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Abstract. In this paper, we propose a new cryptographic primitive
called inner-product lossy trapdoor function (IPLTDF). We give a for-
mal definition, and a concrete construction from lattices. We then show
this primitive is useful to obtain efficient chosen-plaintext secure inner-
product encryption (IPE) schemes. The resulting IPE scheme has almost
the same public key size for multi-bit encryption compared with a recent
IPE scheme proposed by Agrawal, Freeman and Vaikuntanathan [2] for
single-bit encryption. Unfortunately, our IPE scheme only supports at-
tribute vectors with logarithmic length. On the positive side, our basic
IPE scheme can be extended to achieve chosen-ciphertext (CCA) secu-
rity. As far as we are aware, this is the first CCA-secure IPE scheme
based on lattices.

Keywords: inner-product encryption, inner-product lossy trapdoor func-
tions, lattices.

1 Introduction

In a traditional public key encryption system, data encrypted under a public
key can only be decrypted by an receiver with the corresponding secret key.
Inspired by a seminal work by Sahai and Waters [29], researchers have focused
on more fine-grained encryption schemes, which led to the notion of functional
encryption [13]. In a functional encryption, dedicated secret keys allow users to
learn functions of encrypted data. Functional encryption is a broad framework
and has many concrete expressions, among which, predicate encryption (PE) [19]
is an important one. In a PE system, the secret key sk; corresponding to a
predicate f can be used to decrypt a ciphertext associated with attribute I if
and only if f(I) = 1. A useful set of predicates for PE is called inner-product
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predicates. In an inner-product encryption (IPE) system, an attribute of inner-
product predicates is expressed as vector x and predicate fy is associated with
vector v, where fy(x) = 1iff (x,v) =0.

Katz, Sahai, and Waters defined the notion of predicate encryption and gave
the first construction of IPE. However, their construction was based on com-
plicated assumptions. Subsequently, Okamoto and Takashima [23] showed how
to construct hierarchical IPE schemes. All the previous constructions are secure
under selective adversaries until [20]. Lewko et al. [20] gave the first adaptively
secure IPE scheme, which was further improved in [2425]. All the above con-
structions made use of bilinear pairings. Very recently, Agrawal, Freeman and
Vaikuntanathan [2] proposed the first IPE scheme under the worst-case lattice
assumption.

In this work, we seek for a different way to construct IPE. We introduce a new
primitive called inner-product lossy trapdoor functions (IPLTDFs). We define and
construct IPLTDFs. Thanks to its lossiness, we can easily obtain IPE schemes from
IPLTDFs via hardcore bits.

In a high level, for chosen public parameters pp and master secret key, an
inner-product trapdoor function (IPTDF) F associated with any attribute vector
x is an injective, deterministic map F,, x which can be inverted given a secret
key derivable from a predicate vector v via the master secret key if and only if
(x,v) = 0. Suppose there is an another algorithm that generates “fake” public
parameters pp*, such that, for an adversary-specified challenge attribute vector
x*, Fpp« x+= is no longer injective but has image much smaller than its domain.
Moreover, given public parameters, one should not be able to tell whether it is
real or fake. Importantly, as in inner-product encryption, this must hold even
when the adversary may obtain, via a key-derivation oracle, an inversion key
for predicates v with (v,x*) # 0. As with IPE, security may be selective (the
adversary must specify x* before seeing pp) or adaptive (no such restriction). In
this paper, we only consider the selective security.

In order to build secure IPTDFs, an intuitive idea is to apply the matrix-
based framework of [27] and encrypt each matrix entry with an IPE scheme.
For already complicated IPE schemes this method brings us more complicated
analysis. Alternatively, we derive one-way IPTDFs by applying the ideas from
[2], and then show how to make it lossy which is non-trivial. Our solution shows
that secure inner-product lossy trapdoor function (IPLTDF) can be achieved in
principle, which was not clear prior to our work.

1.1 Owur Contributions

In this work, we define the notion of inner-product lossy trapdoor functions,
and we give a concrete construction of IPTDF based on lattices. However, to
make the scheme correct and lossy simultaneously, our IPTDF only supports
attribute vectors with logarithmic length. we then use it to construct a chosen-
plaintext secure IPE scheme for multi-bit encryption based on lattices with public
key size almost the same as the scheme presented by Agrawal, Freeman, and
Vaikuntanathan [2] for single-bit encryption. Unfortunately, in order to invert
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correctly, we have to append the attribute vector after the function value of
our IPTDFs, which limits our IPE scheme only achieves payload hiding security.
We leave it as a future work to construct IPTDFs whose attribute information is
hidden in the function value using our methodology.

As an interesting observation, we note that the information of the lossy at-
tribute actually is hidden in the public parameters of the lossy IPTDFs. This
property is also satisfied in identity-based trapdoor functions (IBTDFs). L.e., the
public parameters of lossy IBTDFs hide the information of the lossy identity.
Under the framework presented by Peikert and Waters [27], we obtain the first
chosen-ciphertext secure IPE from lattices. As a by-product, we also observe that
lossy IBTDFs are actually All-But-One (ABO) trapdoor functions [27]. Combine
our IPTDF and the concrete construction of lossy IBTDF in [7] from lattices. We
get a chosen-ciphertext secure IPE scheme with public size almost twice as our
chosen-plaintext secure IPE scheme.

1.2 Related Works

Many encryption schemes of different types can be included in the framework of
inner-product encryption. Identity-based encryption (IBE) [30/I0/11] and hidden-
vector encryption (HVE) [I4] can be viewed as a special case of inner-product
predicates encryption with equality-test predicates. Attribute-based encryption
(ABE) [29IT88] where policies are given by CNF or DNF can be implemented by
inner-product encryption.

Inner-product encryption was introduced by Katz, Sahai, and Waters [19],
however, their scheme only achieves selective security without delegatability (see
[23]). Okamoto and Takashima [23] introduced a notion called dual pairing vector
spaces (DPVS) and proposed a hierarchical IPE scheme based on DPVS, but
again, only selective security is proven. To achieve adaptive security, Lewko et
al. [20] adapted the dual system encryption methodology [31], and obtained the
first adaptively secure IPE and hierarchical IPE schemes. Later, Okamoto and
Takashima [24I25] proposed adaptively secure IPE and hierarchical IPE schemes
under simpler assumptions. All these previous constructions use bilinear pairings
except a recent scheme proposed by Agrawal, Freeman and Vaikuntanathan [2],
which is the first IPE scheme under the worst-case lattice assumption. We note
that the scheme in [2] seems difficult to be improved into a hierarchical IPE
scheme.

The notion of lossy trapdoor functions (LTDFs) was first explicitly presented in
[27]. A trapdoor function F specifies, for each public key pk, an injective, deter-
ministic map Fpy, that can be inverted given an associated trapdoor. There is an
algorithm that generates a “fake” public key pk* indistinguishable from the real
one, such that Fj;- has image much smaller than its domain. Peikert and Waters
[27] call such a trapdoor function lossy. LTDFs was shown to be a powerful tool.
Peikert and Waters [27] showed that LTDFs provided very natural constructions
of many cryptographic primitives, including chosen-ciphertext secure public key
encryptions, pseudo-random generators, collision-resistant hash functions, and
oblivious transfer. Besides the original work of Peikert and Waters, Many other
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applications of LTDFs were discovered, these include deterministic public key en-
cryption [9], hedged public key encryption [5] and selective-opening secure public
key encryption [6].

Another notion related to inner-product trapdoor function is identity-based
trapdoor functions (IBTDFs) [7], which can be viewed as an identity-based version
of LTDFs. In an IBTDF, each encryption function is associated with an identity
and anyone has the secret key corresponding to the same identity can invert.
Bellare et al. gave two constructions of IBTDFs and described two applications
of IBTDFs in [7]: deterministic identity-based encryption schemes and hedged
identity-based encryption schemes. Actually, IBTDFs can be viewed as a special
case of our IPTDFs. More specifically, when we use the 2-dimensional attribute
vector x = (id, —1) and predicate vector v = (1,id’) in our IPTDFs, this is exactly
the case of IBTDFs, since (x,v) = 0 if and only if id = id'.

2 Notations

If = is a string, |z| denotes its length. If S is a set, |S| denotes its size. If S is
a set then s < S denotes the operation of picking an element s of S uniformly
at random. We write z + A (z) to indicate that A is an algorithm with input
x and access to oracle @ and output z. We say a function f(n) is negligible if
f(n) < 1/n° for any ¢ > 0 and all sufficiently large n, denoted as negl(n). Let
X and Y be two random variables over set S. The statistic distance between X
and Y is defined as A(X,Y) = >, .o | Pr[X = s] - Pr[Y = s]‘ We say X and
Y are statistically indistinguishable if A(X,Y") is negligible.

We use bold capital letters (e.g. A) to denote matrices, and use I,, to denote
the identity matrix with dimension n. We use bold lowercase letters (e.g. x)
to denote vectors. A’ denotes the transpose of the matrix A. When we say a
matrix defined over Z, has full rank, we mean that it has full rank modulo g.
If A; is an n x m matrix and As is an n x m’ matrix, then [A;|A2] denotes
the n x (m 4+ m') matrix formed by concatenating A; and As. If x; is a length
m vector and Xo is a length m’ vector, then we let [x1|x2] denote the length
m + m’ vector formed by concatenating x; and x3. When doing matrix-vector
multiplication, we always view vectors as column vectors.

3 Inner-Product Lossy Trapdoor Functions

In this section, we define the notion of inner-product trapdoor functions. In inner-
product trapdoor functions, each function value is associated with an attribute
x and each secret key sk corresponds to an inner-product predicate f. A user
with sk can invert the function value if and only if f(x) = 1. An inner-product
trapdoor function consists of four algorithms (IPTDF.Pg, IPTDF.Kg, IPTDF.Ev,
IPTDF.Inv) associated with input space InSp, output space OutSp, a class of
inner-product predicate functions F, and a set of attributes X

IPTDF.Pg(\) takes as input a security parameter A. It returns public parameters
PP and a master secret key msk.
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IPTDF.Kg(PP, f,msk) takes as input public parameters PP, a predicate f € F,
and a master secret key msk. It returns an inversion key sky for f.

IPTDF.Ev(PP, x,-) which is an injective function, takes as input public param-
eters PP, an attribute x € Y| and a value in InSp. It returns a function
value in OutSp.

IPTDF.Inv(PP, sky,-) takes as input public parameters PP, a secret key skj
for f, and a function value in OutSp. It returns a value in InSp.

For correctness, we require that V(PP, msk) <— IPTDF.Pg(\), Vf € F, Vsky <
IPTDF.Kg(PP, f,msk) and Vx € X, if Cx + IPTDF.Ev(PP,x,m), where m €
InSp,

- If f(x) =1 then IPTDF.Inv(PP,sks,Cx) = m.
- If f(x) = 0 then IPTDF.Inv(PP,sky, Cx) = L with all but negligible prob-
ability.

An inner-product trapdoor function is associated with a sibling. An /-lossy
sibling L-IPTDF=(L-IPTDF.Pg, L-IPTDF.Kg, L-IPTDF.Ev, L-IPTDF. Inv) differs
from IPTDF in the following sense:

1. L-IPTDF.Pg(\, x*) takes as input a security parameter A and an attribute
x*. It returns public parameters PP and a master secret key msk. We call
x* a lossy attribute.

2. L-IPTDF.Kg(PP, f, msk) takes as input public parameters PP, a predicate
f, and a master secret key msk. It returns an inversion key sky for all f
with the requirement that f(x*) = 0.

3. For any x # x*, L-IPTDF.Ev(PP,x, ) computes an injective function over
InSp, and L-IPTDF.Inv(PP, sky,-) computes its inversion if f(x) = 1. Ad-

ditionally, L-IPTDF.Ev(PP, x*, ) computes a function such that |fI1:SSP| <2t
Pl

We say IPTDF is /(-lossy with sibling L-IPTDF, if for any probabilistic
polynomial-time (PPT) adversary A, the advantage of the following game is
negligible.

. sAtt-lossy
Experiment EXPIPTDF,L-IPTDF,A(/\)

x* — A(N);

b+ {0,1},if b =0, (PPy, msky) < IPTDF.Pg(\);
if b=1, (PP1,msky) < L-IPTDF.Pg(\, x*);

V<« ACC)(PPRy);

if b =¥ return 1, otherwise 0.

Where oracle O(b, f) returns sk; < L-IPTDF.Kg(PP, f,msk1) when b =1, and
returns sky < IPTDF.Kg(PPy, f, msko) when b = 0 with the restriction that A
is not allowed to query f such that f(x*) = 1. We define the advantage of A in
the above experiment as

sAtt-lossy _ sAtt-lossy _ 1
AdVIPTDF,L—IPTDF,A()‘) = PT[EXPIPTDF,L—IPTDF,A()‘) =1]- 9
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3.1 Lossy Attribute Hiding

We observe that the sibling L-IPTDF enjoys an interesting property. We call it
lossy attribute hiding property. Informally, the public parameters of the L-IPTDF
generated from any distinct lossy attributes are indistinguishable, even given
access to obtain the inversion key of predicates that the lossy attributes do not
satisfy. For any PPT adversary A associated with the following game:

Experiment Expfﬁtpt;é%f’A()\)

X0, %1+ A(N\);

b+ {0,1}, (PP, mskp) < L-IPTDF.Pg(\,xp);
V <« ACC)(PPRy);

if b =10 return 1, otherwise 0.

Where oracle O(b, f) returns sky <— L-IPTDF.Kg(P P, f, msky) with the restric-
tion that A is not allowed to query f such that f(xg) = 1 or f(x1) = 1. We
define the advantage of A in the above experiment as

1
Att-lah Att-lah
AdVE—It;TD%,A()‘) = PT[EXPE—I%TD%,A()‘) =1] - 9]
We say L-IPTDF is lossy attribute hiding, if for any PPT adversary A, the
above advantage is negligible.
Next, we show that the lossiness of inner-product trapdoor functions implies
the lossy attribute hiding property of the corresponding sibling functions.

Lemma 1. Let IPTDF be an inner-product trapdoor function, and L-IPTDF be
its sibling. If IPTDF is {-lossy, then L-IPTDF is lossy attribute hiding.

Proof. Considering the lossy attribute hiding game that the challenger gener-
ates the public parameters and master key under b = 0, we denote this game
as Gamey. Since IPTDF is {-lossy and L-IPTDF is its sibling, no PPT adversary
can tell differences with non-negligible probability if the public parameters and
master key are changed from IPTDF.Pg()\), as long as the adversary do not query
f with f(xg) = 1. Analogously, we denote the lossy attribute hiding game as
Game; when the challenger generates the public parameters and master key un-
der b = 1. No PPT adversary can tell differences with non-negligible probability
if the public parameters and master key are changed from IPTDF.Pg(\), as long
as the adversary do not query f with f(x1) = 1. We then conclude that no PPT
adversary can distinguish the public parameters between Gamey and Game;
with non-negligible probability, with restriction that the adversary do not query
f such that f(x¢) =1 or f(x1) = 1. This completes the proof. O

Remark. We can similarly define the lossy identity hiding property of lossy
IBTDFs. This means that the information of the identity will be hidden in the
public parameters of lossy IBTDFs. Analogously, the lossiness of IBTDF implies
the lossy identity hiding property.
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4 Inner-Product Trapdoor Functions from Lattices

Background. A full-rank m-dimensional integer lattice A C Z™ is a discrete
additive subgroup whose linear span is R™. Every lattice is generated as the
Z-linear combination of some basis of linearly independent vectors i.e.,A =
{37, zib; : 2z € Z}. In this work we deal exclusively with “g-ary” lattices,
where for simplicity we always take ¢ =poly(n) to be prime. For a matrix
A € Zy*™, define the integer lattice

AH(A)={z€Z™:Az=0 mod q}.

Let S = {sq,...,sx} be a set of vectors in R™. We use S = {s7,...,Si} to denote
the Gram-Schmidt orthogonalization of the vectors si,...,s;. We use ||S]| to
denote the length of the longest vector in S. For a real-valued matrix R, we let
51(R) denote the largest singular value of R, i.e. s1(R)=max|y|=1 [ Rul.

Let A be a discrete subset of Z™. For any vector ¢ € R™ and any positive
parameter o € Rxg, let p,c(x) = exp(—7||x — c||?/o?) be the Gaussian func-
tion on R™ with center ¢ and parameter o. Let py.c(A) = D, 4 Po,c(X) be the
discrete integral of p, ¢ over A, and let Dy , ¢ be the discrete Gaussian distribu-
tion over A with center ¢ and parameter o. Specifically, for all y € A, we have
Dpoely) = Z::((x; For notional convenience, p,0 and Dy 40 are abbreviated
as p, and DA’U’, respectively.

Security of our construction reduces to the learning with errors (LWE) prob-
lem, a classic hard problem on lattices defined by Regev [28]. The (decisional)
learning with errors problem in dimension n with error rate « € (0, 1), stated
in matrix form, is: given an input (A,b) where A € Zp*™ for any m=poly(n)
is uniformly random and b € Z" is either of the form b = [I,,,|A*]x mod ¢ for

X DZ?;C:, or is uniformly random (and independent of A), distinguish which is

the case, with non-negligible advantageE By standard hybrid argument, replac-
ing x with a matrix X € Z((Iern)XW (w = poly(n)) whose each column sampled
independently from Dgfj:;, and replacing b with either B = [I,,|AY]X mod ¢
or uniformly random B of the same dimension, yields an equivalent problem (up
to a w factor in the adversary’s advantage). It is known that when ag > 24/n,
this decisional problem is at least as hard as approximating several problems on
n-dimensional lattices in the worst-case to within O(n/«) factors with a quan-
tum computer [28] or on a classical computer for a subset of these problems [26].

We give some useful facts for our construction.
Lemma 2 ([22]). Let A be an n-dimensional lattice, let T be a basis for A, and
suppose o > ||T|| - w(y/logn). Then for any ¢ € R™ we have

Pr[||x —c|| > ov/n:x + Dy pc| < negl(n).

! This is actually the “normal form” of the LWE problem, which is equivalent to the
one from [28] in which the portion of x that is multiplied by A* is uniformly random
in Zg . The equivalence is shown in [4].
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Lemma 3 ([I7)21]). For prime q and integer b > 2. Let m > nlog, g+w(logn).

For A « Zy*™ and R + D'/ ™ . Then (A, AR) is statistically close to
bw(ylogn)

uniform in Zg*™ x Zy*™.

Lemma 4 ([3)21]). Let q,n,m,b be positive integers with b > 2 and m >
6nlog, q. There is a probabilistic polynomial-time algorithm TrapGen(g,n,m,b)
that outputs a pair (A, T) € LZg=™ x ZM*™ such that A is statistically close to

uniform in Z3*™ and T is a basis for A+(A), satisfying IT|| < O(b- V/nlog, q).

Lemma 5 ([17)21]). Let A € Zy*™ be full-rank. Given A and any basis T €
zmxm of AL(A), one can efficiently recover x = [x1|x2] € ZIT™ from [I,,|A'] -

[x1[x2] mod g = Alx, +x1 mod q, as long as [x1| < g/ (2] T).

Lemma 6 ([1/16]). Let ¢ > 2,m >n, A,B € Zy*™, Ta be a basis of AL(A),
and o > |Tall - w(v/logm). There exists an efficient randomized algorithm
SampleLeft that, takes as inputs A,B, Ta,o, and outputs a basis S of A+ (U)
for U = [A|B] with ||S|| < o - v/2m whose distribution depends on U, 0.

Lemma 7 ([1). Let ¢ > 2,m >n, A,B € Zy;*™, B be full-rank, R € Z™*™,

Tg be a basis of A+ (B), and 0 > | Tg| - s1(R) - w(y/logm). There exists an ef-
ficient randomized algorithm SampleRight that, takes as inputs A, B, Tp,R, 0,
and outputs a basis S of AL(U) for U = [A|AR + B] with ||S|| < o-v/2m whose
distribution depends on U, 0.

4.1 An Inner-Product Trapdoor Function from Lattices

In this subsection, we present a concrete inner-product trapdoor function from
lattices. In our construction, each inversion key will be associated with a pred-
icate vector a = (a1, ...,ag) € Zi for some fixed £ > 2 and each function value
will be associated with an attribute vector b = (by, ..., b¢) € Zg. Inversion should
succeed if and only if (a,b) =0 mod g. Hence the predicate associated with the
inversion key is defined as fa(b) =1 if (a,b) =0 mod ¢, and fa(b) = 0 other-
wise. We note that we have to append the attribute vector b after the function
value in order to invert it. This restriction limits our IPTDF only enables payload
hiding IPE scheme (see Sec. [), however, this will not harm the lossy attribute
hiding property of lossy IPTDFs, since the public parameters will still hide the
information of the lossy attribute.

Let ¢ > 1 be an positive integer to be determined later. Let n = \ be a security
parameter and ¢ be the length of predicate and attribute vectors. Let ¢ = poly(n)
be a prime, b = b(n,¢) > 2 be an integer, 7 = ¢n, and m = O(nlog, q). Let
r =r(n,?) > 2 be an integer and define k = |log,. ¢|. Define Dg = {0, 1, ..., 5—1}
and D, similarly for some positive integers 5 > v to be determined later. Let
o, a be positive real Gaussian parameters. Our inner-product trapdoor function
has domain InSp:Dge(k+1)+1)m+" X DZ;L’”.

IPTDF.Pg(n,!) takes as input a security parameter n and a parameter ¢, denot-
ing the length of predicate and attribute vectors,
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1. Use the algorithm of LemmaM to generate a (nearly uniform) A € Zglxm,

together with a basis Ta for lattice AX(A) such that |Ta| = O(b
\/ﬁ logy, ). .
2. Choose £ - (k + 1) uniformly random matrices A; ; € Zg*™ for 1 <i </
and 0 < j < k. Choose a uniformly random matrix B € ngm.
Output PP = (A, B, {Ai,j}1§i§g70§j§k) and msk = Ta.

IPTDF .Kg(PP,a, msk) takes as input public parameters PP, a predicate vector
a=(ay,...,a) € Zg, and a master secret key msk,
1. For i =1, ..., ¢, write the r-ary decomposition of a; € Z, as

a; = Za’?j -7, where a;; €[0,..,r—1].

£k
2. Define the matrix Ua = [A| > > a; jA; ;).
i=1;j=0
3. Use the SampleLeft algorithm in Lemma [0l to generate a basis S, of
A+ (U,) with [|Sal| < ov/2m.
Output the inversion key sk, = S,.

IPTDF.Ev(PP, b, m) takes as input a public parameters PP, an attribute vec-
tor b = (b1,....,by) € Z, and a message m = [xq|x10|...|x;|...|xex]x] €
Dg(kH)H)m'm X DZ;L’”, where Xg,%;,; € DgL for1<i<{¢,0<j<k,and
x € Dy x D37,

1. Define the matrix

Fp = [A|A1 o+ 70 Bl |A;; +770;B|- - |Agy + 7¥bB].

2. Compute Cp = [Lp(ht1)+1)m|[Fh] - m mod g.
Output C} together with the attribute vector b.

IPTDF. Inv(PP, ska, (Cpb, b)) takes as input public parameters PP, an inversion
key sk, for predicate a, and a function value (Cp, b) for attribute vector b,
1. Parse Cy into ¢, ¢;; for 1 < < ¢,0 < j < k, where ¢y = A'x + xo,

ci; = (A +7’jb B)! x+x”

¢k
2. Compute c—z Z a; jCij = Z Z amAt x+(a, b)Bix+ Z Z a; ;X -

i=175=0 i=1j=0 i=135=0

¢k

3. Note that [co[c] = [A] Z Z a;jA;; + (a,b)Bl'x + [xo| > D ai x4l
i=1j=0 1=1j=0

If (a,b) =0 mod ¢, use sk, and the inversion algorithm of Lemma [ to

Lk
compute [X|x] from [co[C], where X = [xo| > > @i ;X; ;]. Then recover
i=15=0
all x; ; from c; ; by using x and the attribute vector b. Finally, It outputs
m if (a,b) =0 mod gq.
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We now describe the sibling L-IPTDF. The evaluation and inversion algo-
rithms are those in IPTDF. We give the parameter generation and inversion key
generation algorithms of L-IPTDF as follows.

L-IPTDF.Pg(n, ¢, b*) takes as input a security parameter n, a parameter ¢ de-
noting the length of predicate and attribute vectors, and an attribute vector
b* = (b7,...,b}) € Zg,
1. Use the algorithm of Lemmal to generate a (nearly uniform) B € ngm,
together with a basis Ty for lattice A1-(B) such that | Tg| = O(b
\/ nlogy q).

2. Choose a uniformly random matrix A € Zy™™, and E « prtn)x(i=n)

Z,aq
where ag = ©(y/n), and pairwise mdependent R,; « D™ for

Z.bro(/log )
1<i<00<j<k
3. Set Al = [At‘[Ith] "E mod g, and let A;; = AR, ; — 1/b!B for
1<i<,0<j <k
Output PP = (A, B, {Ai,j}lgiSE,OSjgk) and mSk‘:(TB7 {Ri,j}lgigi,oﬁjﬁk)-

L-IPTDF.Kg(PP, f,msk) takes as input public parameters PP, a master secret
key msk, and a predicate vector a = (ay, ..., ap) € Zg,
1. Define the matrix

£ k 4 k
=AD" aijAi] =[AJA( ZZ (a,b*)B].
i=1 j=0 i=1 j=0

2. If (a,b*) # 0 mod g, use the SampleRight algorithm in Lemma [1 to
generate a basis S, of A+(U,) with ||Sa|| < ov/2m, else abort.

4.2 Correctness

We now show that for certain parameter choices, the inversion algrithms of IPTDF
and L-IPTDF work correctly with overwhelming probability, and the evaluation
of L-IPTDF.Ev(PP,b*,) is lossy.

Lemma 8. Suppose the parameters vy, B, b satisfy

el > 9R((U(k+1)+1)m/n) 4 g O(bm/n) < B < q )
7= g \/)_6_2\/20m((r71)€(k‘+1)+1)

We have:

1. If (a,b) = 0 mod g, then with overwhelming probability IPTDF.Inv invert
correctly, and L-IPTDF.Inv invert correctly with b # b*.
2. L-IPTDF.Ev(PP,b*,-) is a lossy function with lossiness 2((£(k+1)+1)m).
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Proof. During the second step of IPTDF.Inv(PP,S,, (Ch,b)), we compute ¢,
which is equal to

¢k
ZZ ,JCM—ZZa”A x+ (a,b)B X+ZZawxm
i=1 j=0

=1 j=0 =1 j=0

If (a, b) = 0 mod q, then the middle term disappears, leaving ¢ =
¢k ¢k
SN ag, Z > ai X . It follows that
i=1;=0 i=1j=0

(&

[col€] = ZZ X+ X = [Iyn|UY] - [X]x] mod g,

i=1 j=0

where X = [xq] Z Z a; ;x; ;]. Since S, is a basis of A+(U,), according to
i=135=0

Lemma [l if || X| < ¢/(2||Sal|), one can recover [X|x] by using Sa. From the Cij,
the attribute vector b and x, one can obtain x; ; for 1 <7 < ¢,0 < j < k. By
Lemma [6] and [7] we have ||S | < ov/2m with overwhelming probability. Since

Dg(kH)H)m'm DZYL ", and a; ; € {0,...,r — 1}, by the triangle inequality,
we have

¢k
K[| < [Ixoll + 11> Y~ aigxigll < Bvm+ (r = 1)e(k +1)8vm
i=1 j=0
= (14 (r—1l(k+1))B8vm.
For (8 as in the lemma statement, § < a is sufficient to recover

2v2om((r—1)£(k+1)+1)
m, as desired.

In the third step of L-IPTDF.Pg, Af = [At‘[ImL&t] -E mod ¢| and A;; =
AR;; — 7B for 1 < i < ¢,0 < j < k, then in L-IPTDF.Ev(PP,b*, m), we
compute

Fo- = [A|A1o+ (Bl |A; ; + /0Bl |[Ag + r*b;B]
= [AJ[AR1 | - |AR; |- [ARg k] = ALy |[Raof -+ [Rij] -+ [Rei].
Let R = [L,|R10|- - |Rij |- - - |Re,x), therefore,

Fi. = R'- [At’[lmmt] ‘E| = [(AR)'

[R|(AR)] - E]
— {(AR)t’[I(e(k+1)+1)m|(AR)t] [Rot I(H E}

_ {(AR)t‘[I<e<k+1)+1)m|(AR)t] ’ E/} ’

R' 0 }

01, E. Note that

where, E/ = {

51(E) < s1(R")s1(E) < O(by/m) - O(v/mn) < O(bm/n).
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We have the following,

Co = [Le(hs1)41)m[Fp-] - m
= t
= [Lek+1)+1ym|(AR) T (Lt 1)+ 1)m4n|E’T - m)  mod q.

Therefore, it suffices to bound the number of possible values of the form

Liekr1)+1)m+n|E]- m mod g.

Define Ny(s) to be the number of integer points in an d-dimensional ball of
radius s. For r > v/d, from the volume of the ball and Stirling’s approxima-
tion, we have Ny(s) = O(s/Vd)?. Therefore, the number of possible values
of [Le(k+1)+1)m+n|E] - m is at most Ng(rr1)+1)mtn ([ Lotk 1)+ 1)mn [E] - ml]).

] c Dg[(k+1)+1)m+n % D;,;L_n

Since m = [xg|x1,0]...|Xi,;]-.-|xe,k|x , we have

1T ek+1)+1)mtn [ E] - m| < 6 VEk+1)+)m+n+si(E)-ywa—n
<VUE+1D)+Dm+n- (B+7-51(E)).

Therefore, the number of possible values of [Lis(x+1)+1)m+n|E’] - m is at most
O(B + 7 - s1(BE))UkED+)mEn For Jossiness, observe that the base-2 logarithm
of the domain size of L-IPTDF.Ev(PP, b*,:) is

((llk+1)+1)ym+n)logf + (¢ — 1)nlog~.

Whereas by the above, and for 8 > - s1(E’), the base-2 logarithm of the image
size of L-IPTDF.Ev(PP, b*,-) is at most

((e(k + 1)+ 1)m +n)log(O(B + - 51(E)))
< ((C(k +1) + 1)m +n) log B+ O((£(k + 1) + 1)m).

Let y¢~1 > 22((ttk+1)+1)m/n) - anq for sufficient large constant in £2(-), the two
quantities above differ by at least 2((£(k + 1) + 1)m) as desired. O

4.3 Security

In this subsection, we show that the inner-product function described above is
Q2((l(k + 1) + 1)m)-lossy under selective attribute attacker.

Theorem 1. Suppose 3, v as in Lemmal8. If decisional LWE problem is infea-
sible with error rate o, then IPTDF described above is 2((¢(k + 1) + 1)m)-lossy
with sibling L-IPTDF described above, under selective attribute adversaries.

Proof. We define a series of games (Gamey,...,Games) where in Gameg, an adver-
sary A is against IPTDF, that is, the public parameter generation, key generation
algorithms are from IPTDF. While in Games, A is against L-IPTDF, that is, the
parameter generation, key generation algorithms are from L-IPTDF. We show
that the adversary’s views in the first game and the last game are indistinguish-
able.
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Gamey: A submits a challenge attribute vector b* = (b7, ..., b;) before setup.
The challenger uses the algorithm of Lemma [ to obtain (A, Ta) € ZZLX’” X
Z™>*™ and chooses uniformly random matrices B, A; ; € ngm for1 <:<
2,0 < j < k. The challenger gives (A, B,{A; ;j}i<i<ro<;<k) to A, and keeps
Ta as the master secret key. When A queries an inversion key for a pred-
icate vector a with (a,b*) # 0 mod ¢, the challenger uses Ta to respond
an inversion key S, by invoking algorithm SampleLeft from Lemma [G] the
distribution of S, depends on U, and o .

Game;: This game is identical to Game except that, the challenger changes
the way to generate A, ; for 1 <1 < /¢,0 < j < k. Instead, the challenger first
chooses pairwise independent R; ; € D' <™ for1 <i</?,0<j<k.

i Z,b-w(+/logn)
Let A;; = AR, — /b B.

Games: This game is identical to Game; except that the challenger changes the
way to generate the master secret key and respond the key-extraction query.
Instead, the challenger uses the algorithm of Lemma @ to obtain (B, Tg),
and chooses A <« ngm uniformly at random. When A queries an inversion
key for a predicate vector a with (a, b*) # 0 mod g, the challenger uses Ty
and R; ; for 1 <¢ < ¢,0 < j <k torespond an inversion key S, by invoking
algorithm SampleRight from Lemma [7, the distribution of S, depends on
U, and o.

Games: This game is identical to Gamey except that the challenger changes
the way to generate A. Instead, the challenger chooses a uniformly random
matrix A € Zy ™, and E DX (1) Ghere aq = O(y/n). Set At =

[At [L.|A!]-E mod q] o

It’s obvious that Gameg is the IPTDF security definition and Games is the
L-IPTDF security definition. We now show that the adversary’s views between
the adjacent games are indistinguishable.

The only difference of Gamey of Game; is the way A; ; generated. In Game,
A is uniform, therefore A, AR, ..., AR} is statistically close to a uniform
string of the same size by Lemma [B] and so is A, AR — r°b;B, ..., AR\ —
rkbz‘B. Thus, the adversary’s views between Gamey and Game; are statistically
indistinguishable.

The differences of Game; and Games are the way A, B generated and the
way to answer key-extraction queries. By Lemma Hl the distributions of A, B
in Game; and Game; are statistically close. Therefore, the distributions of

U, in Game; and Gamey are statistically close. In Gamesy, note that U, =
k

¢

[AJA(Y” > a;;R; ;) — (a,b*)B], it can invoke the algorithm SampleRight by
i=15=0

Lemma [7 as long as (a,b*) # 0 mod ¢. By Lemma [l and Lemma [ for suf-

ficiently large o, the distribution of S, in Game; and Game, are statistically

close.
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Apparently, matrix A in Games and Games is computational indistinguish-
able if the decisional LWE problem is infeasible. Summarize the above discus-
sions, we complete the proof O

4.4 Parameter Selection

We can extract from the above description the parameters required for correct-
ness and security of the system. By Lemma [§] we require

c—1 >29((€(k+1)+1)m/n)’ and ~-02(bm/n) < B < q )
To= (g \/)_ﬂ_2¢20m((r71)€(k+1)+1)

For security, we require ag = O(y/n). The constants ¢ and v depend on the rela-
tionship of ¢, m, and n. We need v¢~1 > 22((t(k+1)+1)m/n) Tp order to generate A
with a trapdoor, we have m = O(7 log,, q), so we need y>q®((¢(k+1)+1)/logb)-c/e—1,
For any desired constant C' > 1 and ¢ = O(logn), we can choose constants
k > 1,¢ > 1 and choose b = O(n) such that v < ¢'/¢. The additional con-
straints imposed by our security reduction are as follows. From the description
of IPTDF.Pg, we have ||Tal|l = O(by/filog, q) by Lemma[ in order to respond
the key-extraction queries by SampleLeft, o subjects to the requirement that

o> ||ﬁ|| -w(y/logm) = O(by/1og, q) - w(+/logm).

From the description of L-IPTDF . Pg, we have | Tg|| = O(by/flog, q) by Lemma
[ in order to respond the key-extraction queries by SampleRight, o subjects to
the requirement that

Lk
72 [Tall o1 3 iR -l logm).
=1 =0

Since RZ j are chosen from Dmx’?\/log ) and a;; € {0,...,m — 1}, it follows that

sl(z Z a; jR; ;) < O((r — 1)0(k + 1) - by/m) with overwhelming probability.
i=175=0
We see that it suffices to choose

o > O(by/nlog, q) - O((r — 1)E(k + 1)by/m) - w(y/log m).

To satisfy the more stringent of the above two conditions, we set o = O(rfkn>?).
For correctness and lossiness, it suffices to take

¢YC - Q2(bmy/n) < B < q/2V20m(r — 1)((k + 1) + 1)).

In order to satisfy all the constraints, it is sufficient to set r = ¢/¢" for some
constant C’ > 1 (therefore k = C’ is a constant), and sufficiently large ¢ such
that

q1—1/C—2/c’ > (Nl(mzn5€2k2) _ (Nl(n7€2k2).
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The following selection of parameters satisfies all of these constrains. For a given
£ = 0O(logn) and constant C,C”, set

m = 20cn, B =n3to, v =n?,

o= [rtkn3®], o= n"T90?k?)"!, ¢ = the prime nearest to [n7>T9¢2k2],
where n® = [¢"/¢*+2/¢"], and constant ¢ is set as in the analysis, and b = n.
Observe that the above setting of parameters satisfies all the constrains, the
security of the scheme can be based on the hardness of approximating SIVP
and GapSvp to within a factor of O(n/a) = O(n®F9¢2k?) in the worst case by
quantum algorithms.

5 Applications

In this section, we describe some applications of our IPTDF. These applications
include chosen-plaintext secure IPE schemes and chosen-ciphertext secure IPE
scheme. Katz, Sahai, and Waters [19] introduce two basic security notions of
IPE: payload hiding and attribute hiding. Payload hiding guarantees that no
efficient adversary can obtain any information about the encrypted message,
but allows information about attributes to be revealed. Attribute hiding is a
stronger notion which guarantees in addition that no efficient adversary can
obtain any information about the attribute associated with a ciphertext.

Chosen-Plaintext Secure Inner-Product Encryption. A straightforward
application of IPTDF is for inner-product encryption (IPE). By the lossiness of
IPTDFs, it is easy for us to obtain a payload hiding IPE scheme (via hardcore bits)
under selectively chosen-plaintext adversaries. However, as mentioned in Sec. [4.1]
we have to append the attribute vector after the function value, therefore, anyone
can learn the information of the attribute from the function value. In this case
we can not achieve attribute hiding IPE schemes using our IPTDF, we leave it as
a future work to construct IPTDFs whose attribute information is hidden in the
function value.

Due to its lossiness, our IPTDF together with a pairwise independent hash
function h imply an IPE scheme for multi-bit messages (with length O(¢n)).
The ciphertext of the IPE scheme consists of ¢ = (IPTDF.Ev(PP,b,x), h(z) @
m), where z is randomly chosen from the domain of IPTDF and h, and m is
the message. Our concrete construction of IPTDF is inspired by [2], then the
efficiency of our IPE scheme is almost the same as the one in [2] except that our
scheme can encrypt multi-bit messages simultaneously. However, our scheme
only supports attribute vectors with logarithmic length, while the scheme in [2]
supports attribute vectors with polynomial length.

Chosen-Ciphertext Secure Inner-Product Encryption. Peikert and Wa-
ters [27] gave a framework to construct chosen-ciphertext secure public key
encryption schemes from lossy trapdoor functions. Our inner-product lossy trap-
door function also works in this framework. Following the framework in [27], to
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obtain a payload hiding IPE scheme under selectively chosen-ciphertext adver-
saries, one can combine an IPTDF and an All-But-One (ABO) [27] trapdoor func-
tion with a strongly unforgeable one-time signature. The ciphertext of the IPE
scheme consists of ¢ = (vk, IPTDF.Ev(PP, b, x), ABO-TDF .Ev(vk, x), h(x) ®m, o),
where x is randomly chosen from the domain of IPTDF and ABO-TDF, A is a pair-
wise independent hash function, m is the message, and o is the one-time signa-
ture of IPTDF.Ev(PP,b, ), ABO-TDF.Ev(vk, x), and h(z) @ m under the signing
key associated to vk.

In order to base the resulting IPE scheme on lattices, we need to provide an
ABO trapdoor function based on lattices We have two ways to address this
problem. The first one is to use the original lattice based ABO trapdoor function
presented in [27]. However, this construction brings large public key size. We
prefer to the second one, and as a by-product, we give a generic construction for
ABO trapdoor functions. We observe that the lossy sibling of IBTDF is actually
an ABO lossy trapdoor function if we view an identity as a branch. The lossy
identity hiding property is exactly the hidden branch property of ABO trapdoor
functions (even the adversary can access an oracle to obtain other inversion
keys). Bellare et al. presented a “direct” construction of IBTDF from lattices.
Use this ABO trapdoor function and our IPTDF scheme, we obtain the first
chosen-ciphertext secure IPE scheme based on lattices.

Note that a generic method to construct chosen-ciphertext secure IPE scheme
is the CHK/BK [15/12] transform. The CHK/BK transform transforms a 2-level
chosen-plaintext secure hierarchical IPE scheme into chosen-ciphertext secure
IPE scheme. However, the only lattice based IPE scheme in [2] seems difficult to
be extended into a hierarchical IPE scheme. Therefore, it seems difficult to obtain
a chosen-ciphertext secure IPE scheme from the scheme in [2] using CHK/BK
transform.
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