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Abstract. Omnidirectional vision is one of emerging areas of research.
Omnidirectional images offer a large field of view compared to conven-
tional perspectives images. However, these images contain important dis-
tortions, and classical optical flow estimation are thus not appropriate.
In this paper, we propose to estimate optical flow on omnidirectional
images using a phase based method which proved its robustness and its
accuracy on the perspective images. We will adapt different treatments
that this method involve in order to take into account the nature of
omnidirectional images.
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1 Introduction

A fundamental problem in images processing is the computation of optical flow
[1]. Optical flow is the distribution of apparent velocities of movement of bright-
ness patterns in an image [2]. The information given by the optical flow can
be used in many applications [3] such as object detection and tracking [4][5],
robot navigation [6], video surveillance [7], ego-motion estimation [8]or visual
odometry [9]. To estimate the optical flow there are several methods. A selec-
tion of those methods was tested and compared in [10] and grouped in four
different classes: differential methods [11][12][2], phase-based methods [13][14],
region-based methods [15] and energy based methods [16][17]. In optical flow
estimation, Phase based methods are among techniques which proved their ro-
bustness and their accuracy [10]. Those techniques were introduced the first
time by Fleet and Jepson [13]. Their method is based on the assumption that
the level contours of constant phase provide a good approximation to the motion
field [13].They propose to use spatiotemporal filters to decompose the image se-
quence according to scale and orientation [10], and then normal components of
2D velocity are calculated at each location in the different filters outputs. Fi-
nally, the full velocity is estimated by integrating all reliable normal components.
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Based on this approach, Gautama et al [18] introduced a new technique based on
spatial filters instead of spatiotemporal ones. They consider phase nonlinearity
as a criterion of reliability instead instability [18].

In this paper, we will adapt this last approach to omnidirectional images. The
remainder of the paper is as follows: in the next section we present the phase-
based approach proposed by Gautama et al to estimate the optical flow when
using perspective images. Then, in section 3, we describe how to adapt this
approach to estimate optical flow on omnidirectional images. Section 4 shows
experiment results. We present our conclusions in section 5.

2 Phase Based Method for Optical Flow Estimation

The phase-based technique proposed by Gautama et al [18] uses a set of 2D
complex filters to extract spatial phase. Then, temporal phase gradient is esti-
mated at every position in image sequence and a reliability measure is applied to
determine valid component velocities. These component velocities are thereafter
combined to generate the optical flow field.

2.1 Filters Setting

To extract the phase in [18] Gabor filters are used to proceed to the multichannel
decomposition. Gabor filter’s impulse response is given by :

G(x) =
1

2πσ
e

−|x|2
σ2 ei2πf (1)

With x = (x, y) is the pixel position,f = (fx, fy) are center frequencies which
define filter orientation θ, and σ is the standard deviation of the elliptical Gaus-
sian which defines scale parameter. Once an image I(x) is filtered by such filter,
the response is given by:

R(x) = I(x) ∗G(x)

= ρ(x)eiφ(x) (2)

ρ(x) and φ(x) are respectively the amplitude and the phase component of the
image convolved with the Gabor filter.

2.2 Optical Flow Estimation

Starting from the hypothesis that surfaces of constant phase provides a good ap-
proximation to the motion field [13], we can deduce the phase gradient constraint
equation. Indeed, such surfaces satisfy:

φ(x, t) = c (3)

Differentiating this equation with respect to t yields:

∇φ.V+
∂φ

∂t
= 0 (4)
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Where ∇φ is the spatial phase gradient, ∂φ
∂t the temporal phase gradient and

V = (vx, vy) is the velocity vector. As in the brightness constancy equation, the
aperture problem appears also in the phase gradient constraint equation. In fact,
we can estimate only the velocity component in the direction of the spatial phase
gradient Vc. Equation (4) yields :

(∇φ.V)
∇φ

|∇φ| = −∂φ

∂t

∇φ

|∇φ| (5)

Given that:

Vc = (V.
∇φ

|∇φ| )
∇φ

|∇φ| (6)

This gives:

V.∇φ =
Vc

∇φ
|∇φ|2 (7)

Upon substituting equation (7), equation (5) become :

Vc = −∂φ

∂t

∇φ

|∇φ|2 (8)

The spatial phase gradient ∇φ = (∂φ∂x ,
∂φ
∂y ) can be substituted with the local

instantaneous frequency (2πfx, 2πfy)[19] :

Vc (x, y) = −∂φ

∂t

1

2π
(
f2

x + fy
2
) (fx, fy) (9)

The temporal phase gradient ∂φ
∂t is obtained from the temporal evolution of the

phase by a accomplishing a linear regression in the least-squares sense [19][20]
on the next equation:

φ (x, t) = c+
∂φ

∂t
t (10)

Note that the phase is unwrapped along the image sequence to deal with the
phase periodicity. To determine the reliability of each component velocity, we
calculate the mean squared error:

MSE =

∑
t (Δφ (x, t))

2

N
(11)

Where N is the number of images and Δφ(x, t) = (c+ ∂φ
∂t (x, t).t)− φ(x, t)

Thereafter, valid component velocities are combined to estimate the full velocity:

V ∗ (x) = argmin
∑(

‖Vc,i(x)‖ − V (x, t)T
Vc,i(x)

‖Vc,i(x)‖
)2

(12)

Where Vc,i is the component velocity at pixel x corresponding to the ith filter.
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3 Optical Flow in Omnidirectional Images

Omnidirectional images offer a large field of view compared to conventional
perspectives images, although they are distorted due to the non-linear projection
of the scene points in the image [3]. Consequently calculating optical flow on
such images in the same way as on perspectives images will lead to mistaken
results. One of the most used techniques to avoid this problem is to project
omnidirectional images on the sphere and using image processing in that new
domain.

3.1 Projection on the Sphere

The equivalence between the catadioptric projection and the projection on the
sphere has been proved by Geyer and Daniilidis [21]. In their work, they have
presented a unifying theory for central panoramic systems. This equivalence is
shown in Fig. 1.

Fig. 1. Equivalence between the catadioptric projection and the two-step mapping via
the sphere

The 3D point Pw (Xw, Yw, Zw) is first projected in the mirror on a point
Pm (Xm, Ym, Zm), then reflected to the image plane on a point Pi (x, y) ,such
that it is parallel to the optical axis.
Let Ps (Xs, Ys, Zs) = Ps (θ, ϕ) be the equivalent point on the unit sphere. The
Cartesian coordinates of this point are given by :

⎧
⎪⎨

⎪⎩

Xs = sin θ cosϕ

Ys = sin θ sinϕ

Zs = cos θ

(13)

The stereographic projection of Ps on the image plane yields point Pi (x, y) given
by:

{
x = Xs

1−Zs

y = Ys

1−Zs

(14)
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By combining Equations (12) and (13) we obtain the spherical coordinates of
point Pi:

{
x = cot θ

2 cosϕ

y = cot θ
2 sinϕ

(15)

3.2 Optical Flow on the Sphere

To adapt the phase based method to omnidirectional images, we need to refor-
mulate the phase gradient constraint equation in the sphere. Let φs (θ, ϕ) be

the spherical phase in the unit sphere, and ∇φs =
(

∂φs

∂θ , 1
sin θ

∂φs

∂ϕ

)
the spatial

phase gradient on the sphere, the phase gradient constraint given in equation
(4) becomes :

1

sin θ

∂φs

∂ϕ
Vϕ +

∂φs

∂θ
Vθ +

∂φs

∂t
= 0 (16)

Where (Vθ, V ϕ) are the components of the flow vector in the tangential coor-
dinates system. As for perspective images this equation provides only normal
velocity component:

Vc(θ, ϕ) = −∂φs

∂t

∇φs

|∇φs|2
(17)

4 Experiment and Results

To test our approach we use real sequences of omnidirectional images, and we
compared it to the classical phase based method proposed by Gautama [18].
To extract phase we used a filterbank consisting of spherical Morlet wavelets
[22], tuned at the same orientations as in Gautama method. The sequences are
captured using a catadioptric camera embedded on a mobile robot as shown in
Fig. 2.

The resolution of our images is 1280*960 pixel and the intrinsic parameters
are: αu = 243, αv = 236 and h = 0.86.

We estimate the optical flow for two different motions kinds : a rotation of
the camera around the Z-axis as shown in Fig. 3 , and object movement in the
scene with a fixed camera as shown in Fig. 4. Since in the case of real images
we do not have the ground truth, we will just present the 2D motion fields that
illustrated the amelioration given by our adapted method.

In Fig. 3, the image on the bottom left represents the optical flow obtained
by applying Gautama approach without adaptation on the omnidirectional se-
quence corresponding to rotation. Overall, the optical flow field is correct with
some minor irregularities. The image on the bottom right represents the optical
flow obtained by applying our adapted method. This optical flow field is much
better and more regular than the first one.
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Fig. 2. Top: omnidirectional sensor embedded on a mobile robot. Bottom: omnidirec-
tional image.

Fig. 3. Top: a sequence depicting a rotation. Bottom: optical flow obtained using clas-
sical Gautama method (Left) and using our approach (right).
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Fig. 4 shows, on the bottom left, the optical flow obtained by applying Gau-
tama approach without adaptation on the omnidirectional sequence correspond-
ing to the object movement. This image shows an optical flow field who doesn’t
reflect the real motion on the sequence, and therefore a wrong one. On the other
side the optical flow obtained by applying our adapted method is much closer
to the real movement in the left of scene.

Fig. 4. Top: a sequence depicting an object movement. Bottom: optical flow obtained
using classical Gautama method (Left) and using our approach (right).

5 Conclusion

Omnidirectional images are rich in information since they depict almost the
whole scene. Unfortunately, they include severe distortions. That is why classical
methods used to estimate the optical flow that work for perspectives images
need to be adapted for omnidirectional ones. In this paper we have proposed an
adaptation to a phase based method proposed by Gautama [18] which is one of
the most robust optical flow methods. We applied our approach in real images
and we compared it to the classical Gautama method. The comparison shows
that our adapted Gautama method provides a correct local motion fields.
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