
Recording and Replaying Navigations

on AJAX Web Sites

Alberto Bartoli, Eric Medvet, and Marco Mauri

DI3 - University of Trieste
Via Valerio 10, Trieste, Italy
bartoli.alberto@units.it

Abstract. Recording and replaying user navigations greatly simplifies
the testing process of web applications and, consequently, greatly con-
tributes to improving usability, robustness and assurance of these appli-
cations. Implementing such replaying functionalities with modern web
technologies such as AJAX is very hard: the GUI may change dynam-
ically as a result of a myriad of different events beyond the control of
the replaying machinery and even locating a given GUI element across
different executions may be impossible.

In this work we propose a tool that overcomes these problems and is
able to handle real-world web sites based on AJAX technology. Recording
occurs automatically, i.e., the user navigates with a normal browser and
need not take any specific action. Replaying a previously recorded trace
occurs programmatically, based on several heuristics that make the tool
robust with respect to DOM variance while at the same time maintaining
the ability to detect whether replaying has become impossible—perhaps
because the target web site has changed too much since the recording.
The entire procedure is fully transparent to the target web site. We
also describe the use of our tool on several web applications including
Facebook, Amazon and others.

1 Introduction

The ability to record and replay GUI navigation sequences has become an es-
sential component of testing procedures for modern software [11]. The need for
incorporating similar procedures in web applications is becoming more and more
urgent, given the richness of their user interfaces and their ever more stringent
requirements in terms of usability, robustness and assurance [9]. Unfortunately,
modern web technologies such as AJAX make programmatic interaction with
client-side GUIs very hard, due to the stateful and highly dynamic nature of the
DOM that determines the actual GUI appearance. Client-side code constructs
the DOM and manipulates it as a result of a myriad of different events, that may
be triggered by user actions but also by asynchronous interactions between the
browser and the server. Indeed, even the seemingly trivial task of identifying the
elements in a DOM that may affect navigation is actually very challenging and
is still partly unsolved [2,6]. Repeating the same sequence of user actions against

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 370–377, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Recording and Replaying Navigations on AJAX Web Sites 371

the same initial DOM, moreover, typically results in a different DOM: attributes
of individual elements may change across different executions, for example if
they include a form of session identifier, and the very same DOM structure may
change because the server usually serves different contents at different times. The
complexity of replaying a browser session is magnified further by the fact that, in
practice, HTML elements usually do not have any form of identity that persists
across browsing sessions. It follows that finding programmatically the “same”
HTML element accessed in a previous session may be very challenging. Indeed,
replaying a browsing session may even be impossible, for example because the
web application at the target web site has changed between the registration and
the attempted replay.

In this work we propose a method and a tool for recording and replaying
traces of user interactions with web applications, which may be of great help
in a number of testing activities as pointed out above. Key properties of our
contribution are: (i) the creation of a trace is fully automatic: the user merely
navigates into the target web site without taking any specific action or issuing
any dedicated command; (ii) the process is fully transparent to the target web
application, that need not be modified in any way; (iii) the replaying algorithm is
highly robust to DOM variance, while at the same time maintaining the ability
to notify the user in cases the replay has become impossible to perform—for
example because the target web application has changed too much between
the record and the replay. We are not aware of any similar tool with all these
properties. The tool that implements our method is able to cope with real-
world web applications based on AJAX technology and is able to record and
replay such actions as login and file upload. These actions are key components
of the workflow of many web applications but are notoriously difficult to handle
programmatically and are often missing from web analysis tools such as crawlers
and vulnerability scanners [3].

2 Related Work

A tool for recording and replaying traces of web application navigations is pro-
posed in [8]. The proposed approach requires that the user explicitly marks
every action to be recorded, by right clicking on the desired web element and
then choosing the event to register from a menu presented by an instrumented
web browser. This approach is manual and, it seems fair to say, quite cumber-
some to use. Our proposal, in contrast, is entirely automatic because the user
need not take any specific action during the recording process.

Recording and replaying functionalities are an essential component of the ap-
proach to web application testing proposed in [9]. Recording is done by replacing
dynamically the handler of each event in the page with a handler that merely
records its activation and then invokes the original handler. This approach al-
lows recording only events for which the page author has defined handlers using
the so called version 0 of the DOM. This technique of defining method handlers
is long deprecated and many modern web application no longer use it.

372 A. Bartoli, E. Medvet, and M. Mauri

Our approach is radically different in the sense that, essentially, it does not
place any requirement on the DOM and, in particular, it does not attempt to
discover the event-handler relationships defined in the page being recorded. As a
technical but important detail, we also remark that the cited work cannot handle
multi-page web applications, which in many cases prevent the handling of the
login step. Similar comments apply to [4], except that in this case multi-page
web site are supported.

Concerning the replaying process, the method for searching a target element
proposed in [9] implicitly assumes that the replay will occur without any con-
tent variation. While our heuristics allow identifying the correct element, the
approach in [9] would often select other elements during the replay.

The problem of determining whether two serialized DOM trees represent the
same page is essential in [5,6,7,10]. The goal of the cited works is to define a
distance between two DOM trees and then compare that distance against a
threshold in order to detect if the two DOM trees represent the same page. In
contrast, in this work we aim at locating a given element across different DOM
trees.

3 System Architecture

Our system consists of two separate applications: the trace recorder, that records
the actions executed by the user during a browsing session, and the trace replayer,
that replays a browsing session previously recorded by the trace recorder. The
system is fully transparent to both the user and the target web site. That is, the
user navigates with a normal browser and need not take any specific action for
recording, and the target web site need not be modified in any way. A funda-
mental characteristic of both or our tools is the use of a real browser (Firefox),
which is very important to ensure compatibility with real-world web applications
and to provide the user with a familiar interface. The trace replayer reads the
data previously saved in a trace and pilots the browser programmatically, so as
to replay the user actions on the target web site automatically.

3.1 Trace Recorder Architecture

The trace recorder consists of: (a) a web application that we developed and that
we call Observer ; (b) a proxy; and (c) a browser.

The Observer is composed of a server side code (Observer-S) and a client-side
code executed by the browser (Observer-C). Observer-C records all the DOM
events generated by the user and periodically sends a description of these events
to the Observer-S, that saves the corresponding descriptions into a file—the
trace.

The proxy, placed in between the browser and the target web site, performs
two actions: (i) injects the Observer-C code into all the pages sent to the browser;
and (ii) redirects part of the web traffic so as to enable communication be-
tween Observer-C and Observer-S without violating the same origin policy im-
plemented by modern browsers.

Recording and Replaying Navigations on AJAX Web Sites 373

The browser fetches our JavaScript code injected by the proxy—i.e., Observer-
C—and executes this code locally. The results produced by Observer-C are sent
to Observer-S through the URL /GWT-Observer. The proxy is configured so as
to reroute any traffic to /GWT-Observer toward the server in our control that
actually executes the Observer-S code. In other words, the browser is tricked into
believing that Observer-C is fetched from the target web site and communicates
with that site. This fairly complex structuring allows circumventing the same
origin policy (SOP) implemented by modern browsers, which would prevent any
communication from Observer-C to a server in our control [1].

Our tool is able to handle also encrypted https traffic by configuring the
proxy to act as a man in the middle between the browser and the target web
application.

A trace contains a sequence of event descriptions, each of them consists of:
(i) type of the DOM event (e.g. click, wheel, etc.); (ii) time at which the event
occurred; (iii) description of the target element of the event. The description of
the target element contains its tag name, e.g. span or div, its text content,
its x and y positions and the possible values of the id, name, src, and type

attributes.
We also defined, in addition to those defined by the DOM standard, two

synthetic event types, write and select, to represents respectively the typing
of a text inside an input field and the selection of a choice from a drop-down
list as a more compact representation of sequences of events that have actually
occurred.

3.2 Trace Replayer Architecture

The goal of the trace replayer is to read the trace created by the trace recorder
and reproduce the registered events using the browser. The reproduction of the
trace is performed by the trace replayer driving the browser, throughWebdriver1,
a browser automation framework that enables to manipulate a real browser
programmatically.

We introduce a distinction between relevant and irrelevant events. A relevant
event is any event whose replay is essential to properly replay the entire trace,
while replaying an irrelevant one is not essential to properly replay the trace.
The trace recorder registers events that could be irrelevant because whether a
given event is relevant depends on the events that follow that event. For example,
events generated for selecting a text field inside a form are irrelevant, because
the subsequent event of typing inside that field implies the selection of the text
field itself.

The trace replayer preprocesses the trace as follows: (i) filter out all the irrele-
vant events from the trace; (ii) shorten the trace by introducing synthetic events
wherever possible.

After preprocessing, the trace is replayed according to the following algorithm:
for each event E in the sequence S, search the associated target element T ′

E in the

1 http://seleniumhq.org/projects/webdriver

http://seleniumhq.org/projects/webdriver

374 A. Bartoli, E. Medvet, and M. Mauri

opened web page; if T ′
E is found, replay the event using WebDriver; otherwise,

repeat the search for a predefined amount of times, waiting for a fixed amount of
time (half a second) after each attempt. This waiting heuristics copes with the case
in which the searched element is created dynamically by JavaScript code. If this
repeated search fails, trace replayer simply aborts the replay signaling the error.

Often, between the registration and the replay the content of the web page
changes in more or less substantial way. Furthermore the only way to uniquely
identify an element inside a document is optional (the id attribute) and in the
vast majority of cases this attribute is not present, so a simple search for an
element with identical content to the one in the trace will fail.

We attack this crucial problem with a series of heuristics and decide which one
to use based on the element TE to be found, as explained below. Each heuristic
execution can lead to a false negative (the element exists in the page but the
heuristic has not found it) as well as to a false positive (the found element is not
the correct one, which may or may not exist in the page). In our experiments,
described in the next section, we have not encountered any false positive or false
negative. As future work, we plan to execute a broader quantitative analysis by
systematically labeling a large dataset. Our heuristics are as follows:

findElementBySrc. This heuristic, used for searching media element, retrieves
the first element T ′

E that has the same tag name of TE and the same value
for the attribute src.

This heuristic could cause a false positive result if there are more media
elements, in the analyzed web page, distinguishable between them only for
the position relative to the page itself.

findElementByInput. This heuristic, used for searching form inputs, retrieves
the first element T ′

E that represents the same type of form input of TE

and has the same value for the attributes id and/or name. If none of these
attributes are presents in TE or if no element with those attribute values is
found, then this heuristic compares the text content of the form inputs.

This heuristic should not be capable to generate false positives because
the values of id are unique within a single page while those of name are
unique within a single form. The heuristic can generate false negatives if the
value of the attributes varies between different replays.

findElementByGrid. This heuristic is based on the position of the searched
element TE; it retrieves the first element T ′

E that has the same tag name and
whose coordinate (xT ′

E
, yT ′

E
) are similar to those of TE .

This heuristic can generate false negatives if the position of the searched
element varies too much between different replays. It can generate false pos-
itives if there is another element with the same tag name and similar coor-
dinates that precedes, in document order, the searched element.

findElementByGridAndText. This heuristic is very similar to findElement-
ByGrid, except that the retrieved element T ′

E has also the same text content
of TE.

This heuristic can generate erroneous results in the same conditions of
the previous one.

Recording and Replaying Navigations on AJAX Web Sites 375

4 Experiments

We tested our tool to verify its ability to work on real web applications. Each
experiment consisted of the registration of a trace on a web application and
multiple replays of such trace to verify the repeatability of the reproduction.
Table 1 is a summary of our experiments: it shows a line for each web application
and the number of events in the corresponding registered trace. The table also
shows the number of events, computed after the preprocessing of the trace.

Table 1. Summary of our experiments

of events
Site name # of pages click write select

Amazon 10 7 2 0
Facebook 14 9 4 0
Google Groups 25 23 1 0
Stack Overflow 14 12 1 0
Wacko Picko 34 23 10 0
WIVET 44 29 13 1

Amazon. We registered a trace simulating the search of some products and
then the addition of the desired product to the “shopping cart”. In detail,
we performed a search using the keyword “tablet”, selected a specific model
and added it to the cart. After that we performed another search using the
keyword “stereo”, selected a specific model and added it to the cart.

The most notable example of page variations was the search result pages:
the products displayed changed between the replays. The trace replayer can
withstand this type of variation thanks to the findElementByGridAnd-
Text heuristic. We replayed this trace several times without encountering
any error.

Facebook. We registered a trace simulating a typical user interaction with the
social network: (i) login; (ii) checking for new messages; (iii) adding a new
event to the calendar; (iv) logout. We could perform the replays without any
error. The only peculiar, but correct, behavior was the creation of several
duplicated events on the Facebook calendar; this a further example of the
resilience of our heuristics to page variations.

Another peculiarity of this web applications is the use of a session ID as
the value of the id attribute of the login button. The trace replayer can cope
with this kind of variation thanks to the fact that the findElementByInput
searches by text if it cannot find the right element searching by its id.

Google Groups. We registered a trace containing the navigations on various
discussion threads chosen at random, all pertaining to the “Google Web
Toolkit” group of this web application, including the use of all the links that
change the display mode of the discussions.

This was the web application that displayed the more pronounced page
variations: for each replay the list of posts and topic displayed changed with

376 A. Bartoli, E. Medvet, and M. Mauri

the additions of new contents. All the searches in this web application was
performed by the findElementByGridAndText heuristic.

We could perform the replays without any error.
Stack Overflow. We registered a trace containing the search of various topic,

the navigation of user information and the FAQ section of the web appli-
cation. Like the previous web application all the searches in this one was
performed by the findElementByGridAndText heuristic. We could per-
form the replays without any error.

WackoPicko. WackoPicko is a web application used to test web application
vulnerability scanners [3]. It consists in a fake image shop applications that
allow users to upload, comment and purchase images.

We created a trace containing the following actions: (i) login; (ii) addition
of a comment to an existing image; (iii) search of an image; (iv) purchase of
an image; (v) upload of an image; (vi) logout.

Another particular aspect of this trace is the presence of both a login
and an upload file steps. Many of the work cited in Section 2 are not able to
perform these two actions. We could perform the replays without any error
and the majority of searches was performed by the findElementBySrc and
findElementByInput heuristics.

WIVET. WIVET is a benchmarking project for analyzing web link extractors.
It consists in a series of pages containing links in ways that are increasingly
difficult to find for automated tools. We recorded a trace containing the
activation of all of the links with the exception of those involving flash applets
and those using the mouse hover event as a trigger to activate the links.

This web application is almost entirely static so the various replays have
not encountered any page variation. We could perform the replays without
any error.

5 Conclusions

The ability to record and replay sequences of user interactions with web appli-
cations is very useful in functional testing, security testing and usability testing.
We have presented a novel approach to this problem and described a tool that
implements our approach. The approach is suitable for modern web applications,
made up of highly dynamic contents and abundant use of AJAX technology. The
tool does not require any change or configuration on the web application to be
monitored, is completely non intrusive, very easy to use and supports https con-
nections. As discussed in the related work section, the tool overcomes several
limitations of earlier proposals.

Our method and tool are useful to improve web application testing by reducing
the time needed to thoroughly test the web application. We plan to execute a
broader quantitative analysis of our approach on a larger dataset.

Acknowledgments. This work is partly supported by eMaze2.

2 http://www.emaze.net

http://www.emaze.net

Recording and Replaying Navigations on AJAX Web Sites 377

References

1. Same origin policy, http://www.w3.org/Security/wiki/Same_Origin_Policy
2. Bai, X., Cambazoglu, B.B., Junqueira, F.P.: Discovering urls through user feed-

back. In: Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, CIKM 2011, pp. 77–86. ACM, New York (2011),
http://doi.acm.org/10.1145/2063576.2063592

3. Doupé, A., Cova, M., Vigna, G.: Why Johnny Can’t Pentest: An Analysis
of Black-Box Web Vulnerability Scanners. In: Kreibich, C., Jahnke, M. (eds.)
DIMVA 2010. LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010), http://
dx.doi.org/10.1007/978-3-642-14215-4 7, 10.1007/978-3-642-14215-4 7

4. Álvarez, M., Pan, A., Raposo, J., Hidalgo, J.: Crawling Web Pages with Support for
Client-Side Dynamism. In: Yu, J.X., Kitsuregawa, M., Leong, H.V. (eds.) WAIM
2006. LNCS, vol. 4016, pp. 252–262. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11775300_22, 10.1007/11775300 22

5. Medvet, E., Kirda, E., Kruegel, C.: Visual-similarity-based phishing detection. In:
Proceedings of the 4th International Conference on Security and Privacy in Com-
munication Networks, SecureComm 2008, pp. 22:1–22:6. ACM, New York (2008),
http://doi.acm.org/10.1145/1460877.1460905

6. Mesbah, A., Bozdag, E., van Deursen, A.: Crawling ajax by inferring user interface
state changes. In: Eighth International Conference on Web Engineering, ICWE
2008, pp. 122 –134 (July 2008)

7. Mesbah, A., van Deursen, A.: Invariant-based automatic testing of ajax user inter-
faces. In: Proceedings of the 31st International Conference on Software Engineer-
ing, ICSE 2009, pp. 210–220. IEEE Computer Society, Washington, DC (2009),
http://dx.doi.org/10.1109/ICSE.2009.5070522

8. Montoto, P., Pan, A., Raposo, J., Bellas, F., López, J.: Automating Navigation
Sequences in AJAX Websites. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.)
ICWE 2009. LNCS, vol. 5648, pp. 166–180. Springer, Heidelberg (2009), http://
dx.doi.org/10.1007/978-3-642-02818-2 12, 10.1007/978-3-642-02818-2 12

9. Pattabiraman, K., Zorn, B.: Dodom: Leveraging dom invariants for web 2.0 appli-
cation robustness testing. In: 2010 IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE), pp. 191–200 (November 2010)

10. Roest, D., Mesbah, A., van Deursen, A.: Regression Testing Ajax Applications:
Coping with Dynamism. In: 2010 Third International Conference on Software
Testing, Verification and Validation (ICST), pp. 127–136. IEEE (April 2010),
http://dx.doi.org/10.1109/ICST.2010.59

11. Xie, Q., Memon, A.M.: Designing and comparing automated test oracles for GUI-
based software applications. ACM Trans. Softw. Eng. Methodol. 16(1), 4+ (2007),
http://dx.doi.org/10.1145/1189748.1189752

http://www.w3.org/Security/wiki/Same_Origin_Policy
http://doi.acm.org/10.1145/2063576.2063592
http://dx.doi.org/10.1007/978-3-642-14215-4_7
http://dx.doi.org/10.1007/978-3-642-14215-4_7
http://dx.doi.org/10.1007/11775300_22
http://doi.acm.org/10.1145/1460877.1460905
http://dx.doi.org/10.1109/ICSE.2009.5070522
http://dx.doi.org/10.1007/978-3-642-02818-2_12
http://dx.doi.org/10.1007/978-3-642-02818-2_12
http://dx.doi.org/10.1109/ICST.2010.59
http://dx.doi.org/10.1145/1189748.1189752

	Recording and Replaying Navigationson AJAX Web Sites
	Introduction
	Related Work
	System Architecture
	Trace Recorder Architecture
	Trace Replayer Architecture

	Experiments
	Conclusions
	References

