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Abstract. This paper proposes a new descriptor for radiological im-
age retrieval. The proposed approach is based on fuzzy shape contexts,
Fourier transforms and Eigenshapes. First, fuzzy shape context
histograms are computed. Then, a 2D FFT is performed on each 2D
histogram to achieve rotation invariance. Finally, histograms are pro-
jected onto a lower dimensionality feature space whose basis is formed
by a set of vectors called Eigenshapes. They highlight the most impor-
tant variations between shapes. The proposed approach is translation,
scale and rotation invariant. Classes of the medical IRMA database are
used for experiments. Comparison with the known approach rotation
invariant shape contexts based on feature-space Fourier transformation
proves that the proposed method is faster, more efficient, and robust to
local deformations.
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1 Introduction

One of the most vivid fields of computer vision research is medical image pro-
cessing [1] [2]. Medical image tools are used by physicians for diagnosis. So many
works proposed new techniques of medical image processing [3] [4] [5] [0].
Medical image retrieval is a branch of medical image processing. The concept
of content based image retrieval is used in many applications such as breast
cancer diagnosis systems [7] [§] [9]. Each image in the database needs to be
described by features providing its signature. Features extraction is based on
visual characteristics. The best features when dealing with simple radiological
image retrieval is shape information. In fact, using gray level based approaches is
not sufficient. They are in most of cases coupled with edge detection techniques
[10]. This work deals with shape descriptors. It improves the rotation invariant
shape contexts based on feature-space Fourier transformation [I1]. First, fuzzy
shape context histograms are computed. Then, a 2D FFT is performed on each
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2D histogram. Next, data is projected onto a more representative feature space
highlighting the most important variations between shapes. Eigenshapes form
the basis of the new space. This will be more detailed in the next section.

This paper is organized as follows: Section 2 presents the proposed approach.
Section 3 presents experimental results. The conclusion comes in section 4.

2 Rotation Invariant Fuzzy Shape Contexts Based on
Eigenshapes and Fourier Transforms

2.1 Previous Work

S. Belongie et al. initially proposed the Shape context feature descriptor used
for shape matching and object recognition [12] [13] [14]. The proposed approach
inspired many authors to propose variants of this descriptor [15] [16]. S. Yang
and Y. Wang proposed the rotation invariant shape contexs based on feature-
space Fourier transformation [11]. The main idea is to extract the shape of the
object and pick up n points. They do not need to be key points such as corners.
Shape context at a given point p; is an histogram providing the distribution of
vectors originating from p; over relative positions by considering p; as the center
of a log polar coordinate system (Figure 1). This distribution provides a reach
description of the shape localized at that point.
Shape context at a given point p; is defined as follows:

hi(k) = #{q # pi : (¢ — pi) € bin(k)} (1)
Indeed, coordinates and tangents at each point are used to compute a set
{(rij, i5)l%, 5 = 1,2...,n} of magnitudes and angles. For a point p; , magnitudes

are obtained by first computing distances l;; between p; and the remaining points:

iy = (e = 2002 + (5 — ) 2)

Then, a log scale is performed on all distances. Note that a length normalization
is needed. Thus, every magnitude is divided by the mean distance r¢. Finally r;;
is determined as: loo(L:

_ og(li;)

Tij "o (3)

Fig. 1. Log polar grid with 60 bins used to compute shape contexts



434 A. Ben Ayed, M. Kardouchi, and S.-A. Selouani

Angles a;; are defined as follows:

non 4)

Qi = arctan
Yj + Y

The obtained set {(7;,;)|i,j = 1,2...,n} is used to compute the 2D his-
togram defining the shape context. Application of a 2D FFT on this 2D his-
togram provides rotation-invariance.

2.2 Fuzzy Shape Contexts

The main idea behind fuzzy shape contexts concept consists in considering that
the belonging of a contour pixel to a given bin is not absolute. It also belongs
to the surrounding bins with smaller weights. This makes the descriptor more
robust to local deformations. Figure 2 shows the case of a local shape deformation
supposing that a log-polar grid of four bins is used to compute shape context
histograms. A pixel belongs to a given bin with weight w; = 0.7. It also belongs
to the previous and next bins with weights we = w3 = 0.15.

contexts

Case 1 Case 2
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2 1 5
r,
3 4 3 4
Shape ‘ |1|0|1‘ ‘1[1‘0’0|d=\)2
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Fuzzy hape ‘ | 0.7 | 0.3 l 07 ‘ ‘ 0.85 [0.85 ‘ 0.15 ’015| d=\/0.65
i

Fig. 2. A comparison between Shape contexts and Fuzzy Shape Contexts (illustration
with one level-four bins)

The Euclidean distance is used to measure similarity between histograms. It
is equal to v/2 when shape contexts are used. However, it is equal to 1/0.65
when dealing with fuzzy shape contexts which are proven more robust to local
deformations. Note that the difference § = v/2 — 1/0.65 is note huge. This is due
to the fact that we are dealing with a local deformation.
In the rest of this work, a set of 12 equally log bins and 5 equally log radius bins
is used to compute fuzzy shape contexts (Figure 3). Weights of belonging to a
given bin are set empirically. There are three cases:
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Fig. 3. Weight assignation

e a given pixel belongs to a bin of level L1 with weight w; = 0.8 and belongs
to the next and the precedent bins with weight w; = 0.1 for each (Eg. Bin
A).

e a given pixel belongs to a given bin of level L2, 1.3 or L4 with weight wy = 0.6
and belongs to all the surrounding bins with weight w, = 0.05 for each (Eg.
Bin B).

e a given pixel belongs to a given bin of level L5 with weight ws = 0.75 and
belongs to all the surrounding bins with weight wy = 0.05 for each (Eg. Bin
C).

2.3 Eigenshapes

For a given image, a reference point corresponding to the closest pixel to the
top left image corner is fixed. The next step is to pick up other n — 1 equidis-
tant points. Every point is described via its fuzzy shape context which is a 2D
histogram. Each histogram is then reshaped onto 1D vector which is added as a
new line to the matrix representing the signature of that image. The signature is
so an n X [ matrix where n denotes the number of picked points and [ denotes the
number of bins. The next two sub-sections describe the training and recognition
procedures.

Training. A set S = {S1,S52,...,5n} of m images is used for training. Each
image is represented by an n x [ matrix. Each matrix is converted onto a column
vector (;. (; is a z X 1 vector where z = n x [. Then, the average shape vector 7
is computed as follows:

r= %% (5)
=1

Next, each (; is normalized by subtracting the mean shape:

O;=¢—T (6)
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Then, the covariance matrix C' is computed as follows :

= n@, = AA
C mngﬂ@ o, (7)

Where A = [01,03,...,0,,]. Note that C' in (7) is a z X z matrix and A is a
z X m matrix. Eigenshapes are the eigenvectors U; of AA*.

Note that the matrix AA? is very large so it is not practical for computations
because of its dimension. Also, note that AA? and A? A have the same eigenvalues
and their eigenvectors are related as follows: U; = AV;. Next, eigenvectors of A'A
are computed. Finally, m cigenvectors of AA? are obtained following the relation:
U; = AV;. Only k eigenvectors corresponding to the largest eigenvalues are kept.
They form the basis of the new eigenshape space:

Ey = [Uy,Us, ..., U] (8)

Each normalized shape in the training database is so projected in the new space.
It is represented as a linear combination of k eigenshapes:

k
e =y WU (9)
j=1

where Wj = U;@i. Next, every normalized training shape ©; is represented by
a vector w’ providing its coordinates in the new eigenshape space where:

7

Wi

7

; W3
w = .

. (10)
Wi

Retrieval. Now, given a query image, the goal is to retrieve the most similar
image to it in the database. First, it is reshaped onto a column vector v . Then,
it is normalized: # = ¢ — 7. The next step is to project it on the eigenshape
space.

k
0Pl = Wil (11)
i=1
where W; = U}6. Finally, 6 is represented as:
Wi
Ws
=1 . (12)
Wi,

The last step is to compute d = min||[f2 — w'||. The corresponding image to
vector w' is considered as the most similar one to the query image.
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3 Experiments

3.1 Image Collection

The radiological IRMA database is used for experiments. It includes images of
several body parts. Figure 4 shows some IRMA database samples.

Fig. 4. IRMA samples

A set of 1000 images belonging to four classes (Hands, Breasts, Chests and
Heads) is used. The number of images per class is the same. Figure 5 shows
sample images of these classes.

"

()

Fig. 5. Four classes used for performance measurement

Images in Figure 5 are randomly picked. They are used in the next sub-section
as targets to evaluate the performance of the proposed approach. The Euclidean
distance is used to measure the similarity between images.

3.2 Experimental Results

To evaluate the proposed approach, recall and precision measurements are used.
Recall is defined as the ratio between the number of correctly retrieved images
and the total number of images retrieved while precision is defined as the ratio
between the number of correctly retrieved images by search and the total number
of images used for test. For each measure of recall precision, the 10, 20, 40, 60,
80, 100, 150, 200 and 250 most similar images are taken in consideration. Figures
6, 7 and 8 shows recall versus precision for three tested approaches:

e FFT-RISC: Rotation-invariant shape contexts based on FFT [I1].

e RISC-FFT-EIG: Rotation invariant shape contexts based on Fourier trans-
forms and eigenshapes: histograms obtained by FFT-RISC are projected
onto a new eigenshape space.
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e Fuzzy RISC-FFT-EIG: Fuzzy Rotation invariant shape contexts based on
Fourier transforms and FEigenshapes: Histograms obtained by FFT-RISC
when using fuzzy bins are projected onto a new eigenshape space.

Figure 6 shows the recall precision curve for the Hand sample image (a) show-
ing that Fuzzy RISC-FFT-EIG and RISC-FFT-EIG outperform significantly
the FFT-RISC approach. Even when considering the best 250 retrieved images,
precision rate remains superior to 90 %.

1.00
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0.80

0.70

0.60 T T T T
0.0 0.2 04 0.6 0.8
Recall

—— Fuzzy RISC-FFT-EIG
—a— RISC-FFT-EIG
—— FFT-RISC

Fig. 6. Recall Vs. Precision for the Hand sample (a)

Recall and precision curve for the Breast sample image (b) is illustrated by
Figure 7. The precision rate is equal to 100 % for the five first measurements for
all of the three approaches. Fuzzy RISC-FFT-EIG and RISC-FFT-EIG provide
better recognition rates than FFT-RISC when recall is higher than 0.4

Figure 8 shows recall precision curve for the Chest image sample (d). For the
first measure, the precision rate is equal to 100 % for all of the tested approaches.
Then, it is higher when using FFT-RISC. However the Fuzzy RISC-FFT-EIG
and RISC-FFT-EIG outperform when recall is higher than 0.5.

To further prove the performance of the proposed approach, the average of the
precision rate per class is computed considering the best 200 images retrieved.
Results are illustrated by Table 1 showing that Fuzzy RISC-FFT-EIG and RISC-
FFT-EIG outperform the FFT-RISC approach. This is due to elimination of
noisy data.
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Fig. 7. Recall Vs. Precision for the Breast sample (b)
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Fig. 8. Recall Vs. Precision for the Chest sample (c)
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Table 1. Average of the precision rate per class considering the best 200 images

retrieved

Image FFT-RISC RISC-FFT-EIG Fuzzy-RISC-FFT-EIG

Hands
Breasts
Chests
Heads

Average

83.09
85.65
98.49
95.67

90.72

98.08
93.47
97.01
94.06

95.65

98.64
94.1

97.92

94.02

96.16
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3.3 Discussion

Experimental results show that better results are obtained when histograms are
projected in a new eigenshape space. The average of precision rate per class
considering the best 200 images retrieved with RISC-FFT-EIG reaches 95.65 %
while it is equal to 90.72 % with FFT-RISC. Other point to note is that using
fuzzy shape contexts ameliorates results. In this case, the recognition rate is
96.16 %. Indeed, fuzzy shape contexts are more robust to local deformations.
Note that there is no significant gap between results obtained by RISC-FFT-
EIG and Fuzzy RISC-FFT-EIG approaches. In fact, local deformations do not
affect significantly the performance of retrieval.

4 Conclusion

Shape context has been proven a very powerful shape descriptor. It is translation
and scale invariant. Rotation invariance is achieved by application of 2D FFT's
on the 2D histograms.

This work proves that using fuzzy bins makes the descriptor more robust to
local deformations. Also, projecting data onto a lower dimensionality space high-
lighting the most important variations between shapes reduces time execution.
In addition to that, better recognition rates are obtained. This is due to elimina-
tion of noisy data. Note that the major limitation of the proposed descriptor is
the fact that it can not be used when dealing with images having many textures.
The proposed approach can be improved if weights are set in respect to the linear
distance between each pixel and the surrounding bins.
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