
Extending Higher-Order Integral: An Efficient

Unified Algorithm of Constructing Integral
Distinguishers for Block Ciphers

Wentao Zhang1, Bozhan Su2, Wenling Wu1, Dengguo Feng2,
and Chuankun Wu1

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, P.R. China

2 Institute of Software, Chinese Academy of Sciences, Beijing, P.R. China
zhangwt06@yahoo.com, {subozhan,wwl,feng}@is.iscas.ac.cn,

chuankun.wu@gmail.com

Abstract. In this paper, we give an extension of the concept of higher-
order integral, which can make us design better higher-order integral dis-
tinguishers for some block ciphers (structures). Using the new extension,
we present a unified algorithm of searching for the best possible higher-
order integral distinguishers for block ciphers.We adopt the inside-out ap-
proach, trying to predict the behavior of a set of carefully chosen data, not
only along encryption direction, but also along decryption direction. Ap-
plying the unified algorithm, we search for the best possible higher-order
integral distinguishers of Gen-SMS4 structure, Gen-Fourcell structure and
Present. For Gen-SMS4 structure and Present, the best higher-order in-
tegral distinguishers given by our algorithm are better than the best re-
sults known so far. For Gen-Fourcell structure, the best higher-order inte-
gral distinguishers given by our algorithm are the same as the best results
known so far. We expect that the inside-out method is helpful to under-
stand higher-order integral of block ciphers better, and the unified algo-
rithm presented in this paper can be used as a tool for efficiently evaluating
the security of a block cipher against integral cryptanalysis.

Keywords: block cipher, integral cryptanalysis, higher-order integral,
integral distinguisher, generalized Feistel structure, Present.

1 Introduction

Integral cryptanalysis [15] is originally proposed by L.R.Knudsen and D.Wagner
as a dedicated attack against Square block cipher [8], so is firstly known as
“Square attack”. Afterwards, the original idea used in Square attack has been
extended and given different names, including saturation attack [18], collision
attack [12], multiset attack [5] and integral cryptanalysis [15].

Integral cryptanalysis is of particular significance for its applicability to AES.
AES is designed to be resistant to differential cryptanalysis and linear
cryptanalysis, and very successful in this aspect, only 6-round AES can be
resistant to differential cryptanalysis and linear cryptanalysis. However, 6-round
AES can be broken using integral cryptanalysis, only with 6 ·232 chosen plaintexts
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and 244 time [11]. Up to now, integral cryptanalysis is one of the most effective
attacks for round-reduced AES [11,12] and round-reduced IDEA block cipher [4].

Integral cryptanalysis is a chosen-plaintext attack, which considers the prop-
agation of sums of many values. The goal of an attacker is to derive information
about the secret key using integral distinguishers. Assume a block cipher has n
data subblocks, each data subblock has a length of m bits. When mounting an
integral attack, the attacker typically chooses one or several specific subblocks,
assume he chooses d subblocks. Then, the attacker chooses 2d×m plaintexts,
which take on all possible values in the d subblocks, and have constant values in
the other subblocks. The attacker considers these 2d×m chosen plaintexts at a
time, trying to predict the properties in some subblock(s) after a certain number
of encryption rounds. Customarily, the following four properties are considered:

(1)Constant: The state of a subblock is called “constant” if every data in this
subblock has the same constant value.

(2)Active: The state of a subblock is called “active” either if the data in this
subblock are all different and have constant values in the other subblocks, or if
the data can be divided into some pairwise disjoint subsets and the following
condition holds for each subset: the data in this subblock are all different and
have constant values in the other subblocks.

(3)Balanced: The state of a subblock is called “balanced” if the XOR of all
values is zero.

(4)Unkown: The state of a subblock is called “unknown” if no information is
known.

We collectively call the above four states as integral states. Notice that some of
the properties are implied by others. For example, a constant or active state is
automatically balanced.

The security of a block cipher against integral cryptanalysis depends on sev-
eral factors, including the length of integral distinguishers, specific input/output
forms, the strength of one-round encryption/decryption. Among them, the de-
sign of integral distinguishers is the most important. In spite of a long time study
of integral cryptanalysis on block ciphers, integral distinguishers have often been
designed based on ad hoc approaches and the experience of cryptanalysts. There
is no common method of designing integral distinguishers so far.

In this paper, we give an extension of the concept of higher-order integral.
Furthermore, based on the new extension, we present an efficient unified algo-
rithm to the design of higher-order integral distinguishers using the method of
symbol calculation. The main ideas and contributions are as follows:
• The actual value of a constant state has no influence on the attack, thus all

constant states can be denoted as a single letter “C”; A balanced state is usually
a sum of some active states. Hence, the state of any subblock can be expressed
either as “C”, or a sum of some active states and some unknown states. Note that
an unknown state is a sum of 0 active state and 1 unknown state. Compared with
the customary description, the above expression is more accurate, thus makes
the information kept as undamaged as possible.
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• Traditionally, integral distinguishers are designed from top to bottom, an
attacker tries to predict the behavior of a set of carefully chosen plaintexts
after a certain number of encryption rounds. By contrast, we adopt the inside-
out approach, trying to predict the behavior of a set of carefully intermediate
data, not only after a certain number of encryption rounds, but also after a
certain number of decryption rounds. Consequently, we make an extension of
the concept of higher-order integral, which can make us design more effective
integral distinguishers for some block ciphers (structures).
• Using the matrix method introduced in [13, 14], we propose an efficient

unified algorithm of designing the best possible integral distinguishers for block
ciphers (structures). The algorithm can be applied widely, not only for byte-
oriented block ciphers and some generalized Feistel structures such as AES,
Camellia [2], Gen-SMS4 structure [3] and Gen-Fourcell structure [7], but also
for bit-oriented block ciphers such as Noekeon [9], Serpent [1] and Present [6].
For Camellia, Gen-SMS4, Noekeon, Serpent and Present, the best integral dis-
tinguishers given by our algorithm are better than the best results known so far.
For AES and Gen-Fourcell, the best integral distinguishers given by our algo-
rithm are the same as the best results known so far. Hence, we believe that the
unified algorithm presented in this paper can be used as a tool for efficiently
evaluating the security of block ciphers against integral cryptanalysis.

Due to the length limitation of this paper, we only use Gen-SMS4 structure,
Gen-Fourcell structure and Present as 3 typical examples. More examples will
be presented in the extended paper.

The focus of this paper is the construction of integral distinguishers for block
ciphers. How to design an attack algorithm using these integral distinguishers is
out of the scope of this paper, and we leave it for further work.

2 Preliminaries

Throughout this paper, we always assume that: (1) A block cipher structure
S has n data subblocks; (2) The round functions F of S are all bijective; (3)
The operation to connect a subblock with another one is ⊕, thus the sum in
integral cryptanalysis considered in this paper is referred to as “⊕”. Although
some block ciphers do not satisfy all the above conditions, e.g., IDEA and RC6,
yet we believe that the similar idea can also be applied, with some modifications.

2.1 Higher-Order Integral

The concept of higher-order integral is proposed by L.R.Knudsen and D.Wagner
[15]. Consider a set of 2m elements (representing a set of plaintexts), which differ
only in one particular subblock, such that each of the 2m possible values for this
particular subblock occurs exactly once, the sum over the elements of this set
is called a first-order integral. Consider next a set of 2d×m elements, which
differ in d subblocks, such that each of the 2d×m possible values for the d-tuple
of values from these subblocks occurs exactly once, the sum of this set is called
a dth-order integral, and integral for short. A dth-order integral is called a
higher-order integral when d ≥ 2.
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Consider a set
−
S = S1 ∪ · · · ∪ Ss composed of s sets, where each Si forms an

integral. Then, clearly, if one can determine the sum of the elements of Si for

each i, then one can also determine the sum of all elements in
−
S. This fact is the

key point for understanding higher-order integral.

2.2 Matrix Characterization of a Block Cipher Structure

Modern block ciphers are designed by iterating a round function certain times.
The following gives a matrix characterization of one round of a block cipher.

Definition 1. [14] (Encryption/Decryption Characteristic Matrix) For
a block cipher structure S, let (X0, X1, · · · , Xn−1) and (Y0, Y1, · · · , Yn−1) re-
spectively denote the input and output of one-round encryption, then the n× n
encryption/decryption characteristic matrix are defined as follows:
(1)Encryption characteristic matrix En×n: If Yj = Xi⊕R, where R is some
value 1, the (i, j) entry of E is set to 1; If Yj is nonlinearly affected by Xi, the
(i, j) entry of E is set to 2; If Yj is not affected by Xi, the (i, j) entry of E is set
to 0.
(2)Decryption characteristic matrix Dn×n: If Xj = Yi⊕T , where T is some
value, the (i, j) entry of D is set to 1; If Xj is nonlinearly affected by F (Yi), the
(i, j) entry of D is set to 2; If Xj is not affected by Yi, the (i, j) entry of D is
set to 0.

In Definition 1, each entry of the encryption/decryption characteristic matrix
has only one of the three values: 0, 1, or 2. For byte-oriented block ciphers, such
as AES and Camellia, the length of a subblock is chosen to be 8 bits; For bit-
oriented block ciphers, such as Noekeon, Serpent and Present, the length of a
subblock is chosen to be 1 bit. For some block ciphers, one characteristic matrix
is sufficient to describe one-round encryption (decryption); While for some other
block ciphers, it needs a composition of two characteristic matrices, i.e., firstly
the first matrix E1 (D1), then the second matrix E2 (D2). In the following, we
can see that most popular block ciphers can be represented by one characteristic
matrix or a composition of two characteristic matrices.

3 A Unified Approach for the Design of Integral
Distinguishers

3.1 A New Representation of the 4 kinds of Integral States

The following observations are very important to our new representation:
(1) For a constant subblock state, it is sufficient to know that it is a constant

state, and ignoring its exact value. Thus, we can label all constant subblock
states with a single letter “C”.

1 Note that it is a formal expression, R can either be independent of Xi, or have a
nonlinear relation with Xi.
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(2) Generally, a balanced subblock state is produced by an XOR sum of some
active states. Thus, we can express a balanced subblock state as

⊕

i∈IA

Ai, where

Ai denotes an active subblock state, IA is the index set, note that the constant
monomial is ignored. Compared with a single letter “B”, it is more accurate to
label a balanced state as an XOR sum of some active states.

(3) For an unknown subblock state, we can express it as (
⊕

i∈IA

Ai) ⊕ (
⊕

j∈I?

?j),

where Ai denotes an active state, ?j denotes an unknown state, IA and I? is
the index set respectively, I? is not empty, similarly the constant monomial is
ignored. Compared with a single letter “?”, such an expression is more accurate.

Example 1. Assume a block cipher has 2 subblocks, the state is (?0, ?0⊕A0) at
some point, where ?0 denotes an unknown state, A0 an active state. Considering
XOR sum of the values in the two subblocks, we can get that ?0⊕(?0⊕A0) = A0.
However, if we just express the state as (?, ?), we can get nothing. �

Based on the above 3 observations, an integral state is not limited to the 4 types:
constant, active, balanced or unknown. An integral state may have much more
types, it can be either “C”, or an XOR sum of some active states and some
unknown states. The following gives a formal description.

Definition 2. (Integral Form in Subblock)For a given set of plaintexts or
intermediate data blocks, fixing a subblock, define integral form in the subblock
as

<< A.set, A.maxs >,< U.set, U.maxs >>

where A.set is a set consisting of some active subblock states, U.set is a set
consisting of some unknown subblock states. A.maxs is defined as the maximum
subscript in A.set plus 1 (i.e., let h be the maximum subscript among all the
elements of A.set, then A.maxs ≡ h + 1), especially ∅.maxs ≡ 0 for an empty
set ∅. Similarly, U.maxs is defined.

Notice that A.maxs (U.maxs) is necessary in Definition 2 for the expression of
a newly-produced active (unknown) subblock state.

Example 2. (Integral form in sublock) For a constant subblock state, its in-
tegral form is << ∅, 0 >,< ∅, 0 >>; For an active subblock state A0, its integral
form is << {A0}, 1 >,< ∅, 0 >>; For an integral subblock state A0⊕A2⊕?1⊕?5,
its integral form is << {A0, A2}, 3 >,< {?1, ?5}, 6 >>. �

On the other hand, let << A.set, A.maxs >,< U.set, U.maxs >> denote an
integral form in subblock, define Unionset ≡ A.set ∪ U.set, where “∪” is the
operation of set union, then the integral state in this subblock is just the XOR
sum of all elements in Unionset, we will use this representation together with
integral form in subblock defined in Definition 2 interchangeably in the following.

Assume a block cipher has n data subblocks, naturally, we can define integral
form in block.
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Definition 3. (Integral Form in Block) For a given set of plaintexts or
intermediate data blocks, define its integral form as (α0, α1, · · · , αn−1), where αi

is the integral form in subblock corresponding to the i-th subblock, 0 ≤ i ≤ n− 1.

We will simply write “integral form” instead of “integral form in (sub)block”,
when the context is clear.

3.2 Rules for Applying Encryption/Decryption Characteristic
Matrix to An Integral Form in Block

For a given set of plaintexts or intermediate data blocks, we can determine its
integral form in block. Next, we need to define rules to calculate the integral
form after one-round encryption/decryption. In the following, we only focus on
encryption process, since decryption process can be treated similarly.

Firstly, we define an operator “�” between two integral forms in subblock,
this operator is something like adding mod 2.

Definition 4. Let μ and ν be two integral forms in subblock, let

μ =<< (A.set)μ, (A.maxs)μ >,< (U.set)μ, (U.maxs)μ >>,
ν =<< (A.set)ν , (A.maxs)ν >,< (U.set)ν , (U.maxs)ν >>

Define ω = μ � ν =<< (A.set)ω (A.maxs)ω >,< (U.set)ω, (U.maxs)ω >>,
thereinto,

(A.set)ω ≡ ((A.set)μ \ (A.set)ν) ∪ ((A.set)ν \ (A.set)μ),
(U.set)ω ≡ ((U.set)μ \ (U.set)ν) ∪ ((U.set)ν \ (U.set)μ),
(A.maxs)ω ≡Maxsubscript((A.set)ω) + 1,
(U.maxs)ω ≡Maxsubscript((U.set)ω) + 1

where “\” is the operation of set minus, “∪” is the operation of set union, and
Maxsubscript(X) function returns the maximum subscript in X.

Example 3. Here is an example of set minus “\”. Let (A.set)μ = {A0, A1, A3}
and (A.set)ν = {A1, A2, A4}. Then, (A.set)μ \ (A.set)ν = {A0, A3}, (A.set)ν \
(A.set)μ = {A2, A4}. �

Now, we are ready to present the rules.

Definition 5. Let En×n = [eij ]n×n be the encryption characteristic matrix of a
block cipher. For a given set of plaintexts or intermediate data blocks, let α =
(α0, α1, · · · , αn−1) be its integral form. Let γ = En×n(α) = (γ0, γ1, · · · , γn−1) be
the integral form of the outputs after one-round encryption, then γi is defined as

γi =
n�

j=1
eij(αj), where eij(αj) means applying the transformation eij to αj.

The entry eij has 3 possible values, 0, 1, or 2. Thereinto, 0 is the zero trans-
formation, which transforms any integral form x to << ∅, 0 >,< ∅, 0 >>; 1 is
the identical transformation, which transforms any integral form x to x ; 2 is a
bijective transformation, which transforms a constant state to a constant state,
an active state to a new active state, and any other state to a new unknown
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Table 1. Rules for Applying 0, 1, 2 to an Integral Form in Subblock–Along Encryption
Direction

Trans. input output

0 x << ∅, 0 >,< ∅, 0 >>

1 x x

2 C C

Ai AemaxsA+1

otherwise UemaxsU+1

state. Table 1 summarizes the above rules, where emaxsA (emaxsU) denotes
the maximum subscript of all active(unknown) states brought forth so far, along
encryption direction.

Example 4. The structure of SMS4 [3] is a kind of 4-branch generalized Feis-
tel structure (denoted as Gen-SMS4), one round encryption of Gen-SMS4 is
described as follows:

Y0 = X1, Y1 = X2, Y2 = X3, Y3 = X0 ⊕ F (X1 ⊕X2 ⊕X3)

It needs two characteristic matrices to describe one-round encryption (decryp-
tion) of Gen-SMS4, i.e., firstly the first matrix E1GenSMS4 (D1GenSMS4), then
the second matrix E2GenSMS4 (D2GenSMS4). The uppermost row is the 0-th
row, the leftmost column is the 0-th column. The encryption and decryption
characteristic matrices of Gen-SMS4 are as follows:

E1GenSMS4 =

⎛

⎜
⎜
⎝

0, 1, 1, 1
1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0

⎞

⎟
⎟
⎠ , E2GenSMS4 =

⎛

⎜
⎜
⎝

0, 0, 1, 0
0, 0, 0, 1
1, 0, 1, 1
2, 1, 0, 0

⎞

⎟
⎟
⎠

D1GenSMS4 =

⎛

⎜
⎜
⎝

1, 1, 1, 0
0, 1, 1, 0
1, 0, 1, 0
0, 0, 0, 1

⎞

⎟
⎟
⎠ , D2GenSMS4 =

⎛

⎜
⎜
⎝

2, 0, 0, 1
1, 1, 0, 0
1, 0, 1, 0
1, 1, 1, 0

⎞

⎟
⎟
⎠

Assume an attacker chooses a set of 2m data, which has the form of {(c0, x⊕
c1, x ⊕ c2, x ⊕ c3)}, where x takes on all the 2m possible values, c0, c1, c2 and
c3 are 4 constants. The integral form of the data set is α0 = (C,A0, A0, A0).
Applying E1GenSMS4 to α0, using Def. 5 and the rules in Table 1, we can get:

⎛

⎜
⎜
⎝

0, 1, 1, 1
1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

C
A0

A0

A0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

A0

C
A0

A0

⎞

⎟
⎟
⎠

Next, applying E2GenSMS4 to (A0, C,A0, A0), we can get:
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⎛

⎜
⎜
⎝

0, 0, 1, 0
0, 0, 0, 1
1, 0, 1, 1
2, 1, 0, 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

A0

C
A0

A0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

A0

A0

A0

A1

⎞

⎟
⎟
⎠

Hence the integral form of the outputs after one-round encryption is α1 =
(A0, A0, A0, A1).

Along the encryption direction, let αi = (αi
0, α

i
1, · · · , αi

n−1) denote the integral
form of the outputs after i-round encryption, i = 1, 2, · · · . Let β0 = α0, along the
decryption direction, let βj = (βj

0, β
j
1, · · · , βj

n−1) denote the integral form of the
outputs after j-round decryption. Similarly, we can calculate αi for i = 2, 3, · · · ,
and βj for j = 1, 2, 3, · · · . Table 2 presents the results.

Table 2. An Example of Gen-SMS4: Application of Def. 5 and Rules in Table 1

χ χ0 χ1 χ2 χ3

β5 A(0, 2) A1 A0 A0

β4 A1 A0 A0 A0

β3 A0 A0 A0 C

β2 A0 A0 C A0

β1 A0 C A0 A0

α0 = β0 C A0 A0 A0

α1 A0 A0 A0 A1

α2 A0 A0 A1 A(0, 2)

α3 A0 A1 A(0, 2) A0⊕?0

α4 A1 A(0, 2) A0⊕?0 A0⊕?1

α5 A(0, 2) A0⊕?0 A0⊕?1 A1⊕?2

χk : integral form in the k-th subblock of αi or βj , k = 0, · · · , n− 1;
A(i, j, · · · , k) : a simplified expression for Ai ⊕Aj ⊕ · · · ⊕Ak;
?(i, j, · · · , k) : a simplified expression for ?i⊕?j ⊕ · · ·⊕?k.
In fact, Table 2 presents a 10-round integral distinguisher for Gen-SMS4, we will
give more explainations in the following sections. �

3.3 Finishing Conditions for Calculus and an Extension of
Higher-Order Integral

For a given set of plaintexts or intermediate data blocks, Def. 5 and Table 1
show that we can calculate the integral form of the outputs after one-round
encryption. Decryption process can be treated similarly. Theoretically, such a
process can be iterated for arbitrary number of rounds, either along encryption
direction, or along decryption direction. However, we must give some restrictions
to terminate the process for deriving useful integral distinguishers.
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Finishing Condition along Encryption Direction. Let (α0, α1, · · · , αn−1)
be an integral form in block. If there exists a subset I∗ ⊆ {0, 1, · · · , n− 1}, such
that the U.set of �

i∈I∗
αi is empty, that means, �

i∈I∗
αi is either a constant state or

an XOR sum of some active states. In either case, the attacker can derive useful
information from the corresponding set of data.

On the other hand, if the U.set of �
i∈I

αi is non-empty for every subset I ⊆
{0, 1, · · · , n − 1}, then the attacker can derive nothing from the corresponding
set of data. The following gives a formal definition.

Definition 6. (Integral-Nothing)An integral form in block (α0, α1, · · · , αn−1)
is called integral-nothing, if the U.set of �

i∈I
αi is non-empty for every subset

I ⊆ {0, 1, · · · , n− 1}.
If an integral form is integral-nothing, the attacker can derive nothing from
the corresponding set of data. Hence, along encryption direction, when the in-
tegral form becomes integral-nothing, the attacker should terminate the process.

Example 5. This example comes from a 18-round integral distinguisher of Gen-
Fourcell structure, see Table 3 for more details.

We have α15 = (α15
0 , α15

1 , α15
2 , α15

3 ) = (A(0, 1)⊕?(0, 2), A(0, 1, 2)⊕?(0, 1, 2, 3),
A(2, 3)⊕?(1, 3, 4), A(3, 4)⊕?4). Every component of α15 has unkown ingredients,
but we have α15

0 � α15
1 � α15

2 � α15
3 = A4, thus α

15 is not integral-nothing.
Applying the encryption matrices of Gen-Fourcell to α15, we get α16 = (α16

0 ,
α16
1 , α16

2 , α16
3 ) = (A(0, 1, 2)⊕?(0, 1, 2, 3), A(2, 3)⊕?(1, 3, 4), A(3, 4)⊕?4, A(0, 1, 4)

⊕?(0, 2, 5)), we can verify that α16 is integral-nothing. �

Finishing Condition along Decryption Direction and an Extension of
Higher-Order Integral. The finishing condition is different along decryption
direction.

In the original definition [15] (also refer to section 2.1), dth-order integral is
related to a set of 2d×m elements, which differ only in d subblocks. However, we
argue that the linear relations among different subblocks should be taken into
account. In the following, we give an extension of higher-order integral, a dth-
order integral is related to 2d×m elements, but they can differ in d∗ subblocks
where d∗ ≥ d. To do this, we should firstly define “integral order of an integral
form”, which takes the linear relations among different subblocks into account.

Definition 7. (Integral Order of an Integral Form)Given a set of plaintexts
or intermediate data blocks, let β = (β0, β1, · · · , βn−1) be its integral form, and let

βi =<< (A.set)i, (A.maxs)i >,< (U.set)i, (U.maxs)i >>

for i = 0, 1, · · · , n− 1. Let dmaxsA (respectively dmaxsU) denote the maximum
subscript among all active (respectively unknown) states brought forth so far
along decryption direction (If no unknown state is brought forth, then dmaxsU ≡
−1), note that they are irrelevant with the process along encryption direction.
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Denote w ≡ (dmaxsA+1)+(dmaxsU+1), construct a n×w matrix Gn×w = (gij)
as follows: Each element gij is firstly initialized as 0, 0 ≤ i ≤ n−1, 0 ≤ j ≤ w−1.
Next, if Aj ∈ (A.set)i, then gij is modified to 1, for j = 0, 1, · · · , dmaxsA; If
Uj ∈ (U.set)i, then gi(j+dmaxsA+1) is modified to 1, for j = 0, 1, · · · , dmaxsU .
Notice that the i-th row is completely determined by βi(i = 0, 1, · · · , n− 1), and
the first (dmaxsA + 1) columns are corresponding to the active ingredients, the
last (dmaxsU + 1) columns corresponding to the unknown ingredients. Define
the integral order of β as d = rank(Gn×w), here rank(Gn×w) is the rank of
Gn×w, where G is regarded as a matrix over GF (2).

Integral cryptanalysis is a kind of chosen-plaintext attack, the attacker can
choose a priori a set of plaintexts and obtain the corresponding ciphertexts.
For a successful attack, the amount of the chosen plaintexts must be less than
2l, where l (= n×m) is the block length. An integral form with an integral order
d is corresponding to 2d×m data (accordingly, corresponding to 2d×m plaintexts),
hence d must satisfy that d ≤ n− 1. Therefore, when the integral order d of the
integral form satisfies that d = n after some decryption rounds (since there are n
subblocks in total, integral order can not be larger than n), the attacker should
terminate the process.

Along decryption direction, let dj denote the integral order of the integral
form of the outputs after j-round decryption, j = 1, 2, · · · . Due to diffusion of
the block cipher (structure) along decryption direction, dj will increase or keep
unchanged as j increases. Hence, there must exist a unique t which satisfies that
dt ≤ n− 1 and dt+1 = n. That means, the attacker should terminate the process
after (t+1) rounds along decryption direction. We call dt the integral order of the
corresponding integral distinguisher, and the distinguisher is called a dtth-order
integral distinguisher. The following gives a formal description.

Definition 8. (Integral Order of an Integral Distinguisher) Let Dis be
an integral distinguisher, which is constructed by the above inside-out approach.
Let dj denote the integral order of the integral form of the outputs after j-round
decryption, then there must exist a unique integer t satisfying dt ≤ n − 1 and
dt+1 = n. dt is called the integral order of Dis, and Dis is called a dtth-order
integral distinguisher.

Example 6. Considering the integral distinguisher of Gen-SMS4 in Table 2.
We have β5 = (A0 ⊕A2, A1, A0, A0), the corresponding matrix Gβ5 is :

Gβ5 =

⎛

⎜
⎜
⎝

1, 0, 1
0, 1, 0
1, 0, 0
1, 0, 0

⎞

⎟
⎟
⎠

The rank of Gβ5 is 3, thus the integral order of β5 is 3.
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Applying the composition of D1GenSMS4 and D2GenSMS4 to β5, we get β6 =
(A0⊕?0, A0 ⊕A2, A1, A0), the corresponding matrix Gβ6 is :

Gβ6 =

⎛

⎜
⎜
⎝

1, 0, 0, 1
1, 0, 1, 0
0, 1, 0, 0
1, 0, 0, 0

⎞

⎟
⎟
⎠

The first 3 columns of Gβ6 are corresponding to active ingredients, and the
last column to unknown ingredients. The rank of Gβ6 is 4, i.e., the integral order
of β6 is 4, which is equal to the number of subblocks. Hence, the attacker should
terminate the process aftre 6-round decryption along decryption direction. The
integral order of this distinguisher is equal to the integral order of β5, i.e., 3. �
In Section 4, we will see that better higher-order integral distinguishers can be
constructed using our new extension of higher-order integral, including Gen-
SMS4 structure and Present.

Let Dis be an integral distinguisher for a block cipher (structure), which is
constructed according to the rules and finishing conditions in Section 3.1-3.3.
Assume Dis has w rounds along encryption direction, t rounds along decryption
direction, let βj denote the integral form of the outputs after j-round decryption
along decryption direction, and let dj denote the integral order of βj . Now, we
present some details about the part of Dis along decryption direction. We will
see that Dis is indeed a (w + t)-round integral distinguisher.

Note the following facts:
(1.) Firstly, considering the outputs after (j+1)-round decryption. The attacker
can choose dj+1 independent subblocks, which take on all possible values (cor-
responding to 2dj+1×m data); For each of the other (n − dj+1) subblocks, the
state is either constant, or the value in this subblock can be linearly determined
by the values in the chosen dj+1 subblocks. Thus, the attacker chooses a set of
2dj+1×m data blocks, this set is denoted as Ωj+1.
(2.) Secondly, considering the set of the 1-round encryption outputs of all of the
elements of Ωj+1, we will get a new set of 2dj+1×m data blocks, which is denoted
as Ωj . Since βj+1 and βj are correlated by the decryption characteristic matrices
and the calculus rules, also Ωj+1 and Ωj are correlated by the one-round encryp-
tion function, the 2dj+1×m elements of Ωj can be separated into dj+1/di groups,
which satisfy the following condition: each group has 2dj×m elements with an
integral form of βj , thus each group is corresponding to a (w+ j)-round integral
distinguisher. Hence, if the sum of the outputs after (w + j)-round decryption
is zero (corresponding to 2dj×m data blocks), then the sum of the outputs after
(w+j+1)-round decryption is also zero (corresponding to 2dj+1×m data blocks),
since the XOR of many zeros is also zero.
(3.) For Dis, the w-round part along encryption direction can be regarded as
a traditional integral distinguisher. Then, exucute one-round decryption, and
applying the above induction to j = 0, we get a (w + 1)-round integral dis-
tinguisher. The induction can be applied iteratively along decryption direction
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for j = 0, 1, · · · , t − 1, totally t times. Finally, we get a (w + t)-round integral
distinguisher, that is to say, Dis is indeed a (w+ t)-round integral distinguisher.

Example 7. Considering the integral distinguisher of Gen-SMS4 in Table 2.
We have that β5 = (A0 ⊕ A2, A1, A0, A0) and β4 = (A1, A0, A0, A0). Based
on β5, the attacker chooses a set of 23×m elements, which has the form of
(u0 ⊕ c0, u1 ⊕ c1, u2 ⊕ c2, u2 ⊕ c3), for each possible (u0, u1, u2) ∈ (GF (2m))3,
and c0, c1, c2 and c3 arem-bit constants. For simplicity, let c0 = c1 = c2 = c3 = 0.
Then, applying the encryption characteristic matrices to β5, we can get that the
set of the 23×m outputs after one-round encryption (this set is denoted by Ω)
have the form of (u1, u2, u2, u0⊕F (u1⊕ c4)), where c4 is a new constant (which
depends on the key). In the following, we will show that the 23×m elements of
Ω can be divided into 2m groups, each group has 22×m elements, satisfying that
the integral form of each group is equal to β4.

Let const denote am-bit constant, let u0 = u2⊕F (u1⊕c4)⊕const, then we get
a subset of 22×m elements of Ω, which have the form of (u1, u2, u2, u2 ⊕ const),
for each possible (u1, u2) ∈ (GF (2m))2, we use Groupconst to denote this group.
It is easy to see that the integral form of Groupconst is equal to β4. There are
2m possible values of const, thus there are 2m disjoint groups, and the union of
these 2m groups will cover every element of Ω. �

If an integral distinguisher has an integral order dt, then it is corresponding to
2dt×m plaintexts. Hence, the integral order of an integral distinguisher reflects
the amount of data blocks needed by this integral distinguisher.

3.4 A Unified Algorithm of Constructing Integral Distinguishers

Based on the results of Section 3.1-3.3, we are now ready to present a unified
algorithm of constructing integral distinguishers for block ciphers.

For a block cipher (structure), let {En×n}/{Dn×n} denote its encryption/de
-cryption characteristic matrices. Choose a set of data blocks, let α0 =
(α0, α1, · · · ,
αn−1) denote its integral form. Along encryption direction, let αi = (αi

0, α
i
1, · · · ,

αi
n−1) denote the integral form of the outputs after i-round encryption, i =

1, 2, · · · . Let β0 = α0, along decryption direction, let βj = (βj
0 , β

j
1, · · · , βj

n−1) de-
note the integral form of the outputs after j-round decryption, and let dj denote
the integral order of βj , j = 1, 2, · · · .

In integral cryptanalysis, an attacker is usually intended to derive the longest
distinguishers. In the following, we present an algorithm to calculate the length
of the longest possible integral distinguishers.

Once we get the length of the longest possible integral distinguishers using
Algorithm 1, we can backtrack to derive the corresponding distinguishers. Note
that there are usually many longest integral distinguishers using Algorithm 1.

In Algorithm 1, Step 2 needs to enumerate all the cases of α0. For some
block ciphers (structures), it is impossible to enumerate all the cases due to
the computing limitation. We will discuss the selection of initial integral forms
α0(= β0) for different block ciphers(structures) in Section 4.4.
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——————————————————————————————————–
Algorithm 1. Compute the Length of the Longest Possible Integral Distinguishers

Input: Encryption characteristic matrices {En×n}, decryption characteristic ma-
trices {Dn×n}.
Output: The length of the longest possible integral distinguishers, denoted by
r, and r is initialized to be 0.

Step1. For a chosen integral form α0 = β0, do the following:
(1) Find the largest integer s such that αs+1 is integral-nothing and αs is

not integral-nothing.
(2) Find the largest integer t such that dt+1 = n and dt < n.
(3) Calculate h = s+ t, then h is the length of the longest integral

distinguisher corresponding to α0. If h > r, let r ← h.
Step2. Repeat Step 1 until all the cases of α0 are enumerated.
Step3. Output r.
——————————————————————————————————–

4 Experimental Results – Application to Gen-SMS4,
Gen-Fourcell and Present

In this section, we present experimental results of applying Algorithm 1 to Gen-
SMS4 structure [3], Gen-Fourcell structure [7] and Present [6].

Assume the round subkey is XORed with the state, and the sum in integral
cryptanalysis considered is XOR sum. Thus, subkey addition has no effect on the
design of integral distinguishers, we will omit it. For a given block cipher (struc-
ture), there are usually many longest possible integral distinguishers applying Al-
gorithm 1. Although some are the same or equivalent, we will not tell them apart.

In the following, let χk denote the integral form in the k-th subblock of αi (or
βj), where i = 0, 1, · · · , j = 0, 1, · · · and k = 0, · · · , n− 1.

4.1 Gen-SMS4

Using Algorithm 1, we found 256 10-round integral distinguishers. Table 2
presents one: 5 rounds along encryption direction, and 5 rounds along decryption
direction. From β5, it is a 3rd-order integral distinguisher; The attacker chooses
a set of 23×m elements, which has the form of (u0 ⊕ c0, u1 ⊕ c1, u2 ⊕ c2, u2 ⊕ c3),
for each possible (u0, u1, u2) ∈ (GF (2m))3, and c0, c1, c2 and c3 are m-bit con-
stants. Then, considering the outputs after 10-round encryption. From α5

0 =
A(0, 2), we can get that the XOR sum of all the 23×m values in the 0th subblock
(corresponding to χ0) is zero. A 8-round integral distinguisher of Gen-SMS4 is
given in [17], the 10-round distinguisher in Table 2 truncated from the 3rd round
to the 10th round is equivalent to the 8-round distinguisher in [17].

4.2 Gen-Fourcell

The structure of Fourcell [7] is also a kind of 4-branch generalized Feistel struc-
ture (denoted as Gen-Fourcell), one round of Gen-Fourcell is described as follows:
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Table 3. A 18-round Integral Distinguisher for Gen-Fourcell

χ χ0 χ1 χ2 χ3

β3 ?0 A2 A1 C

β2 A2 A1 C C

β1 A1 C C C

α0 = β0 C C C A0

α1 C C A0 A0

α2 C A0 A0 C

α3 A0 A0 C C

α4 A0 C C A(0, 1)

α5 C C A(0, 1) A(0, 1, 2)

α6 C A(0, 1) A(0, 1, 2) A2

α7 A(0, 1) A(0, 1, 2) A2 C

α8 A(0, 1, 2) A2 C A(0, 1)⊕?0

α9 A2 C A(0, 1)⊕?0 A(0, 1, 2)⊕?(0, 1)

α10 C A(0, 1)⊕?0 A(0, 1, 2)⊕?(0, 1) A(2, 3)⊕?1

α11 A(0, 1)⊕?0 A(0, 1, 2)⊕?(0, 1) A(2, 3)⊕?1 A3

α12 A(0, 1, 2)⊕?(0, 1) A(2, 3)⊕?1 A3 A(0, 1)⊕?(0, 2)

α13 A(2, 3)⊕?1 A3 A(0, 1)⊕?(0, 2) A(0, 1, 2)⊕?(0, 1, 2, 3)

α14 A3 A(0, 1)⊕?(0, 2) A(0, 1, 2)⊕?(0, 1, 2, 3) A(2, 3)⊕?(1, 3, 4)

α15 A(0, 1)⊕?(0, 2) A(0, 1, 2)⊕?(0, 1, 2, 3) A(2, 3)⊕?(1, 3, 4) A(3, 4)⊕?4

Y0 = X1, Y1 = X2, Y2 = X3, Y3 = F (X0)⊕X1 ⊕X2 ⊕X3

The encryption and decryption characteristic matrices of Gen-Fourcell are as
follows:

EGenFourcell =

⎛

⎜
⎜
⎝

0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1
2, 1, 1, 1

⎞

⎟
⎟
⎠

D1GenFourcell =

⎛

⎜
⎜
⎝

1, 1, 1, 1
0, 1, 1, 1
1, 0, 1, 1
1, 1, 0, 1

⎞

⎟
⎟
⎠ , D2GenFourcell =

⎛

⎜
⎜
⎝

2, 0, 0, 0
1, 1, 0, 0
1, 0, 1, 0
1, 0, 0, 1

⎞

⎟
⎟
⎠

Note: the uppermost row is the 0-th row, the leftmost column is the 0-th column.
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Using Algorithm 1, we found 56 18-round integral distinguishers. Ta-
ble 3 presents one: 15 rounds along encryption direction, and 3 rounds
along decryption direction. From β3, it is a 3rd-order integral distin-
guisher; The attacker chooses a set of 23×m elements, which has the form
of (u0 ⊕ c0, u1 ⊕ c1, u2 ⊕ c2, c3), for each possible (u0, u1, u2) ∈ (GF (2m))3,
c0, c1, c2 and c3 are m-bit constants. Then, considering the outputs af-
ter 18-round encryption. Based on α15, considering α15

0 � α15
1 � α15

2 � α15
3 ,

we have (A(0, 1)⊕?(0, 2)) � (A(0, 1, 2)⊕?(0, 1, 2, 3)) � (A(2, 3)⊕?(1, 3, 4)) �
(A(3, 4)⊕?4) = A4. Hence the XOR sum of all the 23×m values of the XOR
sum of the 4 subblocks is zero. In [16], a 18-round integral distinguisher of Gen-
Fourcell is given. The distinguisher in Table 3 is equivalent to that in [16].

4.3 Present

Present [6] is a SP-network block cipher, the block length is 64. Since it is bit-
oriented, we will treat a bit as a data subblock, then 64 subblocks in total, i.e.,
m = 1 and n = 64. Figure 1 gives the bit indexing of a 64-bit data block.

One round of Present [6] is described as Y = Theta ◦ Gamma(X), where
Gamma is the S-box layer, and Theta is a linear transformation. Gamma oper-
ates independently on 16 4-tuple of bits, the first S-box takes bits 0-3 as input,
the next S-box takes bits 4-7 as input, and so on. Let ai denote the i-th bit of
a, i = 0, 1, · · · , 63, then Theta(ai) = aj , where j = 16× (imod 4)+ 
i/4�, 
x� is
the integer portion of x.

Present uses a 4 × 4 S-box. Let x = x3x2x1x0, where xi is the i-th bit of x,
i = 0, 1, 2, 3. Let (Δx→ Δy) denote a differential with input difference Δx and
output differenceΔy. For the S-box of Present, there are 3 truncated differentials
with probability 1:

(1001→ ∗ ∗ ∗0), (0001→ ∗ ∗ ∗1), (1000→ ∗ ∗ ∗1)
where “∗” denotes an unknown bit.

For Present, the size of the characteristic matrices is 64 × 64. It is imprac-
tical to use Definition 6 as the finishing condition along encryption direction.
However, Present is a SP-network cipher, the outputs of different S-boxes can
be regarded as being independent. Thus, Definition 6 can be revised as follows,
without any effect on the design of the best possible integral distinguishers for
SP-network block ciphers.

Definition 6’ (Integral-Nothing for SP-network Ciphers). For a
SP-network block cipher (structure), an integral form (α0, α1, · · · , αn−1) is
integral-nothing, if the U.set of αi is non-empty for every i ∈ {0, 1, · · · , n− 1}.

Fig. 1. 4×16 Bit Indexing of a 64-bit Data Block
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A0

A0

Ai ?i

Fig. 2. The 5-round integral distinguisher for Present (In the initial integral form, we
label A0 both in bit 0 and bit 3, which means that the two bits are linearly dependent,
the integral order of the integral form is 1, instead of 2

Using Algorithm 1, we found many 5-round integral distinguishers of Present.
Figure 2 illustrates one of the best, which uses ProbSbox(1001→ ∗ ∗ ∗0) = 1, 3
rounds along encryption direction, and 2 rounds along decryption direction. It is
a 32th-order integral distinguisher. The attacker chooses a set of 232 plaintexts,
which have constant values in the following 32 bits: 0-15 and 48-63, while taking
all possible values in the other 32 bits. Then, considering the outputs after 5-
round encryption, the XOR sum of all the 232 values in each of the following 16
bits is zero: 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56 and 60. Note
that this distinguisher uses the new extension concept of higher-order integral,
the initial integral form has an integral order of 1, while it is related to 2 bits.

In [20], a 3-round integral distinguisher of Present is given, which has an inte-
gral order of 4. The distinguisher in Figure 2 is a 5-round integral distinguisher,
furthermore, the truncated 3-round distinguisher of the last 3 rounds has an
integral order of 2. Thus, our distinguisher (as illustrated in Figure 2) is more
better than that in [20].

4.4 Selection of Initial Integral Forms

Let (χ0, χ1, χ2, · · · , χn−1) denote an initial integral form in block.
For Gen-Fourcell and Gen-SMS4, χi can be any element or an XOR combi-

nation of the elements in the set {C,A0, A1, A2}, which have 24 possibilities for
each subblock. There are 4 subblocks, thus 216 − 1 possibilities in total. In our
experiments, we have tried them exhaustively.

For Present, the integral order of an initial integral form can be 1, 2, · · · , 63, it
is impractical to search for each case. However, Present is a SP-network cipher,
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and the diffusion layer is very simple. Our experiments also show that the smaller
the integral order of an initial integral form, the better the integral distinguishers.
Hence, we only considered 1st-order initial integral forms.

5 Discussion and Conclusion

Our work in this paper is originally inspired by the work of J.Kim et al [13, 14]. In
[13, 14], the authors proposed a general tool for finding impossible differentials of
block cipher structures using matrix method and meet-in-the-middle approach,
and applied their tool to some block ciphers (structures). They also pointed
out that the matrix method can be converted into a tool for the Square attack.
However, they only considered the 1st-order integral, not considering higher-
order integral. In [19], Y.Y.Luo et al. greatly improved the results of [13, 14].

In this paper, we adopted inside-out approach to construct integral distin-
guishers for block ciphers, and extended the concept of higher-order integral by
considering the linear relations among different subblocks. Furthermore, we pre-
sented an efficient unified algorithm to the design of the longest possible integral
distinguishers for block ciphers. We applied the algorithm to many block ciphers
(structures), the experiments showed: For Gen-SMS4 structure and Present, the
best integral distinguishers given by our algorithm are better than the best re-
sults known so far; For Gen-Fourcell structure, the best integral distinguishers
given by our algorithm are the same as the best results known so far.

To sum up, we believe that the inside-out method for designing integral dis-
tinguishers and the new extension of higher-order integral are helpful to better
understand integral cryptanalysis of block ciphers. Also, the unified algorithm in
this paper can be useful as a tool for efficiently evaluating the security of block
ciphers against integral cryptanalysis.
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