Model-Based Service Discovery
and Orchestration for OSLC Services
in Tool Chains

Matthias Biehl', Wenging Gu'-2, and Frédéric Loiret!

! Royal Institute of Technology, Stockholm, Sweden
{biehl,floiret}@md.kth.se
2 Ericsson AB, Kista, Sweden
wenging.gu@ericsson.com

Abstract. Globally distributed development of complex systems relies
on the use of sophisticated development tools but today the tools pro-
vide only limited possibilities for integration into seamless tool chains.
If development tools could be integrated, development data could be
exchanged and tracing across remotely located tools would be possible
and would increase the efficiency of globally distributed development.
We use a domain specific modeling language to describe tool chains as
models on a high level of abstraction. We use model-driven technology
to synthesize the implementation of a service-oriented wrapper for each
development tool based on OSLC (Open Services for Lifecyle Collabora-
tion) and the orchestration of the services exposed by development tools.
The wrapper exposes both tool data and functionality as web services,
enabling platform independent tool integration. The orchestration allows
us to discover remote tools via their service wrapper, integrate them and
check the correctness of the orchestration.

Keywords: Service Discovery, Service Orchestration, Model-driven De-
velopment, Tool Integration.

1 Introduction

Globally distributed software development teams need tool chains that are flex-
ible, distributed and tailored to their development processes [12]. To deal with
these new requirements, modern tool chains apply the principles of service-
oriented computing [8ITT], which deals with the generic integration of distributed
services [9]. When applying the service-oriented principles to tool integration,
tools expose both their data and functionality as services; these services are
orchestrated to form a tool chain. The industry initiative Open Services for
Lifecycle Integration (OSLC) [I5], advocates a service-oriented, RESTful [7] ar-
chitecture for managing tool data.

The challenge in adopting the OSLC approach for tool integration lies in
finding appropriate mechanisms for discovering the RESTful services of remotely
deployed development tools and to orchestrate the RESTful services of remote

M. Brambilla, T. Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 283-290} 2012.
© Springer-Verlag Berlin Heidelberg 2012

284 M. Biehl, W. Gu, and F. Loiret

development tools. However, there is currently no standard and no practical
support for discovering and orchestrating RESTful web services [I7]. Due to the
lack of a high-level design language for orchestration of RESTful web services,
solutions are typically directly implemented in code; an overview of the details of
this challenge is provided in [16]. As a result, the orchestration of tools requires a
lot of manual work. In addition, inconsistencies can only be found on code-level,
which is difficult, time-consuming and expensive.

In this paper, we propose a model-based approach to address both discovery
and orchestration for RESTful services in the domain of tool integration. We
introduce a domain-specific modeling language for tool integration that allows us
to describe both the tool chain as an orchestration of tools and the specification
of the services of each tool. This specification is the basis for both the discovery
of tool services and the generation of an implementation. The domain specific
model allows us to perform early correctness checks between the service usage
and the service definition in the service specification.

2 Approach

To close the gap between discovery and orchestration of RESTful services for
OSLC tool integration, our approach interleaves service discovery and service
orchestration for tool integration, as illustrated in figure [l We propose a model-
based approach, which seamlessly integrates the results of service discovery
with orchestration facilities. The pivot point of this approach is the discovered
ToolAdapter metamodel; it is the central connection point between the service
discovery and the service orchestration.

The automated process of service discovery is displayed on the vertical axis
in figure [l and explained in section [l Discovery automatically deduces details

Model-based
Service
Discovery

Service URI

0SLC

Service Cnnsctnesa
Discovery Check

-m L Discovered Orchestrati
Model-based Local Ifl::] ToolAdapter Inmgratlon kS Ll
Service ToolAdapter Metamodel Madel
Orchestration Metamodels
Code Generation
Source Code Source Code of
of Praxy Orchestration

Fig. 1. Approach for model-based discovery and orchestration

Model-Based Service Discovery and Orchestration 285

of an already deployed tool adapter service, from which only a URL is known as
an entry point. Discovery starts with the service URL, extracts the ToolAdapter
metamodel using the OSLC ServiceCatalogs and ServiceProviders and finally
generates code for the service proxies.

The process of service orchestration is displayed on the horizontal axis in figure
[and explained in section Bl It starts with several ToolAdapter metamodels,
which might be discovered or newly created and integrates the ToolAdapters
into an orchestration model. The formalized ToolAdapter metamodel can even
be used for verifying the discovered service definition against its usage in the
orchestration model by a number of correctness checks, as described in section
Bl Finally we generate code for the orchestration, as detailed in section

3 Service Orchestration for Tool Integration with TIL

Tool chains are often put together in an ad-hoc manner. We promote a systematic
development process, where a high-level design of the tool chain is created first.
We would like to describe the design of a tool chain in such a way that all
important design decisions of a tool chain can be reflected in it. This is why
we apply the Tool Integration Language (TIL) [3], a domain specific modeling
language for describing tool chains. TIL allows us not only to model a tool chain,
but also to analyze it and generate code from it. Here we can only give a short
overview of this language and for a detailed explanation of the semantics of TIL,
we refer to [3].

In TIL, a tool chain is described in terms of ToolAdapters and the relation
between them. For each tool, a ToolAdapter defines the set of data and func-
tionality that is exposed by that tool in form of a ToolAdapter metamodel. The
ToolAdapter metamodel is realized using EMF (Eclipse Modeling Frameworkﬂ.
The relation between the ToolAdapters is realized by any of the following Chan-
nels: a ControlChannel describes a service call, a DataChannel describes data
exchange or a TraceChannel describes the possibility to create traces. A trace
is a link between two elements of tool data, which may reside in different tools.
TIL offers three kinds of ToolAdapters. A GeneratedToolAdapter is newly cre-
ated, locally deployed and the ToolAdapter metamodel is used as specification.
A BinaryToolAdapter is included into the tool chain by locally deploying ex-
isting binaries and then binding to them. A DiscoveredToolAdapter is included
into the tool chain by binding to an already deployed ToolAdapter on a remote
server, it is merely specified by a URL. Realizing the binding in TIL requires a
discovery process, which is described in section [l

4 Service Discovery for Tool Integration

OSLC provides a catalog of linked metadata descriptions. The general idea is
to use the catalog for remote discovery of tool adapters by following the links

!http://www.eclipse.org/modeling/emf

http://www.eclipse.org/modeling/emf

286 M. Biehl, W. Gu, and F. Loiret

and parsing the metadata. We can discover the details of remotely deployed
ToolAdapters that follow the OSLC specification. The key task of the discovery
process is to interact with the OSLC directory services to extract a ToolAdapter
metamodel. This ToolAdapter metamodel describes the data and functionality
provided by the tool adapter and acts as an intermediate model in the discovery
algorithm.

When parsing the OSLC metadata, we need to make some assumptions, because
the OSLC catalog is not originally intended for the purpose of service discovery, but
it contains useful information. The starting point for discovering services is the URI
of the ServiceProviderCatalog. From the content of the Service ProviderCatalog the
algorithm follows to Service Providers and ResourceShapes. All these resources are
described in RDF [13] and we parse them with the Jena framework.

— Step 1 - Parse ServiceProviderCatalog: By parsing the response of
an HTTP-GET on the URI of the ServiceProviderCatalog, we can identify
a set of ServiceProvider resources. OSLC related information concerning
the Service ProviderCatalog is extracted and saved. For each ServiceProvider
resource we continue with step 2.

— Step 2 - Data or Control Service: We perform a GET on the URIs
of all ServiceProviders. We make the following assumptions for OSLC direc-
tory services: data and control services are encapsulated in separate Service-
Provider resources. For a control ServiceProvider only inlined CreationFac-
tory resources exist, for a data ServiceProvider both CreationFactory and
QueryCapability resources exist. With these assumptions we can identify the
correct type of ServiceProvider by checking if the current ServiceProvider
contains any QueryCapability resources. For a data ServiceProvider we pro-
ceed with step 3, for a control Service Provider we proceed with step 6.

— Step 3 - Find Data Resources: Each inlined CreationFactory or Query-
Capability property represents one data resource, however, for the name
of this data resource we have to assume it is contained in the URI of the
inner property resourceShape, resource Type, creation or queryBase. With the
listed sequence, we anticipate the resource name by extracting the last word
of the URI. We use the simplest way to anticipate the correct name, which
is to select the first URI in the listed sequence. For each data resource, we
check if the URI of ResourceShape resource is given in the response. If it
is provided, details of this data resource can be constructed by parsing the
ResourceShape given, otherwise we query one or more specific objects of this
data type to anticipate the structure of the resource. We follow step 4 if the
URI of ResourceShape is given and step 5 otherwise.

— Step 4 - Construct Data Resource Structures by Parsing the Re-
sourceShape: Properties of the current data resource are analyzed and
added to the corresponding class in the ToolAdapter metamodel as attributes
or references. More specifically, for properties of primitive data types like
string, int, etc. an attribute is added to the class. For other types we deter-
mine the referenced data type by analyzing the URI of the given valueShape

2http://incubator.apache.org/jena/

http://incubator.apache.org/jena/

Model-Based Service Discovery and Orchestration 287

or valueType property as described in step 3 and add a corresponding ref-
erence to the current class. In OSLC, the multiplicity is described by the
occurs property. Possible values are Zero-or-one, Exactly-one, One-or-many
and Zero-or-many. After the structure of the data has been discovered, the
ToolAdapter metamodel is updated.

— Step 5 - Construct Data Resource Structures by Querying Object
Details: If there is no annotated ResourceShape given for a specific resource,
we have to discover the structure of this resource by querying a specific
instance of this data type. We obtain the list of objects by following the
URI of QueryCapability. By analyzing the content of the response, we can
obtain the attributes or references of the current data type. Since attributes
are optional in RDF, we may need to query several objects, to increase the
probability of acquiring a complete set of all the properties. We assume that
the name of the attributes or references can be deduced from the local name
in the properties of the response, and the referenced data type is directly
from the local name of the resource type following the resource URI.

— Step 6 - Find Control Resources: By analyzing the URIs of the creation-
Factory, we can obtain a list of provided control resources. The resource name
is obtained from the URI of creation.

— Step 7 - Persist Discovered Tool Adapter Metamodel: The discovery
is finished and we save the discovered ToolAdapter metamodel.

5 Correctness Check

A correct and consistent TIL model is a prerequisite for the generation of correct
source code that realizes the tool chain. We check the TIL model for correctness
by analyzing if all service usages comply with their definitions. The definitions
of the ToolAdapter services are located in the ToolAdapter metamodels. The
usage of ToolAdapter services is specified in the TIL model, more specifically in
the different types of Channels. The correctness check ensures that the usages
of language concepts are conform to their definitions. The checks are performed
early in the development process of a tool chain, on a model-level, before code
is involved. Thus errors are relatively easy to detect and correct.

6 Code Generation

We describe the code generation in this section by describing (1) the chosen
implementation framework, (2) the mapping of high-level concepts of TIL to the
implementation and (3) the creation of proxies for DiscoveredToolAdapters.
Our approach is implemented using the Service Component Architecture
(SCA) [2], a set of specifications for developing distributed Service-Oriented
Architectures (SOA). SCA combines SOA principles [6] with principles of
Component-Based Software Engineering (CBSE). While SOA provides the notion
of loosely-coupled services, CBSE provides composability of software components.

288 M. Biehl, W. Gu, and F. Loiret

SCA is a component model for implementing and composing heterogeneous ser-
vices. We use the SCA implementation FraSCAti [19], which manages the web
server infrastructure, produces the necessary glue code and also provides remote
deployment, introspection and reconfiguration at runtime. SCA allows us to de-
fine RESTful services and bindings, which makes it possible to implement a tool
chain according to OSLC. We found that SCA is an appropriate technology for
realizing service-oriented tool chains based on OSLC.

The tool chain is an orchestration of services provided by both locally deployed
GeneratedToolAdapters and remotely deployed Discovered ToolAdapters. The lat-
ter are represented by local proxies bound to the remotely deployed tool adapter
implementation. For implementing the interface we use the Service Component
Architecture (SCA). By specifying the binding address of the remotely deployed
ToolAdapter, SCA tool support can generate the proxy implementation that
forwards calls to it. For each DiscoveredToolAdapter an SCA component is gen-
erated, acting as a local proxy of the discovered adapter. As a proxy, it provides
the services of the ToolAdapter metamodel that were retrieved by the discov-
ery process. The services of the local proxy are bound to the remote services
provided by the remotely deployed ToolAdapters. SCA allows the specification
of remote bindings that are managed transparently by the SCA runtime plat-
form. The orchestration components are SCA components generated from the
ControlChannels and the DataChannels, and bound to the proxy components
according to the control and data flows they specify in the orchestration model.

Remote ServerforaTool Local Tool Chain Server

i i
i i

] Tool Remotely Deployed : V| Proxy of Discovered RestofTool Ghain
i Tool Adapter ! i ToolAdapter

) e 0SLG L For- eﬂeosm >

i Interface E E warding Interface

discover generate correctness
check

Tool Adapter
Metamodel

Fig. 2. Architecture of the Discovered ToolAdapter

We use the discovered ToolAdapter metamodel for generating code prox-
ies for the ToolAdapter, which can be used to bind to the remotely deployed
ToolAdapter instance. The complete ToolAdapter architecture is represented in
figure 2l We distinguish between the remotely deployed ToolAdapter and the
DiscoveredToolAdapter. The remotely deployed ToolAdapter already exists and
is usually deployed on the same machine as the tool. In the implementation of the
remotely deployed ToolAdapter, we separate the code that deals with the inte-
gration technology from the code that interacts with the tool. The external part
of the remotely deployed ToolAdapter deals with the integration technology,
the internal part interacts with the tool, e.g. via local APIs. The Discovered-
ToolAdapter is a proxy to the remotely deployed ToolAdapter. It has the same
interface as the external part of the remotely deployed ToolAdapter and its im-
plementation merely forwards the service calls. Note that our approach is built

Model-Based Service Discovery and Orchestration 289

for the case in which we do not have access to the source code of the remotely
deployed ToolAdapter. The benefits of automated generation are time, effort and
cost saving. They can be achieved since the developers of the ToolAdapter do
not need to learn the integration technology, nor do they need to implement any
code that deals with the integration technology. A model-to-text transformation
automatically generates the source code of the DiscoveredToolAdapter.

7 Related Work

Related work can be found in the areas of tool integration, service discovery and
orchestration. We list the approaches by fields and point out approaches that
are in the intersection of both fields.

Tool Integration: Model-based integration frameworks [I] use metamodeling
for describing the tool data. However, these approaches provide neither con-
cepts to model a complete tool chain nor concepts to describe the orchestration
architecture of the tool chain. Model-based tool chains are usually realized lo-
cally. Tool chains based on the integration framework ModelBus [11] may be
distributed. ModelBus uses the SOAP protocol, so discovery, orchestration and
correctness checks can be performed.

Service Discovery and Orchestration: Web services based on SOAP [20] are
usually described using WSDL (Web Service Description Language) [5]. WSDL
is a W3C standard and is widely supported. In order to orchestrate WSDL-
based web services, typically BPEL (Business Process Execution Language) [14]
is used. The discovery and orchestration of RESTful web services is not equally
well supported. The current BPEL 2.0 only supports WSDL 1.1, which is incom-
patible with RESTful services. RESTful web services can be described in WADL
[10] and WSDL 2.0 [4], which is currently not supported by BPEL. Even if the
next version of BPEL will support WSDL 2.0, a lot of manual work is required to
consume the RESTful services provided, since the burden of creating the WSDL
file has shifted from the service supplier to the BPEL designer. The reason is
that no WSDL descriptions are provided by the RESTful service supplier. The
main alternative is manual coding of the orchestration. A number of approaches
for the orchestration of RESTful services have recently been proposed. The ex-
tension BPEL for REST [I7] and the language Bite [I8] have been developed for
integration of RESTful services. In SCA, the binding of RESTful web services is
possible, however a common Java interface must be used to invoke the web ser-
vices. The added value of our approach is the domain specific support for OSLC,
the correctness check of the orchestration and the code generation facilities.

8 Future Work and Conclusion

In the future we would like to improve the precision of the discovery algorithm
and perform additional case studies of tool chains for different development pro-
cesses. The cornerstone of this approach is the language TIL that describes both
the orchestration of ToolAdapters and the ToolAdapter as models. The discovery

290 M. Biehl, W. Gu, and F. Loiret

algorithm finds the details of an initially unknown ToolAdapter and represents
them as a model. Both the orchestration and the results of the discovery are
models, which allows us to verify their compatibility and correctness. As a con-
sequence of this automated support for discovery, orchestration and correctness
checks, distributed tool chains can be built faster and with less errors.

References

1. Amelunxen, C., Klar, F., Konigs, A., Rotschke, T., Schiirr, A.: Metamodel-based
tool integration with MOFLON. In: ICSE 2008, pp. 807-810 (2008)

2. Beisiegel, M.: Service Component Architecture, Tech. Rep (November 2007)

3. Biehl, M., El-Khoury, J., Loiret, F., Térngren, M.: A domain specific language for
generating tool integration solutions. In: MDTPI 2011 (June 2011)

4. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description
language (WSDL) version 2.0 W3C, 26 (2007)

5. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web service definition
language (WSDL). Technical report, W3C (March 2001)

6. Erl, T.: SOA Principles of Service Design. Prentice Hall (July 2007)

7. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

8. Frost, R.: Jazz and the Eclipse way of collaboration. IEEE Software (2007)

9. Gilmore, S., Gonczy, L., Koch, N., Mayer, P., Tribastone, M., Varré, D.: Non-
functional properties in the MDD of SOS. In: SoSyM (2011)

10. Hadley, M.J.: Web application description language (WADL). W3C (2006)

11. Hein, C., Ritter, T., Wagner, M.: Model-Driven tool integration with ModelBus.
In: Workshop Future Trends of Model-Driven Development (2009)

12. Herbsleb, J.D.: Global software engineering: The future of socio-technical coordi-
nation. In: FOSE 2007 (2007)

13. Klyne, G., Carroll, J.: RDF: Concepts and abstract syntax (2004)

14. OASIS. Web Services Business Process Execution Language, WSBPEL (2007)

15. OSLC Workgroup. OSLC Core Specification, version 2.0 (2010)

16. Pautasso, C.: On Composing RESTful Services. In: Software Service Engineering
(2009)

17. Pautasso, C.: RESTful web service composition with BPEL for REST. Data Knowl-
edge Engineering (2009)

18. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. IEEE Internet Computing
(2008)

19. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.: A
Component-Based Middleware Platform for Reconfigurable Service-Oriented Ar-
chitectures. In: Software: Practice and Experience (2011)

20. W3C. Simple Object Access Protocol (SOAP) 1.2. W3C (2007)

	Model-Based Service Discovery
and Orchestration for OSLC Services in Tool Chains
	Introduction
	Approach
	Service Orchestration for Tool Integration with TIL
	Service Discovery for Tool Integration
	Correctness Check
	Code Generation
	Related Work
	Future Work and Conclusion
	References

