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Abstract. Differential fault analysis (DFA) has already been applied
to attack many block ciphers with the help of inducing some faults at
the last few rounds of block ciphers. Currently, a general countermeasure
against DFA is to protect the last few rounds of block ciphers by means
of redundancy. In this paper, we present a new fault attack on block
ciphers called linear fault analysis (LFA), in which linear characteristics
for some consecutive rounds of a block cipher will be utilized instead of
exploiting differential distributions of S-Boxes within the block cipher
in DFA. Basically, the new approach can handle the case that faults are
induced several rounds earlier compared to DFA, thus leading to a threat
to the protected implementations (against DFA) of block ciphers. For the
purpose of illustration, we mount an effective attack on SERPENT by
adopting LFA and achieve a good cryptanalytic result on SERPENT.
We hope that our work enriches the picture on the applicability of fault
attacks to block ciphers and could be beneficial to the security evaluation
of block ciphers.

Keywords: Differential Fault Analysis, Linear Fault Analysis, Block
Ciphers, SERPENT.

1 Introduction

In recent years, side channel attacks [1] have become important and efficient
cryptanalytic tools in analyzing various cryptographic devices. These attacks
exploit easily accessible information such as power consumption, running time,
input-output behavior under malfunctions, and so on, and then evaluate such
leaked information with the help of statistical methods. To some extent, side
channel attacks are often more powerful than classical approaches such as dif-
ferential cryptanalysis [2], linear cryptanalysis [3], related-key cryptanalysis [4],
integral cryptanalysis [5], algebraic attack [6], and so on.
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As one of side channel attacks, fault analysis is a class of implementation
attacks that disturb cryptographic computations so as to recover secret keys.
To speak specifically, when an encryption is executed under faulty condition, an
error occurs at some intermediate state, which results in a faulty output. The
faulty output is then used as leaked information to help retrieve secret key. Since
the fault analysis was first introduced in 1997 by Boneh et al [7], various methods
of fault analysis have been proposed and studied. Among them, differential fault
analysis(DFA) [8] can be regarded as the most effective cryptanalytic method
against block ciphers. In fact, DFA derives information about the secret key
of a block cipher by using differences between correct and faulty ciphertexts.
Generally, an attacker gets faulty ciphertexts by giving external impact on a
device with voltage variation, glitch, laser, etc [9]. To date, much research work
has been devoted to DFA on a variety of block ciphers such as DES [8,10], AES
[11,12,13,14,15,16,17,18], IDEA [19], CLEFIA [20], SMS4 and MacGuffin [21],
ARIA [22] and Camellia [23]. Such work demonstrates the vulnerability of block
ciphers towards DFA and the subsequent need of including countermeasures in
embedded implementations of block ciphers. Moreover, some extensions to DFA
have been presented in [24,25,26] in order to make fault attack more efficient.

As a matter of fact, most of DFA techniques target the last few rounds of a
block cipher, i.e., faults will be triggered at the last few rounds of the cipher so as
to induce information leakage. Consequently, the general countermeasure against
DFA is to protect the last few rounds of the cipher by means of redundancy.
However, the implementation of the countermeasure against DFA is more costly
and less efficient along with the number of protected rounds increasing, thus for
a block cipher, the practical implementations used to thwart DFA will cover as
less protected rounds as possible.

In this paper, we propose a new fault attack on block ciphers called linear
fault analysis (LFA), in which linear characteristics for some consecutive rounds
of a block cipher will be utilized instead of exploiting differential distributions of
S-Boxes within the block cipher in DFA. Generally, the new approach can deal
with the case that faults are injected several rounds earlier compared to DFA as
long as suitable linear approximations exist. Thus based on our new method, one
may mount an effective attack on a block cipher even if the cipher has already
been protected against DFA. Furthermore, in order to demonstrate the validity
of LFA, we apply it to analyze the block cipher SERPENT which is a candidate
of Advanced Encryption Standard and rated just behind the AES Rijndael. To
the best of our knowledge, there isn’t any known DFA attack on SERPENT
which can be done by inducing faults at the round earlier than the penultimate
round of the cipher, as a result, the countermeasure against DFA on SERPENT
can be implemented by protecting the last two rounds of the cipher. However,
we present an effective attack on the protected implementation of SERPENT
by means of LFA. As a new extension of fault attack, LFA may be beneficial to
the security evaluation of block ciphers.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions used throughout this paper and shows the possibility and rationality of
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fault injection briefly. Section 3 presents our new fault attack on block ciphers,
that is, linear fault analysis. Section 4 applies our novel approach to mount
an effective attack on the DFA-proof implementation of SERPENT. Finally,
Section 5 summarizes the paper.

2 Preliminaries

The following notations are used throughout the paper.

– ⊕ denotes bitwise exclusive OR (XOR).
– · denotes bitwise inner product.
– |x| denotes the absolute value of a real number x.
– ◦ denotes the composition operation.
– #S denotes the cardinality of a set S.
– 0x denotes the hexadecimal notation.

2.1 Fault Injection

In practice, many block ciphers have been implemented in cryptographic devices
such as smart cards and RFID tags. Generally, we can assume that a crypto-
graphic device with fixed secret key is under the control of the attacker who could
use the device to encrypt (or decrypt) arbitrary plaintexts (or ciphertexts). Ac-
cordingly, the attacker is able to deliberately interfere the normal operation of
the device with electromagnetic perturbations, voltage variations, clock glitches
and lasers so as to induce faults [9].

With the development of fault injection techniques, many fault models have
been established, among which single bit error model and single byte error
model are the most well-studied and applicable. Actually, in order to trigger
single bit error or single byte error at certain intermediate state within the en-
cryption/decryption process of a block cipher, laser technique could be adopted
since a laser with certain energy and wavelength could interfere fixed parts of
the memory/registers without damaging them, resulting in single bit error or
single byte error at some internal state accurately [27].

3 Linear Fault Analysis

We now present a new fault attack on block ciphers called linear fault analysis
(LFA), in which linear characteristics for some consecutive rounds of a block
cipher will be utilized instead of exploiting differential distributions of S-Boxes
within the block cipher in DFA.

3.1 Fault Model and Assumption

Our attack is applicable in the single bit error model as well as single byte error
model. To speak specifically, for a given block cipher, the attacker has the capa-
bility to choose plaintexts to encrypt, and during the encryption process, he can
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repeatedly induce single bit error or single byte error at the input of some cer-
tain round of the block cipher so as to obtain the corresponding right and faulty
ciphertexts. Note that the values and positions (within the impacted round) of
the faults injected by the attacker are unknown and randomly distributed.

3.2 Principle of Linear Fault Analysis

In the following we will demonstrate the principle of linear fault analysis (LFA)
under the condition of single bit error model. Firstly, we will introduce the def-
inition of linearly active input set with respect to a linear approximation and
give a claim related to linear fault analysis.

Definition 1. Let E1 be a block cipher and ΓP · P ⊕ ΓC · C = ΓK · K (also
denoted as ΓP → ΓC) be a linear approximation for E1. Let SΓP→ΓC be a set
consisting of all bits of P involving in the item ΓP ·P . Then SΓP→ΓC is denoted
as the linearly active input set with respect to the linear characteristic ΓP → ΓC .

Claim 1. Let E be a block cipher and decompose the cipher into E = E1 ◦E0,
where E0 represents the first part of the cipher and E1 represents the last part.
Let ΓP · P ⊕ ΓC ·C = ΓK ·K be a linear approximation for E1 with probability
1/2 + ε and SΓP→ΓC be the linearly active input set with respect to the linear
characteristic ΓP → ΓC . Suppose that an attacker has the ability to induce sin-
gle bit error at the input of E1 repeatedly and the error bits don’t belong to the
set SΓP→ΓC , then an effective distinguisher ΓC · C1 ⊕ ΓC ·C2 = 0 for the cipher
E with probability 1/2 + 2ε2 can be derived by the attacker.

Next we will show the reasonability of Claim 1 in detail. First of all, we find
that the effect of injecting single bit error at the input of E1 repeatedly with
error bits not in the set SΓP→ΓC , is somewhat like constructing a particular
differential-linear distinguisher that is composed of a special truncated differ-
ential characteristic unknown input difference → ∇ for E0 with probability 1
and a linear characteristic ΓP → ΓC for E1 with probability 1/2 + ε such that
∇ · ΓP = 0. For any pair consisting of a right ciphertext C1 under E and the
corresponding faulty ciphertext C2 derived under the above condition, we have
that both

ΓP ·E−1
1 (C1)⊕ ΓC · C1 = ΓK ·K

and
ΓP ·E−1

1 (C2)⊕ ΓC · C2 = ΓK ·K
hold with probability 1/2+ε. Assume that these two equations are uncorrelated,
and take into account the condition that the error bit induced at the input of
E1 is not in the set SΓP→ΓC , we immediately obtain that

ΓC · C1 ⊕ ΓC · C2 = 0

holds with probability

(1/2 + ε)2 + (1/2− ε)2 = 1/2 + 2ε2.
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Thus the distinguisher by checking the parity of ΓC · C1 ⊕ ΓC · C2 can be uti-
lized to distinguish the cipher E from a random permutation since for such a
ciphertext pair (C1, C2), the equation ΓC · C1 ⊕ ΓC · C2 = 0 holds with prob-
ability 1/2 for a random permutation. �

Based on the result given in the above Claim as well as the Algorithm 2 proposed
in [3], we can mount a key recovery attack on E′ = E2 ◦E = E2 ◦E1 ◦E0 (where
E2 represents the last round of the cipher E′) by guessing part of the last round
subkey of E′. The general attack procedure can be described as follows:

Step 1. Given the linear characteristic ΓP → ΓC for E1, collect N pairs of
ciphertexts, each pair consisting of a right ciphertext Ci

1 under E′ and the corre-
sponding faulty ciphertext Ci

2 derived by injecting single bit error at any position
of the input of E1, where 1 ≤ i ≤ N .

Step 2. Let Kg denote the bits of the last round subkey which are related
to the item ΓC · E−1

2 (Ci
j), i.e., ΓC · E−1

2 (Ci
j) can be obtained by performing

a partial decryption of the ciphertext Ci
j with the guessed value of Kg, where

1 ≤ i ≤ N, 1 ≤ j ≤ 2. Then for each possible value of Kg, do the following:
(1). Initialize a counter TKg firstly.
(2). For each ciphertext pair (Ci

1, C
i
2), implement the partial decryptions of Ci

1

and Ci
2 respectively and compute the parity of ΓC · E−1

2 (Ci
1) ⊕ ΓC · E−1

2 (Ci
2).

If the parity is 0, increase the relevant counter TKg by 1, and decrease by 1
otherwise.
(3). Store the value of Kg as well as the value of the corresponding |TKg |.

Step 3. For all possible values of Kg, compare the stored values and take the
value ofKg as the correct key information if the value of the corresponding |TKg |
is maximal.
Note that in the above key recovery attack, the single bit error can be triggered
at any position of the input of E1. Here we want to discuss the rationality of
the key recovery attack. On the one hand, if the guessed value of Kg is correct,
then for any ciphertext pair (Ci

1, C
i
2) in which Ci

2 is derived by inducing single
bit error at the input of E1 such that the error bit is not in the set SΓP→ΓC ,
the equation ΓC ·E−1

2 (Ci
1)⊕ΓC ·E−1

2 (Ci
2) = 0 holds with probability 1/2+ 2ε2,

and for any ciphertext pair (Ci
1, C

i
2) where C

i
2 is obtained by injecting single bit

error at the input of E1 such that the error bit belongs to the set SΓP→ΓC , the
equation ΓC · E−1

2 (Ci
1) ⊕ ΓC · E−1

2 (Ci
2) = 1 holds with probability 1/2 + 2ε2.

Thus in the case that the guessed value of Kg is correct, we can estimate |TKg |
by

|TKg | ≈ N × |1− 2×#SΓP→ΓC/n| × 4ε2,

where n is the block size of the cipher E′, and #SΓP→ΓC is not equal to n/2. On
the other hand, if the guessed value of Kg is wrong, according to the Wrong-Key
Randomization Hypothesis given in [28], it’s assumed that the wrong guess ofKg

results in a random-looking parity of ΓC ·E−1
2 (Ci

1)⊕ΓC ·E−1
2 (Ci

2). Consequently,
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the value of |TKg | approximates to 0 in this case. So it is feasible to distinguish
the correct value of Kg from all wrong guesses of Kg by applying the above key
recovery attack if given sufficient ciphertext pairs (Ci

1, C
i
2), where Ci

2 is gained
by triggering single bit error at any position of the input of E1. Following the
technique introduced in [3], the number of ciphertext pairs required in our key
recovery attack can be estimated as

cN × 1

|1− 2×#SΓP→ΓC/n|
× 1

4ε4
,

where the coefficient cN , which is closely related to the number of guessed subkey
bits and the desired success rate of our attack, can be measured by using the
approach given in [29].

Furthermore, if an adversary has the capability to induce single bit error at the
input of E1 repeatedly as well as the ability to get several linear characteristics
Γ i
P → Γ i

C (1 ≤ i ≤ m) for E1, where the calculations of Γ i
C · E−1

2 and Γ j
C · E−1

2

(i �= j) influence different bits of the last round subkey of E′, then the adversary
can mount the above key recovery attack m times so as to recover more bits of
the last round subkey (note that ciphertext pairs could be multiplexed partially
or entirely among these attacks). After the adversary derives enough bits of the
last round subkey, he can guess the left unknown bits of the subkey by means
of exhaustive search if needed, and then the last round of E′ can be stripped.
Repeat the above procedure until the adversary can recover the secret key of the
cipher E′.

Regarding the linear fault analysis under the condition of single byte error
model, similar result can be derived by the same means as above.

4 A Key Recovery Attack on SERPENT by Using LFA

In order to illustrate the effectiveness of LFA, we mount a key recovery attack
on the block cipher SERPENT by using LFA in this section. Since there isn’t
any known DFA attack on SERPENT which can be done by inducing faults at
the round earlier than the penultimate round of the cipher so far, the general
countermeasure against DFA on SERPENT could be implemented by protecting
the last two rounds of the cipher if taking into account the cost and efficiency
of the implementation. However, our effective attack shows that LFA could be
a threat to the protected implementation of SERPENT.

4.1 A Brief Description of SERPENT

The SERPENT block cipher was proposed by Anderson et al in 1998 [30]. As a
candidate of Advanced Encryption Standard, it was rated just behind the AES
Rijndael. SERPENT has a classical SPN structure with 32 rounds and 128-bit
block size. It accepts keys of 128, 192 and 256 bits and consists of the following
operations:
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• an initial permutation IP;
• 32 rounds, each consisting of a key mixing operation, a passage through

32 S-boxes and a linear transformation (except the last round, where the linear
transformation is replaced by an additional key mixing operation);
• a final permutation FP.
In our description we adopt the notations of [30] in the bitsliced version. The

intermediate value just before the round i (i.e., the (i+ 1)-th round) is denoted
by Bi (a 128-bit value), where 0 ≤ i ≤ 31. Each Bi is composed of four 32-bit
words X0, X1, X2 and X3, where bit j of Xk is the bit 4j + k of the 128-bit
value Bi (0 ≤ j ≤ 31, 0 ≤ k ≤ 3). The four bits, bit j of X3, X2, X1 and X0,
consist of the nibble j (i.e., the (j + 1)-th nibble), with the bit from X3 as the
most significant bit.

SERPENT uses 8 distinct 4-bit to 4-bit S-boxes Si (0 ≤ i ≤ 7) successively
along the rounds and consequently, each S-box is used in exactly four different
rounds (i.e., S0 is used in round 0, S1 is used in round 1, . . ., after S7 is used in
round 7, S0 will be adopted again in round 8, then S1 in round 9, and so on).

As for each round function Ri (0 ≤ i ≤ 31), a single S-box will be used 32
times in parallel. For instance, R0 uses 32 copies of S0, and the (j + 1)-th copy
of S0 takes the nibble j as the input and then outputs the value according to
the S-box, where 0 ≤ j ≤ 31.

The cipher can be formally described as follows:
• B0 ← P ,
• Bi+1 ← Ri(Bi) 0 ≤ i ≤ 31,
• C ← B32,

where P , C denote plaintext and ciphertext respectively, and round function Ri

can be expressed as below:
Ri(X) = LT (Ŝi(X ⊕Ki)) i = 0, . . . , 30,
Ri(X) = Ŝi(X ⊕Ki)⊕K32 i = 31,

where Ŝi denotes the application of the S-box S(i mod 8) 32 times in parallel, LT
denotes the linear transformation, and Ki denotes the subkey of round i (note
that both K31 and K32 are the subkeys of round 31). Please refer to [30] for
detailed information about the 8 S-boxes, the linear transformation and the key
schedule algorithm.

4.2 Attacking SERPENT

We now present a key recovery attack on SERPENT under the condition of
single bit error model, and a similar attack can be mounted on SERPENT for
the case of single byte error model. Firstly, we construct twelve 2-round linear
characteristics Γ i

P → Γ i
C (1 ≤ i ≤ 12) for the rounds from round 29 to round 30

of SERPENT, and assume that single bit error can be injected at the input of
the round 29 repeatedly and randomly, then by applying the method given in
Section 3 twelve times, 128 bits of K32 can be retrieved from the attack.

In order to describe the linear characteristics adopted in our attack, 32 hex-
adecimal digits will be used to denote the masks corresponding to 32 nibbles
respectively, where the (j + 1)-th hexadecimal digit (numbered from right to
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left) corresponds to the nibble j, 0 ≤ j ≤ 31. Please refer to Appendix for the
depiction of the twelve 2-round linear characteristics used in our attack.

According to the approach given in Section 3, we could derive twelve distin-
guishers for the 31 rounds from round 0 to round 30 of SERPENT as below:

Γ i
C · SERPENT−1

lr (C1)⊕ Γ i
C · SERPENT−1

lr (C2) = 0, 1 ≤ i ≤ 12, (1)

where SERPENT−1
lr means the inverse of the last round of SERPENT, C1 is a

right ciphertext under SERPENT and C2 is the corresponding faulty ciphertext
obtained by inducing single bit error at the input of the round 29 of SERPENT.
Moreover, for the case 1 ≤ i ≤ 9, the i-th equation in (1) holds with probability
1/2+2−9, and for the case 10 ≤ i ≤ 12, the i-th equation in (1) holds with prob-
ability 1/2 + 2−7. Thus a key recovery attack can be mounted on SERPENT
based on the above twelve distinguishers. Following gives the detailed descrip-
tion of the attack in three phases.

Phase 1. For the i-th (1 ≤ i ≤ 3) distinguisher given in equations (1), do
the following:

Step 1. Collect Ni pairs of ciphertexts, each pair consisting of the right cipher-
text C1 under SERPENT and the corresponding faulty ciphertext Cj

2 (1 ≤ j ≤
Ni) derived by randomly injecting single bit error at the input of the round 29
of SERPENT.

Step 2. Let Kg denote the 8 bits of K32 which are relevant to the two ac-
tive nibbles (i.e., S-boxes) influenced by the distinguisher. Initialize 28 counters
{Tl}0≤l≤28−1 (the size of each counter could be set to 
logNi

2 � bits), where Tl

corresponds to l which represents the possible value of the 8 bits of Cj
2 entering

the above two active nibbles. For each faulty ciphertext Cj
2 , increase the counter

Tl by 1 if the corresponding 8-bit value of the Cj
2 is equal to l. Then for each

possible value of Kg, do the following:

(a). Initialize a counter TKg with the counter size being 
logNi
2 � bits and

implement the partial decryption of C1.
(b). For each value of l, decrypt the above two active nibbles and then calculate

the parity in terms of the distinguisher. If the parity is 0, increase the counter
TKg by the value of Tl, and decrease by the value of Tl otherwise.

(c). Store the value of Kg as well as the value of the corresponding |TKg |.
Step 3. For all possible values of Kg, compare the stored values and take the
value ofKg as the correct key information if the value of the corresponding |TKg |
is maximal.

Thus the 24 bits of K32 related to the nibbles 20, 21, 22, 25, 26 and 27 could
be recovered in this phase.

Phase 2. For the i-th (4 ≤ i ≤ 6) distinguisher given in equations (1), the
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attack steps are the same as those in Phase 1 except the step 2 which is de-
scribed as below.

Step 2. Let Kg denote the 12 bits of K32 which are relevant to the three ac-
tive nibbles (i.e., S-boxes) impacted by the distinguisher. Initialize 212 counters
{Tl}0≤l≤212−1 (the size of each counter could be set to 
logNi

2 � bits), where Tl

corresponds to l which represents the possible value of the 12 bits of Cj
2 enter-

ing the above three active nibbles. For each faulty ciphertext Cj
2 , increase the

counter Tl by 1 if the corresponding 12-bit value of the Cj
2 is equal to l. Then

for each possible value of Kg, do the following:

(a). Initialize a counter TKg with the counter size being 
logNi
2 � bits and

implement the partial decryption of C1.
(b). For each value of l, decrypt the above three active nibbles and then

calculate the parity in terms of the distinguisher. If the parity is 0, increase the
counter TKg by the value of Tl, and decrease by the value of Tl otherwise.

(c). Store the value of Kg as well as the value of the corresponding |TKg |.
Accordingly, the 36 bits of K32 corresponding to the nibbles 0, 1, 2, 3, 4, 5,

10, 11 and 12 could be obtained in this phase.

Phase 3. After the above 60 bits of K32 have been retrieved, we can mount
attacks on SERPENT sequentially in terms of the 7th, 8th, 9th, 10th, 11th and
12th distinguishers given in equations (1), and these attacks are similar to that
in Phase 1. Finally we can get all the 128 bits of K32.

After that, we rewrite the encryption algorithm of SERPENT in an equivalent
way by swapping the order of the linear transformation in round 30 and the key
mixing operation (with K31) in round 31, then for the modified cipher, the part
after the XOR operation with LT−1(K31) can be stripped. Furthermore, we
mount an attack on the reduced-round cipher similarly to the above and recover
the 128 bits of K31. Thus following the key schedule algorithm of SERPENT,
we can derive the secret key from K31 and K32.

For the attack in terms of the i-th (1 ≤ i ≤ 12) distinguisher given in equations
(1), the necessary number of ciphertext pairs, each pair consisting of a right
ciphertext under SERPENT and the corresponding faulty ciphertext derived by
triggering single bit error at the input of the round 29 of SERPENT randomly,
could be estimated as

cNi ×
1

1− 2× 6/128
× 1

(2−9)2
, 1 ≤ i ≤ 9,

or

cNi ×
1

1− 2× 3/128
× 1

(2−7)2
, 10 ≤ i ≤ 12,

where the coefficient cNi is closely related to the number of guessed subkey bits
and the desired success rate of the attack. Thus for the attack corresponding to
the i-th distinguisher, according to the Theorem 2 proposed in [29], 24× 32

29×218 ≈
222.14 and 23.8 × 64

61 × 214 ≈ 217.87 ciphertext pairs are needed in the cases
1 ≤ i ≤ 9 and 10 ≤ i ≤ 12 respectively so as to achieve a high success probability
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of 1 approximately. Note that the ciphertext pairs could be multiplexed in our
key recovery attack on SERPENT, consequently, the data complexity of our
attack with success probability of about 1 can be estimated as 2×222.14 = 223.14

ciphertext pairs or 223.14 faulty ciphertexts (taking the attack for recoveringK31

into account as well).
The time complexity of our attack is dominated mainly by the decryptions of

the active nibbles in the attack based on the 7th distinguisher of equations (1).
As a result, the time complexity of our attack is around 2×222.14×216× 6

32×32 ≈
231.73 SERPENT encryptions (taking the attack for retrieving K31 into account
as well).

The memory complexity of our attack is primarily owing to storing the value
of |TKg | in the attack based on the 7th distinguisher of equations (1) as well as
keeping the required faulty ciphertexts. Considering the fact that the attacks for
obtaining K32 and K31 are implemented sequentially, the memory complexity of
our attack can be approximated as (23× 216 + 128× 222.14)/8 ≈ 226.14 bytes.

4.3 Experiments and Results

We use a PC with i3 M380 processor(2.53 GHz) and 4G DDR memory to do the
experiments of our key recovery attack on SERPENT. The software platform
of the experiments is Visual C++, and fault inductions are simulated in this
platform. Under this condition we implement 100 experiments of our attack on
SERPENT with randomly generated secret keys.

The main procedure of each experiment is as follows. At first, a correct cipher-
text is obtained by encrypting a given plaintext under SERPENT with a secret
key. Secondly, we trigger single bit error at the input of round 29 of SERPENT
randomly and repeatedly to derive 222.14 faulty ciphertexts and then retrieve
the 128 bits of K32 by the means presented in Section 4.2. After that, we inject
single bit error at the input of round 28 of SERPENT randomly and repeatedly
to generate 222.14 faulty ciphertexts and then obtain the 128 bits of K31 by the
means similar to the above. Finally, the secret key is recovered from K32 and
K31 with the help of the key schedule algorithm of SERPENT.

Among all the 100 experiments, there are 92 experiments such that the recov-
ered secret keys are equal to the corresponding correct ones. Consequently, our
experimental results match the theoretical analysis given in Section 4.2 well.

5 Conclusion

In this paper, we have proposed a new fault attack on block ciphers called linear
fault analysis (LFA), in which linear characteristics for some consecutive rounds
of a block cipher will be utilized instead of exploiting differential distributions of
S-Boxes within the block cipher in DFA. Generally, our new approach can deal
with the case that faults are triggered several rounds earlier compared to DFA
as long as suitable linear approximations exist, as a result, one may mount an
effective attack on a block cipher by applying LFA even if the cipher has already
been protected against DFA.
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In order to demonstrate the validity of LFA, we have applied it to analyze the
block cipher SERPENT. Basically, the countermeasure against DFA on SER-
PENT can be implemented by protecting the last two rounds of the cipher since
there isn’t any known DFA attack on SERPENT so far which can be done by
inducing faults at the round earlier than the penultimate round of the cipher.
However, with the help of LFA, we have presented an effective attack on the
protected implementation of SERPENT. Although the attack has a data com-
plexity which seems impractical for real cryptographic devices, it does show that
LFA could be a potential threat to the protected implementations (against DFA)
of block ciphers. Moreover, it is expected that further results could be derived
by applying linear hulls and non-linear approximations in LFA.

Finally, the implementation of redundancy (a simple and widely used coun-
termeasure against fault attack) is more costly and less efficient along with the
number of protected rounds increasing, thus for a block cipher, the number of
protected rounds must be chosen very carefully in order to prevent security flaws
as well as keep the corresponding implementation economical and efficient. We
hope that our work could be helpful in determining this number.
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Appendix: The Linear Characteristics Used in Section 4.2

The 2-round linear characteristic (Γ 1
P → Γ 1

C) with p = 1/2 + 2−5

Γ 1
P = 0x00E0000000000000000000000000000E

↓ S5 Pr = 1/2 + 2−3

0x00400000000000000000000000000008
↓ LT

0x00000000000000000000000080000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000000010000000
↓ LT

0x00000010000A00000000000000000000 = Γ 1
C ,

The 2-round linear characteristic (Γ 2
P → Γ 2

C) with p = 1/2 + 2−5

Γ 2
P = 0x0E0000000000000000000000000000E0

↓ S5 Pr = 1/2 + 2−3

0x04000000000000000000000000000080
↓ LT

0x00000000000000000000000800000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000000100000000
↓ LT

0x0000010000A000000000000000000000 = Γ 2
C ,

The 2-round linear characteristic (Γ 3
P → Γ 3

C) with p = 1/2 + 2−5

Γ 3
P = 0xE0000000000000000000000000000E00

↓ S5 Pr = 1/2 + 2−3

0x40000000000000000000000000000800
↓ LT

0x00000000000000000000008000000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000001000000000
↓ LT

0x000010000A0000000000000000000000 = Γ 3
C ,
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The 2-round linear characteristic (Γ 4
P → Γ 4

C) with p = 1/2− 2−5

Γ 4
P = 0x00E0000000000000000000000000000E

↓ S5 Pr = 1/2 + 2−3

0x00400000000000000000000000000008
↓ LT

0x00000000000000000000000080000000
↓ S6 Pr = 1/2− 2−3

0x00000000000000000000000040000000
↓ LT

0x00000000000000000000080000002004 = Γ 4
C ,

The 2-round linear characteristic (Γ 5
P → Γ 5

C) with p = 1/2− 2−5

Γ 5
P = 0x0E0000000000000000000000000000E0

↓ S5 Pr = 1/2 + 2−3

0x04000000000000000000000000000080
↓ LT

0x00000000000000000000000800000000
↓ S6 Pr = 1/2− 2−3

0x00000000000000000000000400000000
↓ LT

0x00000000000000000000800000020040 = Γ 5
C ,

The 2-round linear characteristic (Γ 6
P → Γ 6

C) with p = 1/2− 2−5

Γ 6
P = 0xE0000000000000000000000000000E00

↓ S5 Pr = 1/2 + 2−3

0x40000000000000000000000000000800
↓ LT

0x00000000000000000000008000000000
↓ S6 Pr = 1/2− 2−3

0x00000000000000000000004000000000
↓ LT

0x00000000000000000008000000200400 = Γ 6
C ,
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The 2-round linear characteristic (Γ 7
P → Γ 7

C) with p = 1/2 + 2−5

Γ 7
P = 0x00E0000000000000000000000000000E

↓ S5 Pr = 1/2 + 2−3

0x00400000000000000000000000000008
↓ LT

0x00000000000000000000000080000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000000080000000
↓ LT

0x004000000000000008000010800A0002 = Γ 7
C ,

The 2-round linear characteristic (Γ 8
P → Γ 8

C) with p = 1/2 + 2−5

Γ 8
P = 0x0E0000000000000000000000000000E0

↓ S5 Pr = 1/2 + 2−3

0x04000000000000000000000000000080
↓ LT

0x00000000000000000000000800000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000000800000000
↓ LT

0x04000000000000008000010800A00020 = Γ 8
C ,

The 2-round linear characteristic (Γ 9
P → Γ 9

C) with p = 1/2 + 2−5

Γ 9
P = 0xE0000000000000000000000000000E00

↓ S5 Pr = 1/2 + 2−3

0x40000000000000000000000000000800
↓ LT

0x00000000000000000000008000000000
↓ S6 Pr = 1/2 + 2−3

0x00000000000000000000008000000000
↓ LT

0x4000000000000008000010800A000200 = Γ 9
C ,
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The 2-round linear characteristic (Γ 10
P → Γ 10

C ) with p = 1/2 + 2−4

Γ 10
P = 0x0000000000000000000000000000000E

↓ S5 Pr = 1/2− 2−2

0x00000000000000000000000000000004
↓ LT

0x00000040000000000000000000008000
↓ S6 Pr = 1/2− 2−3

0x000000D000000000000000000000B000
↓ LT

0x000810800A30060A400018010A12A002 = Γ 10
C ,

The 2-round linear characteristic (Γ 11
P → Γ 11

C ) with p = 1/2 + 2−4

Γ 11
P = 0x000000000000000000000000000000E0

↓ S5 Pr = 1/2− 2−2

0x00000000000000000000000000000040
↓ LT

0x00000400000000000000000000080000
↓ S6 Pr = 1/2− 2−3

0x00000D000000000000000000000B0000
↓ LT

0x00810800A30060A400018010A12A0020 = Γ 11
C ,

The 2-round linear characteristic (Γ 12
P → Γ 12

C ) with p = 1/2 + 2−4

Γ 12
P = 0x00000000000000000000000000000E00

↓ S5 Pr = 1/2− 2−2

0x00000000000000000000000000000400
↓ LT

0x00004000000000000000000000800000
↓ S6 Pr = 1/2− 2−3

0x0000D000000000000000000000B00000
↓ LT

0x0810800A30060A400018010A12A00200 = Γ 12
C .
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