs, ProbLog’s core language is that of the logic
programming language Prolog. This chapter provides an overview of im-
portant concepts, terminology, and reasoning tasks addressed in the two
systems. It does so in an informal way, focusing on intuition rather than
on mathematical definitions. It aims at bridging the gap between network
representations and logical ones.

1 Introduction

Nowadays, large, heterogeneous collections of uncertain data exist in many do-
mains, calling for reasoning tools that support such data. Networks and logical
theories are two common representations used in this context. In the setting
of bisociative knowledge discovery, such networks are called BisoNets [1]. The
Biomine project has constructed a large network (or BisoNet) of biological know-
ledge and provided several reasoning mechanisms to explore this network [2].
ProbLog [3], on the other hand, provides a logic-based representation language
and corresponding inference methods that have been used in the context of the
same network. Both Biomine and ProbLog allow one to associate probabilities
to network edges and thereby to reason about uncertainty. For ProbLog, this
idea has recently also been extended to other types of labels, such as for in-
stance costs, connection strengths, or revenues [4]. In this chapter, we highlight
the common underlying ideas of these two frameworks, focusing on illustrative
examples rather than formal detail. We provide an overview of network-related
inference techniques from a logical perspective. These techniques can potentially
be used to support bisociative reasoning and knowledge discovery. The aim is to
bridge the gap between the two views and to point out similarities and oppor-
tunities for cross-fertilization.

The chapter is organized as follows: We first introduce the Biomine and
ProbLog frameworks and their underlying concepts in Section 2. Section 3 then
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Fig. 1. An example of a subgraph extracted from Biomine

gives an overview of various inference and reasoning tasks, focusing on the struc-
tural aspect, before Section 4 discusses their extension towards the use of prob-
abilities and other types of labels.

2 The Biomine and ProbLog Frameworks

The Biomine project has contributed a large network of biological entities and re-
lationships between them, represented as typed nodes and edges, respectively [2].
The Biomine network is probabilistic; to each edge is associated a value that rep-
resents the probability that the link between the entities exists. A subnetwork
extracted from this database is shown in Figure 1. Inspired on the Biomine

network, ProbLog [3] extends the logic programming language Prolog with in-
dependent random variables in the form of probabilistic facts, corresponding to
Biomine’s probabilistic edges. In the remainder of this section, we will introduce
the basic terminology used in the context of these frameworks for reasoning
about networks.

2.1 Using Graphs: Biomine

Figure 2 gives a simplified representation of the Biomine subnetwork of Figure 1.
We will use this representation for illustration throughout the chapter. Nodes
have numbers as identifiers. There are five node types (tn1 to tn5). The number
of edge types has been reduced to three (te1, te2 and te3) and their directions
have been removed. We use colors and border styles to represent the node types,
and line styles to represent the edge types; see Figure 5 for the exact mapping.

In general, nodes and edges could have several types simultaneously. Also,
edges can be directed and there may exist multiple edges between a given pair
of nodes. For ease of explanation, we will only consider the simpler case where
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Fig. 2. A simplified representation of the Biomine subgraph

**
Y

YX

YX YX

Z

X

*

X

*

p1 p2

p6p4

p3

YX

p5

Fig. 3. Examples of graph patterns

edges and nodes have a single type and there is at most one edge between any
pair of nodes.1

A graph pattern is an expression over node and edge types. It is an abstract
graph that defines a subgraph by means of a set of constraints over the connection
structure and edge and node types. Six example patterns, p1 to p6, are presented
in Figure 3.

The pattern nodes are represented using circles to distinguish them from
network nodes, which are represented as squares. Pattern nodes and edges are
either required to be of a given type, or can be of arbitrary type. The latter is
denoted using white nodes and solid edges. Query nodes are labeled with capital
letters, these are the main points of interest when querying the network. As in
regular expressions, the star denotes unlimited repetitions of substructures.

For instance, pattern p1 corresponds to a path of length at least one between
the query nodes X and Y, using arbitrary node and edge labels, whereas p5

specifies the exact number of edges and all edge and node types.

1 Allowing multiple edges between the same pair of nodes can be done by introducing
explicit edge identifiers, both in the network and, where needed, also in the patterns.
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Fig. 4. Example of instantiation of pattern p4

A substitution assigns network nodes to nodes in a pattern. An instantiation
maps a pattern onto the network using subgraph isomorphism. Thus, it is a
substitution of all nodes in the pattern in such a way that a corresponding edge
mapping exists as well. An answer substitution is a restriction of an instantiation
to the query nodes.

An example instantiation of pattern p4 is shown in Figure 4. There might be
several possible instantiations of a pattern with the same answer substitution.
For instance, p4{X/9, Y/11} can be instantiated in two ways, either by mapping
the middle node to 7, as in the illustration, or by mapping it to 10.

While we here consider a flat type system, where types are either given or
completely undefined, it is also possible to use type hierarchies. When instan-
tiating patterns, a node (respectively an edge) can then be mapped to a node
(edge) of same type or one of its descendant types. The hierarchies used in our
example are shown in Figure 5, where the undefined type is the root node of the
hierarchy.

2.2 Using Logic: ProbLog

As ProbLog is based on the logic programming language Prolog, we first illus-
trate the key concepts of Prolog by means of an example; for a more detailed
introduction, we refer to [5]. We defer discussion of the probabilistic aspects of
ProbLog to Section 4.

In Prolog, the network of Figure 2 (ignoring the probability labels) can be
represented as a set of facts :
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Fig. 5. Node (left) and edge (right) types hierarchies

arc(1, 2, te1). arc(2, 3, te1). arc(1, 8, te1).

arc(8, 9, te2). arc(9, 10, te3). arc(1, 9, te1). . . . (1)

node(1, tn2). node(2, tn5). node(3, tn3). . . .

Here, arc(1,2,te1) states that there is a directed edge from node 1 to node 2

of type te1; node(1,tn1) specifies that node 1 is of type tn1, and so forth.2

arc/3 is a predicate of arity 3, that is, with 3 arguments. To obtain undirected
edges, a Prolog program would define an additional predicate edge/3 as follows:

edge(X, Y, T) : − arc(X, Y, T). (2)

edge(X, Y, T) : − arc(Y, X, T). (3)

Here, uppercase letters indicate logical variables that can be instantiated to con-
stants such as 1 or tn3. The definition of edge/3 above consists of two clauses
or rules. The first clause states that edge(X,Y,T) is true for some nodes X and Y

and node type T if arc(X,Y,T) is true. The second clause gives an alterna-
tive precondition for the same conclusion. Together, they provide a disjunctive
definition, that is, edge(X,Y,T) is true if at least one of the rules is true.

For instance, edge(2,1,te1) is true due to the second clause and the fact
arc(1,2,te1), where we use the substitution {X/2, Y/1, T/te1} to map rule
variables to constants. edge(2,1,te1) is said to follow from or to be entailed
by the Prolog program.

More formally, Prolog answers a given query by trying to prove the query using
the facts and clauses in the program. The answer will be yes (possibly together
with a substitution for the query variables, which are considered to be existen-
tially quantified), if the query follows from the program (for that substitution).
Query ?- edge(2,1,te1) results in the answer yes due to clause (3) and fact
arc(1,2,te1). For ?- edge(2,1,te2), the answer is no, as Prolog terminates
without finding a corresponding fact to complete the proof. For ?- edge(A,B,C),

2 Alternatively, one could also use facts such as te1(1,2) and tn1(1).
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Prolog will return the substitution {A/1, B/2, C/te1}, and will allow the user
to keep asking for alternative answers, such as {A/2, B/3, C/te1}, {A/1, B/8,

C/te1}, and so forth, until no more substitutions can be generated from the
program.

For convenience, we also define edges of arbitrary type:

edge(X, Y) : − edge(X, Y, T). (4)

Alternatively, one could encode the type hierarchy in Figure 5:

edge(X, Y, te0) : − edge(X, Y, te1).

edge(X, Y, te0) : − edge(X, Y, te2).

edge(X, Y, te0) : − edge(X, Y, te3).

Prolog also allows for more complex predicate definitions, such as a path between
two nodes:

path(X, Y) : − edge(X, Y). (5)

path(X, Y) : − edge(X, Z), path(Z, Y).

The set of facts in a Prolog program are also called the database, and the set of
clauses the background knowledge.

To simplify notation and to closely follow the network view, in the remainder
of this chapter we assume that different logical variables are mapped onto dif-
ferent constants; this could be enforced in Prolog by adding atoms of the form
X �= Y to predicate definitions.

So far, we have focused on encoding information about a specific network.
However, Prolog allows one to encode both data and algorithms within the same
logical language, and thus makes it easy to implement predicates that reason
about the program itself, for instance, by simulating proofs of a query in order
to generate additional information. As we will see in Section 3, this provides a
powerful means to cast reasoning tasks in terms of queries; we refer to [5] for a
detailed discussion.

In the logical setting, a pattern corresponds to a predicate. As in the graph
setting, its definition imposes constraints on the types and connection structure.
For example, the predicate path(X,Y) defined above directly corresponds to
pattern p1 in Figure 3. The query variables X and Y correspond to the query
nodes in graph patterns. Query variables are mapped to constants using answer
substitutions as in the network setting. Building on the definitions above, the
full set of patterns in Figure 3 can be encoded as follows:

p1(X, Y) : − path(X, Y). (6)

p2(X, Y, Z) : − node(X, tn5), edge(X, A), node(A, tn5), edge(A, Y,te2),

edge(A, Z, te3), edge(Y, B), edge(Z, B). (7)

p3(X, Y) : − node(X, tn3), path(X, Y), edge(Y, A), node(A, tn5). (8)

p4(X, Y) : − node(X, tn5), edge(X, A), edge(A, Y), node(Y, tn5). (9)
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p5(X, Y) : − node(X, tn5), edge(X, A, te1), node(A, tn2),

edge(A, Y, te1), node(Y, tn5). (10)

p6(X) : − node(X, tn3), edge(X, A), node(A, tn5), path(A, B),

node(B, tn3), edge(B, C), node(C, tn5), path(C, X). (11)

Furthermore, using logic also allows one to easily express additional constraints
on patterns. For instance, pattern p7 states that node X has a neighboring node
whose type is not tn5, while pattern p8 states that it has two outgoing edges of
the same type:

p7(X) : − edge(X, Y), not(node(Y, tn5)).

p8(X) : − edge(X, Y, T), edge(X, Z, T).

For ease of presentation, we assume that patterns are always defined by a single
clause. Note that this does not preclude disjunctive patterns, as can be seen
for p1 in (6) above.

A substitution θ is an answer substitution for a pattern p if the query pθ follows
from the Prolog program. For instance, {X/9, Y/11} is an answer substitution
for pattern p4(X,Y), as p4(9, 11) follows from our example program.

An explanation for a pattern is a minimal set S of database facts such
that the pattern follows from S and the background knowledge. For instance,
{node(9,tn5), arc(9,7,te2), arc(7,11,te2), node(11,tn5)} is an expla-
nation for p4(9, 11).

2.3 Summary

Table 1 summarizes the key terms introduced in this section.

Table 1. Correspondence of the different terminologies

logic view graphical view

background knowledge set of patterns
set of facts, database graph

predicate pattern
query variables query nodes
explanation instantiation

3 Inference and Reasoning Techniques

This section provides an overview of a broad range of reasoning techniques.
We start with the classical tasks of deduction and abduction, that are both
concerned with matching given patterns against the graph or database. Next,
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we discuss various settings for induction, that is, for inferring patterns under
different conditions. We then in turn consider techniques that combine pattern
creation and pattern matching, that identify nodes in the graph, and that modify
the database or the background knowledge in a number of different settings.
Throughout the discussion, we assume a Prolog program encoding the graph
and possible background knowledge as discussed in Section 2.2. This allows us
to view the different reasoning tasks as queries asked to a Prolog system.

3.1 Deduction: Reasoning about Node Tuples

The question answered by deduction is whether there exists an instantiation of a
pattern in a graph, or, equivalently, whether the pattern follows from the Prolog
program encoding the graph. It thus directly corresponds to answering Prolog
queries as discussed in Section 2.2.

In our example, given the ground query ?- p2(8,7,10), deduction will pro-
duce an affirmative answer, as there is an instantiation of the pattern using the
real nodes 9 and 11. Similarly, p4(8,10) is true but p2(10,7,8), p2(9,6,11)
and p4(14,10) are false.

To summarize, given a Prolog program, a pattern p and a substitution θ that
grounds p, deduction corresponds to answering the query ?- pθ from the pro-
gram.

The decision problem of deduction as described here forms the basis for many
other reasoning tasks on the level of node tuples; we discuss some examples next.

Answer Enumeration. For non-ground patterns, the enumeration problem
associated to deduction corresponds to finding all answer substitutions for the
pattern. Alternatively, one can ask for some answer substitution chosen from
the set of all possible ones. For instance, one possible answer substitution for ?-
p2(X,Y,Z) would be {X/8, Y/7, Z/10}, whereas ?- p4(15,Y) does not pro-
duce an answer substitution, as there is no proof of this query.

Thus, given a Prolog program and a pattern p, the answer substitution and
enumeration problem of deduction correspond to finding one or all answer sub-
stitutions for the query ?- p from the program, respectively.

Representative Nodes. A binary pattern p(X,Y) can be used to find a set of
representative nodes, that is, nodes r that, when substituted for X, lead to a set of
patterns p(r,Y) such that all other nodes appear in an answer substitution for at
least one such pattern. For instance, using p(X,Y) :- edge(X,Z),edge(Z,Y),
one set of representative nodes is {1, 4, 16}. Note that here, some nodes are
associated to several representative nodes, in this example node 7 is associated
to both the representative nodes 1 and 4. A harder variant of the problem would
be to require that there is exactly one such representative for each node.

In a nutshell, given a constant k, a Prolog program encoding a network with
nodes N , and a pattern p(X, Y), the task of finding representative nodes is to find
a subset S ⊆ N of size k such that for each node y /∈ S there is a node s ∈ S for
which the query ?- p(s,y) is answered affirmatively.
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Spread of Influence. Recursive patterns such as path(X,Y) can be used to
measure distances from a given node in a network to all other nodes in terms of
the minimal number of edges needed to reach the other node. This principle can
be regarded as the basis of techniques measuring spread of influence, and can be
used to enumerate nodes by increasing distance.

For instance, using pattern path(1,X), thus measuring the distance from
node 1, the closest set of nodes is {2, 8, 9, 14}, the next one {3, 7, 10, 13, 15},
and so forth.

In Prolog, this could easily be realized by extending the path predicate with
a third argument that counts the number of edges traversed:

path(X, Y, 1) : − edge(X, Y).

path(X, Y, L) : − edge(X, Z), path(Z, Y, L), L is N+ 1.

One would then ask a sequence of queries ?- path(1,X,i) with i = 1, . . . , n up
to a maximum length n, though some extra book-keeping would be required to
filter out nodes that have been returned as an answer on previous levels already.

Thus, given a Prolog program, a maximum distance n, and a recursive pattern
p(x, Y, D) with source node x, spread of inference corresponds to answer enumer-
ation for the sequence of queries ?- p(x,Y,i) for i = 1, . . . , n.

3.2 Abduction: Reasoning about Subgraphs

The task of abduction is closely related to that of generating an explanation for
a query as discussed in Section 2.2. In terms of graphs, it directly corresponds to
finding a minimal instantiation of a pattern. In the logical setting, abduction is
not restricted to database predicates, but can use all predicates marked abducible.
In the context of patterns and networks, one could simply assume all predicates
used in pattern definitions to be abducible and implement a predicate abduce;
see [5] for a general definition of this predicate and more details.

For instance, when calling the query ?- abduce(p6(7),E) (cf. Equation (11))
and assumming that all predicates are abducible, the answer E would be the
conjunction of node(7,tn3), edge(7,9), node(9,tn5), path(9,13), node(13,
tn3), edge(13,12), node(12,tn5), and path(12,7).

To summarize, given a Prolog program and a pattern p, abduction corresponds
to answering the query ?- abduce(p,E).

Again, one can also consider the corresponding enumeration problem, where
the task is to find all explanations or instantiations.

3.3 Induction: Finding Patterns

Frequent Patterns. The usual frequent subgraph mining problem corresponds
to the problem of finding all patterns from a given pattern language with more
than a chosen number of instantiations. The pattern language will specify both
allowed structures of patterns and which nodes in patterns can be query nodes.
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For instance, for a frequency threshold of 3, all patterns in Figure 3 would be
frequent.

Similarly to abduce/2 above, one could implement a Prolog predicate

frequent(P, T) : − pattern(P), count(P, N), N>= T.

that returns patterns with a frequency greater or equal to a user-defined thresh-
old T. It relies on suitable definitions of pattern/1 (defining elements of the
pattern language) and count/2 (counting instantiations of a given pattern).
Then, finding frequent patterns for a given frequency threshold t corresponds to
answering the query ?- frequent(P,t). While this simple approach illustrates
the basic idea, an efficient implementation would clearly be more involved.

To summarize, given a frequency threshold t and a Prolog program includ-
ing definitions of a pattern language and a counting function, finding frequent
patterns corresponds to answering the query ?- frequent(P,t).

Concept Learning. The aim of concept learning is to construct a definition of
a new predicate that covers all positive examples, but none of the negative ones.
In our context, examples are node tuples, but for convenience we represent them
as ground instances of the pattern to be found. Again, this could be realized in
Prolog based on a suitable definition of a predicate

concept(C) : − hypothesis(C),

findall(P, (pos(P), not(covers(C, P))), []),

findall(N, (neg(N), covers(C, N)), []).

Here, hypothesis/1 enumerates possible concepts, covers/2 checks whether the
concept covers an example, and pos/1 and neg/1 define examples. The Prolog
builtin findall/3 is used here to verify that there is no positive example that is
not covered by the concept, and no negative one that is covered. In general, its
third argument is a list of all instantiations of the variable in the first argument
for which the query in the second argument holds, and [] denotes the empty
list.

For instance, assume we are given examples pos(q(3,1)), pos(q(7,15))
and neg(q(7,4)). Then, querying ?- concept(C) could return C = (q(X,Y)

:- p3(X,Y)) as a possible solution.
Thus, given a Prolog program including definitions of a hypothesis language

and positive and negative examples, concept learning corresponds to answering
the query ?- concept(C).

Generalisation. Comparing patterns based on a generality relation provides a
means to choose between alternative solutions. Given a Prolog program including
two patterns

pa : − a1, . . . , an.

pb : − b1, . . . , bm.
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pa is more general than pb if the query ?- pa follows from the program that
is obtained by adding the facts b1 to bm to the original program, where each
variable is replaced by a new constant symbol. For instance, p4(X,Y) (Eq. (9))
is more general than p5(X,Y) (Eq. (10)), as ?- p4(x,y) can be proven from
our example program extended with the facts node(x,tn5), edge(x,a,te1),
node(a,tn2), edge(a,y,te1), and node(y,tn5).

From the perspective of graphs, generality can again be seen as a form of
subgraph isomorphism, this time between patterns where the nodes and edges
of the more general pattern are mapped to those of the more specific one of
same type or children type. Notice that in the literature on logical and relational
learning there are multiple notions of generality that can be employed [6].

The notion of generality can also be used to find a maximally specific common
generalisation of two given patterns, that is, a pattern that is more general
than each of the input patterns, but for which there is no more specific pattern
that also fulfills this criterion. A corresponding Prolog predicate generalize/3,
queried as ?- generalize(p2(X,Y),p4(X,Y),G) would provide the answer C =

(node(X,tn5), edge(X,A), edge(A,Y)).
Thus, given a Prolog program and two patterns pa and pb, the task of gener-

alization corresponds to answering the query ?- generalize(pa,pb,P).

Clustering. Patterns can also be used to cluster node tuples: all node tuples
that satisfy a given pattern fall into the same cluster. The task of clustering
a given set of node tuples then corresponds to that of finding k patterns that
cluster the node tuples into k disjoint (or possibly overlapping) subsets based
on characteristics of their local connection.

A very simple set of clustering patterns in our example would be the set
containing node(X,tni) for i = 1, . . . , 5 that would simply cluster single nodes
by their types.

In a nutshell, given a Prolog program, a constant k and a set of node tuples T ,
clustering is the task of finding a set P of k patterns such that for each t ∈ T ,
there is exactly one pattern p ∈ P for which t is an answer substitution for p.

3.4 Combining Induction and Deduction

As deduction matches patterns against the database, while induction constructs
new patterns, the two approaches can be naturally combined to find both pat-
terns and corresponding substitutions simultaneously.

Analogy. Node tuples can be considered analogous if they are answer sub-
stitutions for the same pattern. Given a substitution, the problem of finding
analogous tuples can be defined as finding a pattern for which this substitution
is an answer substitution along with all other answer substitutions for it. The
more specific the pattern, the stronger the analogy.

For example, the pairs of nodes (2,8), (12,16), (14,9) and (9,11) are
analogous with respect to pattern p4, i.e., in the sense that they are all pairs



Patterns and Logic for Reasoning with Networks 133

of nodes of type tn5 separated by an intermediate node. However, pattern p5

defines a stronger analogy that only relates the pairs (2,8) and (14,9). In the
case of an asymmetric pattern, it can be interesting to consider the sets of real
nodes assigned to one particular query node in the pattern, in other words, nodes
that take the same role in the analogy.

That is, given a Prolog program and a substitution θ, the task of reasoning by
analogy is to find a pattern p for which θ is an answer substitution as well as
the set S of all answer substitutions for p.

Synonyms. Two structurally distinct patterns are synonyms of one another
if they have the same answer substitutions. Synonyms are also known as re-
descriptions or syntactic variants. Finding synonym patterns and their answer
substitutions can be one way of finding sets of objects of special interest. Fur-
thermore, given two networks with node and edge types from different domains,
finding synonyms can help to establish mappings between these domains.

For instance, the following two patterns are synonyms (albeit only covering a
single node due to the simplicity of the example graph):

s1(X) : − edge(X, Y, te1), edge(X, Z, te1), edge(Y, Z).

s2(X) : − node(X, tn2).

Thus, given a Prolog program, finding synonyms means finding a set of pat-
terns P such that each pattern in P has the same set of answer substitutions.

3.5 Modifying the Knowledge Base

We now turn to a set of techniques that modify the graph, database, or back-
ground knowledge. The key difference to the techniques discussed so far is that
we now allow for loosing information.

Graph Simplification. The goal of graph simplification is to remove redundant
edges from a graph. Here, redundancy is defined with respect to paths: an edge
is considered redundant if all pairs of nodes connected in the original graph are
also connected in the graph after removing the edge. In the purely structural
case, graph simplification thus corresponds to finding a spanning tree; we will
come back to the use of additional quality measures in Section 4.6.

That is, given a Prolog program including a set E of facts representing edges
and a predicate path/2, graph simplification finds a minimal set S ⊆ E such that
the set of answer substitutions for path(X, Y) remains the same when reducing E
to S in the program.

Subgraph Extraction. The aim of subgraph extraction is to find a subgraph
of a given maximal size while retaining as much information as possible with
respect to a given set of examples, that is, answer substitutions for a pattern.
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For instance, given examples path(3,7) and path(3,13) and an upper limit
of 5 edges, our network could be compressed to contain edge(2,3), edge(1,2),
edge(1,9), edge(9,7) and edge(9,13) only.

Thus, given a Prolog program including a set E of facts representing edges, a
constant k and a set T of answer substitutions for pattern p, subgraph extrac-
tion finds a set S ⊆ E of size at most k such that all θ ∈ T are also answer
substitutions for p when reducing E to S in the program.

Abstraction. The task of abstraction is to rewrite the database using new
predicates that abstract away some of the information present in the initial
database. While techniques such as graph simplification and subgraph extraction
also loose information, abstraction differs in that it replaces database predicates
by a new predicate, obtained by computing answers for the pattern defining the
new predicate. For instance, one could replace the predicate arc/3, that is, the
directed, typed edges, using

p(X, Y) : − node(X, T), node(Y, T), T �= tn5, path(X, Y).

that is, edges that correspond to paths between pairs of nodes of the same
type (different from tn5) in the original network. This would result in the new
database

p(3, 7). p(3, 13). p(7, 13). p(4, 5).

p(7, 3). p(13, 3). p(13, 7). p(5, 4).

Abstractions can be created using any technique that identifies patterns and
thus predicate definitions. Instead of adding the definitions of these predicates
to the database, it computes all groundings of the new predicate, adds these to
the database, and deletes the old facts.

Thus, given a Prolog program, a database predicate d and a pattern p, abstrac-
tion adds pθ for all answer substitutions θ for p to the program and deletes the
definition of d.

Predicate Invention. The key idea of predicate invention is to introduce new
patterns that can be used to represent the background knowledge more com-
pactly. For instance, the DUCE system [7] measures compactness using the min-
imum description length principle. As an example, consider the following set of
rules:

q1(Z) : − edge(Z, Y), edge(Y, X), edge(X, W), edge(W, V), node(V,tn1).

q2(Z) : − edge(Z, Y), edge(Y, X), edge(X, W), edge(W, V), node(V,tn2).

q3(Z) : − edge(Z, Y), edge(Y, X), edge(X, W), edge(W, V), node(V,tn3).
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Inventing a predicate dist4(X,Y) allows one to rewrite these definitions more
compactly as

dist4(Z, V) : − edge(Z, Y), edge(Y, X), edge(X, W), edge(W, V).

q1(Z) : − dist4(Z, V), node(V, tn1).

q2(Z) : − dist4(Z, V), node(V, tn2).

q3(Z) : − dist4(Z, V), node(V, tn3).

While this transformation has preserved the meaning of the original fragment,
this need not be the case in general. Similar principles can also be used to
compress graphs by replacing instantiations of a pattern by new nodes [8].

In general, given a Prolog program, the task of predicate invention is to in-
troduce new pattern definitions which are then used to rewrite the program more
compactly.

3.6 Summary

Table 2 summarizes the different reasoning techniques presented in previous
sections. It recapitulates the information provided to and the problem solved by
each of them.

4 Using Probabilistic or Algebraic Labels

So far, we have restricted our discussion to crisply defined networks and logical
theories. However, in both Biomine and ProbLog, the information provided is
uncertain. This uncertainty is expressed by attaching probabilities to edges or
facts, and can be exploited in various ways for reasoning. Furthermore, ProbLog
has recently been generalized to aProbLog [4], where probabilities can be re-
placed by other types of labels, such as costs or distances. In this section, we
first briefly review the probabilistic model underlying Biomine and ProbLog,
and then illustrate how the techniques from Section 3 can benefit from the prob-
abilistic setting. While some of these techniques have already been realized in
Biomine, ProbLog, or other probabilistic frameworks, for others, the details of
such a transfer are still open. Finally, we touch upon the perspectives opened by
aProbLog.

4.1 The Probabilistic Model of Biomine and ProbLog

In the probabilistic graph model underlying Biomine, a value is associated to
each edge, indicating the probability that the relationship exists. In Biomine,
these values are obtained as the product of three factors, indicating the reliability,
the relevance, and the rarity (or specificity) of the information, cf. [2], but they
can be obtained in a different way as well. Existences of the edges are considered
independent from each other. This actually defines a probability distribution over
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Table 2. Summary of the different reasoning methods

Sec. Methods Information Problem

3.1 Deduction pattern, substitution is it an answer substitution?

3.1 Answer Enumeration pattern list all answer substitutions

3.1 Representative Nodes pattern, integer k find k representative nodes

3.1 Spread of Influence recursive pattern, node enumerate nodes by distance

3.2 Abduction pattern find an/all instantiation(s)

3.3 Frequent Patterns frequency threshold list all frequent patterns

3.3 Concept Learning pos./neg. examples find a discriminative pattern

3.3 Generalisation two patterns find a generalized pattern

3.3 Clustering substitutions, integer k find k clustering patterns

3.4 Analogy substitution find a pattern and answer

substitutions

3.4 Synonyms find a set of patterns with

same answer substitutions

3.5 Graph Simplification maximally reduce graph

keeping answer substitu-

tions for path

3.5 Subgraph Extraction examples, integer k reduce graph to size ≤ k re-

specting examples

3.5 Abstraction database predicate, pat-

tern

replace predicate definition

by pattern instances

3.5 Predicate invention reduce program size via new

predicates

possible subnetworks, i.e., deterministic instances of the probabilistic network.
Each subnetwork Ei has probability

P (Ei) =
∏

x∈E\Ei

(1− px)
∏

x∈Ei

px (12)

where E is the set of edges in the probabilistic network, Ei is the set of edges
realised in the deterministic instance and px the existence probability of edge x.
For instance, the network in Figure 6 has probability (starting with the edges
involving node 1) 0.78 · (1− 0.9) · 0.84 · 0.84 · . . . = 1.237e− 06.

In ProbLog, probabilities are associated to ground facts instead of edges, and
again, these facts are considered to correspond to independent random variables.
The directed edges of (1) are now represented as follows:

0. 78 :: arc(1, 2, te1). 0. 50 :: arc(2, 3, te1). 0. 90 :: arc(1, 8, te1).

0. 45 :: arc(8, 9, te2). 0. 61 :: arc(9, 10, te3). 0. 84 :: arc(1, 9, te1).

In analogy to Equation (12), ProbLog thus defines a probability distribution
over instances Ei of a probabilistic database with facts E.
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Fig. 6. A network sampled from the probabilistic graph in Figure 2

One can now ask for the probability of a specific pattern instantiation, which
corresponds to the probability that this subgraph is present in a randomly sam-
pled network. Due to the independence assumption, this probability is obtained
by simply multiplying the probabilities of the instance’s edges. Put differently,
it corresponds to the sum of probabilities of all subnetworks of the probabilis-
tic network that contain the instance. For example, the probability of the in-
stantiation of pattern p4(9,11) presented in Figure 4 is 0.43 · 0.47 = 0.2021.
The probability of its instantiation using node 10 as the middle node instead is
0.61 · 0.50 = 0.305.

The same principle of summing over all relevant subnetworks is also used to
define the probability of a pattern q, called success probability in ProbLog:

Ps(q) =
∑

Ei⊆E:q follows from Ei

P (Ei). (13)

Clearly, directly following this definition to calculate probabilities is infeasible in
any network of realistic size. However, several alternative approaches have been
developed, either based on sampling large numbers of networks or on enumer-
ating pattern instantiations instead of full subnetworks. The latter approach,
followed by ProbLog, requires to address the disjoint-sum-problem, that is, the
fact that more than one instantiation of the same pattern can exist in the same
subnetwork. It is therefore not possible to simply sum the probabilities of all
instantiations, as this would count such subnetworks multiple times. Consider
again the two instantiations of pattern p4(9,11) above. There are many sub-
networks that allow for both instantiations (including the one in Figure 6), and
we thus cannot simply sum these probabilities. Instead, we could split the rel-
evant set of subnetworks into three disjoint parts based on the edges occurring
in the instantiations: (1) all networks including the edges between 9 and 7 and
between 7 and 11, with probability 0.2021, (2) all networks that do not contain
the edge between 7 and 9, but the edges between 9 and 10 and between 10 and
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11, with probability (1 − 0.43) · 0.61 · 0.50 = 0.17385, and (3) all networks in-
cluding edges between 9 and 10, 10 and 11, 7 and 9, but not the one between 7

and 11, with probability 0.61 · 0.50 · 0.43 · (1− 0.47) = 0.0695095. (1) includes all
networks that allow for the first instantiation (regardless of the second), (2) and
(3) those that allow for the second, but not the first. Thus, the total probability
is 0.2021 + 0.17385 + 0.0695095 = 0.4454595.

In practice, ProbLog represents all instantiations of the pattern as a proposi-
tional formula, and then uses advanced data structures to calculate the proba-
bility of this formula; we refer to [9] for the technical details.

While the success probability takes into account all instantiations of a pattern,
it is also possible to approximate it using its most probable instantiation only.

4.2 Probabilistic Deduction

While deduction in the classical sense is concerned with deciding whether a
substitution is an answer substitution for a given pattern in the network, in a
probabilistic setting, it asks for the probability that this is the case, and thus
solves Equation (13).

Answer Enumeration. When considering the set of all answer substitutions
for a pattern, probabilities provide a natural means of ranking these. For in-
stance, each answer substitution for p5(X,Y) corresponds to a single instantia-
tion, that is, two edges linking node 1 to two of its neighbors. The most likely
answer substitutions (omitting symmetric cases for brevity) thus are {X/8,Y/9}
and {X/8,Y/14}, each with probability 0.9·0.84 = 0.756, followed by {X/9,Y/14}
(probability 0.7056), {X/2,Y/8} (0.702), and finally {X/2,Y/9} and {X/2,Y/14}
(0.6552 each).

Non-redundant Set of Representatives. Finding a non-redundant set of
representatives as proposed in [10] consists in solving the representative nodes
problem (cf. Section 3.1) in a probabilistic setting.

Using the path predicate, the aim is to find a set X of k representative nodes
such that the probability that {Y/y} is an answer substitution for path(x,Y)

for some x in X is maximum for each original node y. More formally, the set of
representative nodes is defined as

argmaxX⊂N,|X|=k

∑

y∈N

maxx∈XPpath(x,y)

where Ppath(x,y) is the probability of the best instance of path(x,y), namely the
most probable path between nodes x and y.

Spread of Influence. Instead of using the number of recursive steps or the
size of the instantiation as a measure for the distance, in a probabilistic context,
spread of inference can use the probability that a substitution is an answer
substitution for a pattern. It would thus prefer more distant nodes (in terms of
path length) if their probability of being connected to the source node is higher.
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4.3 Probabilistic Abduction and Top-k Instantiations

In the presence of probabilities, one might not be interested in finding an expla-
nation for a query but rather in finding the most probable one.

In that setting an interesting alternative to the enumeration problem of ab-
duction is the task of finding the k most probable instantiations of a given
pattern.

Note that identifying the k most probable instantiations of a pattern might
return rather uninteresting results if they are all about the same node tuple. In
order to obtain a more diverse set of answers one might look for the k tuples
with most probable instantiations instead (corresponding to deductive answer
enumeration approximating probabilities by those of the most likely instantia-
tions), or even require the tuples to not overlap.

4.4 Patterns and Probabilities

When looking for patterns, probabilities can again provide a natural way to
select between various alternative solutions.

Pattern Mining. Probabilistic local pattern mining in ProbLog [11] extends
pattern mining in multi-relational databases to the probabilistic setting. Instead
of a counting function, it uses a scoring function based on the probabilities
of candidate patterns on given node tuples. It thus basically replaces the 0/1-
membership function of frequent pattern mining with a gradual one based on
probabilities. Probabilities of individual instances are combined using sum (re-
sulting in a kind of probabilistic frequency) or product (resulting in a kind of
likelihood function).

Concept Learning. Concept learning in the context of ProbLog has been
studied in [12], where the relational rule learner FOIL is lifted to work with
probabilistic data and examples.

Generalisation. In a probabilistic setting, generalisation can be used in dif-
ferent contexts and ways. For instance, probabilistic explanation based learning
in ProbLog [13] generalizes an explanation of an example query in terms of
database predicates by replacing constants by variables, thus obtaining a new
pattern definition. Stochastic logic programs, a probabilistic logic language in-
spired on probabilistic grammars, can be learned from examples in the form of
proofs by generalizing pairs of clauses extracted from these examples [14]. In
the latter case, probabilities are associated to clauses, and need to be adapted
during generalisation as well.

Clustering. In the context of clustering, probabilities can express the degree
to which an example belongs to a cluster. One would then no longer require that
node tuples are assigned to single clusters.
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4.5 Combining Induction and Deduction

Analogy. While the generality of a pattern provides a first means to assess the
strength of an analogy, the probabilities of the different groundings additionally
provide a means to rank all node tuples that are analogous with respect to a
certain pattern. For instance, while (2,8), (12,16), (14,9) and (9,11) are
all analogous with respect to pattern p4, the probabilities are much higher for
(2,8) and (14,9) than for the other two pairs. In the context of ProbLog, both
local pattern mining [11] and probabilistic explanation based learning [13] have
been used for reasoning by analogy.

Synonyms. In the context of finding synonyms, probabilities allow for choosing
a subset of candidate synonyms based on the probabilities of the corresponding
answer substitutions, and to thus restrict a possibly large set of synonyms to a
set that is more suitable for manual inspection.

4.6 Modifying the Probabilistic Knowledge Base

Simplification of a Probabilistic Graph. The problem introduced by Toivo-
nen et al [15] consists in simplifying probabilistic networks while maintaining the
connectivity. It refines the task of graph simplification as defined in Section 3.5
by using the probabilities as an additional quality measure.

The aim is to find a minimal database by dropping edges while keeping the
probability of the path predicate for each pair of nodes constant. With the
probability of path(x,y) for a pair of nodes x and y defined as the probability
of the best instantiation, this corresponds to maintaining the best paths between
all pairs of nodes.

This definition might be too strict, as it might not allow for significant reduc-
tions of database size. In a later work [16], the condition is relaxed to maintaining
the overall best path quality as close to the original as possible.

Subgraph Extraction. Various approaches to extract subgraphs with strong
connections among given nodes have been developed in the context of Biomine
and ProbLog [17,18,19,20]. These works all aim at maintaining high probabilities
for connections between selected nodes. In Biomine, connections are typically
defined as paths between pairs of nodes from a given set, while ProbLog the-
ory compression [18] provides them as positive examples in the form of ground
patterns whose definitions are included in the background knowledge. The lat-
ter also takes into account corresponding negative examples by using a score
that encourages high probabilities for positive and low probabilities for negative
examples.

Abstraction. In a probabilistic database or network, abstraction would need to
take into account the probability labels as well. However, simply labeling the new
facts with their probabilities as deduced from the old program may introduce
hidden dependencies between facts that might be undesirable.
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Predicate Invention. When applying predicate invention to a probabilistic
database, the probabilities provide a means to measure the information loss and
balance it against the compactness of the representation obtained. While the un-
derlying probability distributions could be maintained for transformations that
maintain the meaning of the program, how to adapt probabilities for transfor-
mations that generalize the program is an open question.

4.7 Beyond Probabilities

While probability labels provide one way of defining a quality measure on differ-
ent subnetworks or databases, in certain situations, it can be more convenient to
use different types of labels, such as for instance costs, capacities, or numbers of
co-occurrences. For instance, in the context of a transportation network where
edges are labeled with travel times, prices, or the number of available seats, one
could be interested in shortest or cheapest routes, or in routes allowing for the
largest group of passengers traveling together, or even in some criterion balanc-
ing these requirements. In a co-authorship graph where edges are labeled with
the number of joint papers, one could be interested in patterns suggesting strong
collaboration networks.

aProbLog [4] generalizes ProbLog to labels from arbitrary commutative semi-
rings, that is, sets of labels together with two binary operators with certain
characteristics.3 Multiplication is used to define labels of subsets of the database
sets (as done for the semiring of probabilities in Equation (12)), while addition
is used to define labels of queries in terms of these (as done in Equation (13)). In
the case of probabilities, negative literals are naturally labeled with 1−p, where
p is the label of the database facts; in the general case considered in aProbLog,
these labels need to be given explicitly. By replacing summation with maximiza-
tion, one obtains another probabilistic semiring that can be used to obtain most
likely database instances. The examples given above can be formalized in this
framework.

Inference in aProbLog generalizes that in ProbLog, and the framework thus
allows one to explore the tasks discussed in this chapter in the context of different
types of labels on basic relations without the need to redefine the underlying
machinery.

5 Conclusions

We have given an overview of network inference tasks from the perspective of the
Biomine and ProbLog frameworks. These tasks provide information at the node,
subgraph, or pattern level, and they differ in the types of input they assume in
addition to the basic graph, such as training examples or background knowledge.

3 More formally, a commutative semiring is a tuple (A,⊕,⊗, e⊕, e⊗) where addition ⊕
and multiplication ⊗ are associative and commutative binary operations over the
set A, ⊗ distributes over ⊕, e⊕ ∈ A is the neutral element with respect to ⊕,
e⊗ ∈ A that of ⊗, and for all a ∈ A, e⊕ ⊗ a = a⊗ e⊕ = e⊕.
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They all have been or can be extended to exploit the probabilistic information
present in both frameworks, or other types of labels as supported in aProbLog,
a recent generalization of ProbLog to algebraic labels.
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